首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Periodontitis i.e. inflammation of the periodontium is a multifactorial disease. Antimicrobial peptides (AMPs) which demonstrate a broad-spectrum of activity against varied number of bacteria, fungi, viruses, and parasites, and cancerous cells have been linked to periodontitis. The AMPs even possess the caliber of immunomodulation, and are significantly responsive to innate immuno-stimulation and infections. LL-37 plays a salubrious role by preventing and in treatment of chronic forms of periodontitis.

Objective

In the present work we will review the role of antimicrobial peptide LL-37 in periodontitis.

Methods

A systematic search was carried out from the beginning till August, 2016 using the Pubmed search engine. The keywords included “LL-37,” “periodontitis,” “Papillon–Lefevre syndrome,” “Morbus Kostmann,” “Haim-Munk syndrome” along with use of Boolean operator “and.”

Results

The search resulted in identifying 67 articles which included articles linking LL-37 with periodontitis, articles on Papillon–Lefevre syndrome, Morbus Kostmann, Haim-Munk syndrome, LL-37 and periodontitis and articles on pathogenicity of periodontitis.

Conclusion

The literature search concluded that LL-37 plays a pivotal role in preventing and treatment of severe form of periodontitis.
  相似文献   

2.

Background

Erythropoiesis is regulated by a range of intrinsic and extrinsic factors, including different cytokines. Recently, the role of catecholamines has been highlighted in the development of erythroid cell lineages.

Objective

This study focuses on the biological links interconnecting erythroid development and the sympathetic nervous system. The emerging evidence that underscores the role of catecholamines in the regulation of erythropoietin and other erythropoiesis cytokines are thoroughly reviewed, in addition to elements such as iron and the leptin hormone that are involved in erythropoiesis.

Methods

Relevant English-language studies were identified and retrieved from the PubMed search engine (1981–2017) using the following keywords: “Erythropoiesis”, “Catecholamines”, “Nervous system”, and “Cytokines.”

Results

Chronic social stress alters and suppresses erythroid development. However, the physiological release of catecholamines is an additional stimulator of erythropoiesis in the setting of anemia. Therefore, the severity and timing of catecholamine secretion might distinctly regulate erythroid homeostasis.

Conclusion

Understanding the relationship of catecholamines with different elements of the erythroid islands will be essential to find the tightly regulated production of red blood cells (RBCs) in both chronic and physiological catecholamine activation.
  相似文献   

3.
4.

BACKGROUND

Neuronal activity in cortical areas regulates neurodevelopment by interacting with defined genetic programs to shape the mature central nervous system. Electrical activity is conveyed to sensory cortical areas via intracortical and thalamocortical neurons, and includes oscillatory patterns that have been measured across cortical regions.

OBJECTIVE

In this work, we review the most recent findings about how electrical activity shapes the developmental assembly of functional circuitry in the somatosensory cortex, with an emphasis on interneuron maturation and integration. We include studies on the effect of various neurotransmitters and on the influence of thalamocortical afferent activity on circuit development. We additionally reviewed studies describing network activity patterns.

METHODS

We conducted an extensive literature search using both the PubMed and Google Scholar search engines. The following keywords were used in various iterations: “interneuron”, “somatosensory”, “development”, “activity”, “network patterns”, “thalamocortical”, “NMDA receptor”, “plasticity”. We additionally selected papers known to us from past reading, and those recommended to us by reviewers and members of our lab.

RESULTS

We reviewed a total of 132 articles that focused on the role of activity in interneuronal migration, maturation, and circuit development, as well as the source of electrical inputs and patterns of cortical activity in the somatosensory cortex. 79 of these papers included in this timely review were written between 2007 and 2016.

CONCLUSION

Neuronal activity shapes the developmental assembly of functional circuitry in the somatosensory cortical interneurons. This activity impacts nearly every aspect of development and acquisition of mature neuronal characteristics, and may contribute to changing phenotypes, altered transmitter expression, and plasticity in the adult. Progressively changing oscillatory network patterns contribute to this activity in the early postnatal period, although a direct requirement for specific patterns and origins of activity remains to be demonstrated.
  相似文献   

5.

Background

Bone marrow mesenchymal stromal cells (BM-MSCs) are an essential cell type in the hematopoietic microenvironment. The question of whether MSCs from patients with different leukemias have cytogenetic abnormalities is controversial. In this study, we attempted to review the cytogenetic profiles of MSCs in patients with leukemia, and verify whether these profiles were related to different ex vivo culture conditions or to chronic or acute disease states. This information could be useful in clarifying the origin of MSCs and developing clinical applications for this cell type.

