首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients suffering from peripheral vascular disease have been "ultima ratio"-treated with PGI2 at a rate of 5 ng/kg/min for 6 hours a day and 5 consecutive days i.v. 20 of them underwent surgery thereafter as therapy was not sufficient. A histological examination and quantification of vascular tissue revealed that the number of activated smooth muscle cells was significantly lower in treated patients vascular segments than in untreated ones in all the different age groups. A comparable suppression was found in the intima and the media as well. It is thus concluded, that PGI2 inhibits smooth muscle cell proliferation most probably by inhibiting PDGF-release from the platelets and stimulation of smooth muscle cell cAMP. To achieve a more beneficial PGI2-effect at the vascular level, a prolonged PGI2-therapy looks rather promising.  相似文献   

2.
The role of eicosanoids in atherogenesis has not been thoroughly explained. This is partly due to the numerous eicosanoids and the variable effects that each has on different systems. Apoptosis of vascular smooth muscle cells has been shown to play a role in the atherosclerotic disease leading to lesion formation and further destabilization of the formed lesion. In this study, we have investigated the role of arachidonic acid derived eicosanoids in nitric oxide (NO)-stimulated vascular smooth muscle cells. We have shown previously that the nitric oxide (NO)-induced apoptosis of vascular smooth muscle cells was accompanied by arachidonic acid release via cytoplasmic phospholipase A(2) (cPLA(2)) activation. Also, arachidonic acid, but not oleic acid, induced apoptosis of these cells at low concentrations (5-10 microM). Our results revealed that the cPLA(2) specific inhibitor, arachidonyl trifluoromethyl ketone (AACOCF(3)), blocked NO-induced eicosanoid production, while the presence of arachidonic acid enhanced the ability of the cells to make prostaglandin E(2) (PGE(2)). Also, inhibitors of the cyclo-oxygenase (Cox) enzymes, such as N-[2-cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398), a specific Cox-2 inhibitor, or indomethacin, a non-specific Cox inhibitor, blocked NO-induced PGE(2) production and apoptosis of vascular smooth muscle cells to the same extent, indicating that apoptosis might be induced by a Cox-2 metabolic product. In addition to these observations, the eicosanoids investigated, namely, PGE(2), PGI(2) LTB(4), and PGJ(2), showed different effects on vascular smooth muscle cells. Both PGJ(2) and LTB(4) decreased the percentage of viable cells and induced apoptosis of vascular smooth muscle cells, while PGE(2) and PGI(2) had no effect on cell viability and failed to induce apoptosis. These data suggest that eicosanoids, such as PGJ(2), but not PGE(2) or PGI(2), are involved in NO-induced apoptosis of vascular smooth muscle cells and that the eicosanoid synthesis pathways might be utilized for vascular therapeutic strategies.  相似文献   

3.

Background

Serotonin (5-hydroxytryptamine, 5-HT) was named for its source (sero-) and ability to modify smooth muscle tone (tonin). The biological effects of 5-HT are believed to be carried out by stimulation of serotonin receptors at the plasma membrane. Serotonin has recently been shown to be synthesized in vascular smooth muscle and taken up from external sources, placing 5-HT inside the cell. The enzyme transglutaminase uses primary amines such as 5-HT to covalently modify proteins on glutamine residues. We tested the hypothesis that 5-HT is a substrate for transglutaminase in arterial vascular smooth muscle, with protein serotonylation having physiological function.

Methodology/Principal Findings

The model was the rat aorta and cultured aortic smooth muscle cells. Western analysis demonstrated that transglutaminase II was present in vascular tissue, and transglutaminase activity was observed as a cystamine-inhibitable incorporation of the free amine pentylamine-biotin into arterial proteins. Serotonin-biotin was incorporated into α -actin, β-actin, γ-actin, myosin heavy chain and filamin A as shown through tandem mass spectrometry. Using antibodies directed against biotin or 5-HT, immunoprecipitation and immunocytochemistry confirmed serotonylation of smooth muscle α–actin. Importantly, the α-actin-dependent process of arterial isometric contraction to 5-HT was reduced by cystamine.

Conclusions

5-HT covalently modifies proteins integral to contractility and the cytoskeleton. These findings suggest new mechanisms of action for 5-HT in vascular smooth muscle and consideration for intracellular effects of primary amines.  相似文献   

4.
5.
Miconazole is widely used clinically as an anti-fungal agent and experimentally as a cytochrome P450 (CYP) inhibitor. In rat coronary arteries that produce PGI(2) as the major arachidonic acid (AA) metabolite, activation of the large-conductance K(+) (BK) channels in coronary arterial smooth muscle cells by AA was inhibited by miconazole but not by the CYP inhibitor SKF525A. Activation of BK currents in coronary smooth muscle cells by carbacyclin or iloprost also was inhibited by miconazole but not by SKF525A, suggesting that miconazole might have properties other than those of CYP inhibition. In addition, carbacyclin-induced dilation of isolated mesenteric arteries was inhibited by treatment with miconazole (51.9+/-4.2% dilation in control, n=7 versus 30.1+/-4.0% with miconazole, n=4, p<0.005) but not SKF525A (52.8+/-3.6%, n=8). In contrast, miconazole did not affect BK channel activation and vasodilation produced by the phosphodiesterase inhibitor RO-201724. In cultured coronary smooth muscle cells, carbacyclin (1microM) stimulated cAMP production by 22-fold (183+/-29pmol/mg at baseline, 4062+/-212pmol/mg with carbacyclin, n=3, p<0.001). The