Methods

A systematic literature search was performed using the PubMed search engine. Studies published over the past 15 years, i.e., between 1995 and January 2015, were considered for review. The following keywords were used: “cytogenetic,” “leukemia,” “bone marrow,” and “mesenchymal stromal cells.”

Results

Some studies demonstrated that BM-MSCs are cytogenetically normal, whereas others provided evidence of aberrations in these cells

Conclusions

Studying cytogenetic changes of MSCs in a variety of leukemias will help researchers understand the nature of these tumors and ensure the safety of human stem cells in clinical applications.
  相似文献   

6.

Background

Porphyromonas gingivalis is a periodontal pathogen, which is considered to be a keystone pathogen for periodontitis. A diverse conglomerate of P. gingivalis virulence factors including lipopolysaccharide, fimbriae, capsular polysaccharide, haemagglutinin and cysteine proteases (Arg-gingipains and Lys-gingipain) are considered to be involved in the pathogenesis of periodontitis. Leupeptin is a cysteine protease inhibitor which is specific for Arg gingipains. The present review focuses on action of leupeptin on Arg gingipains.

Method

A search was carried out systematically from the start till September, 2016. The search was made in Medline database via PubMed. The keywords enlisted were “leupeptin”; “gingipains”; “periodontitis” using Boolean operator “and.”

Results

The result was selection of 58 articles which linked leupeptin to periodontitis and gingipains; pathogenesis of periodontitis, pathogenicity of gingipains and role of leupeptin.

Conclusion

It was concluded that leupeptin inhibits and attenuates a number of destructive activities of Arg gingipains including inhibition of platelet aggregation; inhibit degradation of LL-37, which is an antimicrobial peptide; blocking inhibition of monocyte chemoattractant protein; restoring level of interleukin-2; inhibiting degradation of collagen type I and IV to name a few.
  相似文献   

7.

Purpose

End-of-life (EoL) recycling poses a challenge to many practitioners today due to the availability of different calculation approaches and the lack of scientific consensus, which is fueled by academic research and vested industry interests alike. One of the main challenges in EoL modeling is the credible calculation of the appropriate recycling credit in open-loop and closed-loop situations.

Methods

We believe that part of the challenge is caused by a lack of understanding of the underlying recycling paradigm, which refers to the meaning that is assigned to the recycling credit. Referred to as “system expansion through substitution” and “future displacement of primary production,” the two predominant paradigms are delineated from each other followed by a discussion of their remaining challenges.

Results and discussion

Based on these considerations, we propose a revised paradigm based on embodied burdens that is able to alleviate many of the most pressing issues associated with material recycling in attributional life cycle assessment.

Conclusions

With this discussion paper, we look forward to a productive and lively debate on the matter.
  相似文献   

8.

Background

Maximum parsimony phylogenetic tree reconciliation is an important technique for reconstructing the evolutionary histories of hosts and parasites, genes and species, and other interdependent pairs. Since the problem of finding temporally feasible maximum parsimony reconciliations is NP-complete, current methods use either exact algorithms with exponential worst-case running time or heuristics that do not guarantee optimal solutions.

Results

We offer an efficient new approach that begins with a potentially infeasible maximum parsimony reconciliation and iteratively “repairs” it until it becomes temporally feasible.

Conclusions

In a non-trivial number of cases, this approach finds solutions that are better than those found by the widely-used Jane heuristic.
  相似文献   

9.

Background

Recently, growing attention has been directed toward stem cell metabolism, with the key observation that metabolism not only fuels the proper functioning of stem cells but also regulates the fate of these cells. There seems to be a clear link between the self-renewal of pluripotent stem cells (PSCs), in which cells proliferate indefinitely without differentiation, and the activity of specific metabolic pathways. The unique metabolism in PSCs plays an important role in maintaining pluripotency by regulating signaling pathways and resetting the epigenome.

Objective

To review the most recent publications concerning the metabolism of pluripotent stem cells and the role of metabolism in PSC self-renewal and differentiation.

Methods

A systematic literature search related to the metabolism of PSCs was conducted in databases including Medline, Embase, and Web of Science. The search was performed without language restrictions on all papers published before May 2016. The following keywords were used: “metabolism” combined with either “embryonic stem cell” or “epiblast stem cell.”

Results

Hundreds of papers focusing specifically on the metabolism of pluripotent stem cells were uncovered and summarized.

Conclusion

Identifying the specific metabolic pathways involved in pluripotency maintenance is crucial for progress in the field of developmental biology and regenerative medicine. Additionally, better understanding of the metabolism in PSCs will facilitate the derivation and maintenance of authentic PSCs from species other than mouse, rat, and human.
  相似文献   

10.

Purpose

A review of readily available quantitative environmental data was conducted in order to determine the state of sustainability reporting and identify possible future research areas in Portugal.

Methods

Internet searches of articles written in English and published between 2001 and 2015 were conducted using the keywords “life-cycle assessment,” “LCA,” “water footprint,” “carbon footprint,” and “Portugal.” Additionally, reports from the Global Reporting Initiative (2015 only) were included in the search.

Results and discussion

It was found that 79% of reports found were published in the period 2011–2015. Several reports were found for the forestry, paper and pulp, food and beverage, energy and electricity, waste management, and automotive industries, while no reports were found for the textile, footwear and clothing, and base metal and mineral industries. As such, these are industries on which future studies might focus. No reports found were published by governmental organizations, although it is thought that expanding the search to include Portuguese language results would yields more results. The majority (68%) of companies reporting to the GRI adhered to the relevant guidelines.

Conclusions

A total of 72 reports were found (41 LCAs, water- or carbon footprints, and 31 GRI reports). It is unclear if there are other reports that may be restricted to “hidden” datasets or company specific archives. The aim of this report was to highlight those that were available to a non-specialist or international audiences trying to gain a greater understanding of the LCA space in Portugal.
  相似文献   

11.
12.
13.
14.

Background

Metabolic disorders such as Obesity, Diabetes Type 2 (T2DM) and Inflammatory Bowel Diseases (IBD) are the most prevalent globally. Recently, there has been a surge in the evidence indicating the correlation between the intestinal microbiota and development of these metabolic conditions apart from predisposing genetic and epigenetic factors. Gut microbiome is pivotal in controlling the host metabolism and physiology. But imbalances in the microbiota patterns lead to these disorders via several pathways. Animal and human studies so far have concentrated mostly on metagenomics for the whole microbiome characterization to understand how microbiome supports health in general. However, the accurate mechanisms connecting the metabolic disorders and alterations in gut microbial composition in host and the metabolites employed by the microorganisms in regulating the metabolic disorders is still vague.

Objective

The review delineates the latest findings about the role of gut microbiome to the pathophysiology of Obesity, IBD and Diabetes Mellitus. Here, we provide a brief introduction to the gut microbiome followed by the current therapeutic interventions in restoration of the disrupted intestinal microbiota.

Methods

A methodical PubMed search was performed using keywords like “gut microbiome,” “obesity,” “diabetes,” “IBD,” and “metabolic syndromes.” All significant and latest publications up to January 2018 were accounted for the review.

Results

Out of the 93 articles cited, 63 articles focused on the gut microbiota association to these disorders. The rest 18 literature outlines the therapeutic approaches in maintaining the gut homeostasis using probiotics, prebiotics and faecal microbial transplant (FMT).

Conclusion

Metabolic disorders have intricate etiology and thus a lucid understanding of the complex host-microbiome inter-relationships will open avenues to novel therapeutics for the diagnosis, prevention and treatment of the metabolic diseases.
  相似文献   

15.

BACKGROUND

Huntington’s Disease (HD) is an autosomal dominant neurodegenerative disease causing severe neurodegeneration of the striatum as well as marked cognitive and motor disabilities. Excitotoxicity, caused by overstimulation of NMDA receptors (NMDARs) has been shown to have a key role in the neuropathogenesis of HD, suggesting that targeting NMDAR-dependent signaling may be an effective clinical approach for HD. However, broad NMDAR antagonists are generally poor therapeutics in clinical practice. It has been suggested that GluN2A-containing, synaptically located NMDARs activate cell survival signaling pathways, while GluN2B-containing, primarily extrasynaptic NMDARs trigger cell death signaling. A better approach to development of effective therapeutics for HD may be to target, specifically, the cell-death specific pathways associated with extrasynaptic GluN2B NMDAR activation, while maintaining or potentiating the cellsurvival activity of GluN2A-NMDARs.

OBJECTIVE

This review outlines the role of NMDAR-mediated excitotoxicity in HD and overviews current efforts to develop better therapeutics for HD where NMDAR excitotoxicity is the target.

METHODS

A systematic review process was conducted using the PubMed search engine focusing on research conducted in the past 5-10 years. 235 articles were consulted for the review, with key search terms including “Huntington’s Disease,” “excitotoxicity,” “NMDAR” and “therapeutics.”

RESULTS

A wide range of NMDAR excitotoxicity-based targets for HD were identified and reviewed, including targeting NMDARs directly by blocking GluN2B, extrasynaptic NMDARs and/or potentiating GluN2A, synaptic NMDARs, targeting glutamate release or uptake, or targeting specific downstream cell-death signaling of NMDARs.

CONCLUSION

The current review identifies NMDAR-mediated excitotoxicity as a key player in HD pathogenesis and points to various excitotoxicity-focused targets as potential future preventative therapeutics for HD.
  相似文献   

16.

Introduction

Molecular factors are differentially observed in various bent sectors of poplar (Populus nigra) woody taproots. Responses to stress are modulated by a complex interplay among different hormones and signal transduction pathways. In recent years, metabolomics has been recognized as a powerful tool to characterize metabolic network regulation, and it has been widely applied to investigate plant responses to biotic and abiotic stresses.

Objectives

In this paper we used metabolomics to understand if long term-bending stress induces a “spatial” and a “temporal” metabolic reprogramming in woody poplar roots.

Methods

By NMR spectroscopy and statistical analysis we investigated the unstressed and three portions of stressed root (above-bent, bent, and below-bent) sectors collected at 12 (T0), 13 (T1) and 14 (T2) months after stress induction.

Results

The data indicate a clear between-class separation of control and stressed regions, based on the metabolites regulation, during both spatial and temporal changes. We found that taproots, as a consequence of the stress, try to restore homeostasis and normal metabolic fluxes thorough the synthesis and/or accumulation of specific compounds related to mechanical forces distribution along the bent taproot.

Conclusion

The data demonstrate that the impact of mechanical stress on plant biology can efficiently be studied by NMR-based metabolomics.
  相似文献   

17.
18.

Objective

To develop a method for fast replacement of promoters to improve protein production.

Results

A method (entitled retreat to advance or “ReToAd”), which includes a deleting PCR and a touchdown PCR, was validated by replacing seven IPTG-inducible promoters with enhanced green fluorescent protein (eGFP). The seven promoters were fully recovered by sequencing only 30 clones. The activity of E. coli harboring ω-transaminase (ω-TA) was increased from 112 U/mg cells (T7 promoter) to 147 U/mg cells (Trc promoter) by combining ReToAd and screening experiments. After screening a library comprising glutamate dehydrogenase (GDH) expressed by different promoters, the activity of E. coli cell harboring Trc-promoter-expressed GDH was ~31-fold higher than that of T7-promoter-expressed GDH.

Conclusions

The “ReToAd” for in situ rapid replacement of promoters was developed and optimized, and one round of “ReToAd” can be completed within 3 days.
  相似文献   

19.

Background

A substrate cycle is a metabolic transformation in which a substrate A is phosphorylated to A?P at the expense of ATP (or another “high energy” compound), and A?P is converted back to A by a nucleotidase or a phosphatase. Many biochemists resisted the idea of such an ATP waste. Why a non-phosphorylated metabolite should be converted into a phosphorylated form, and converted back to its non-phosphorylated form through a “futile cycle”?

Aim of review

In this Review we aim at presenting our present knowledge on the biochemical features underlying the interrelation between the muscle purine nucleotide cycle and the oxypurine cycle, and on the metabolic responses of the two cycles to increasing intensities of muscle contraction.

Key scientific concepts of review

Nowadays it is widely accepted that the substrate cycles regulate many vital functions depending on the expense of large amounts of ATP, including skeletal muscle contraction, so that the expense of some extra ATP and “high energy” compounds, such as GTP and PRPP via substrate cycles, is not surprising. The Review emphasizes the strict metabolic interrelationship between the purine nucleotide cycle and the oxipurine cycle.
  相似文献   

20.

Background

Mixtures of beta distributions are a flexible tool for modeling data with values on the unit interval, such as methylation levels. However, maximum likelihood parameter estimation with beta distributions suffers from problems because of singularities in the log-likelihood function if some observations take the values 0 or 1.

Methods

While ad-hoc corrections have been proposed to mitigate this problem, we propose a different approach to parameter estimation for beta mixtures where such problems do not arise in the first place. Our algorithm combines latent variables with the method of moments instead of maximum likelihood, which has computational advantages over the popular EM algorithm.

Results

As an application, we demonstrate that methylation state classification is more accurate when using adaptive thresholds from beta mixtures than non-adaptive thresholds on observed methylation levels. We also demonstrate that we can accurately infer the number of mixture components.

Conclusions

The hybrid algorithm between likelihood-based component un-mixing and moment-based parameter estimation is a robust and efficient method for beta mixture estimation. We provide an implementation of the method (“betamix”) as open source software under the MIT license.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号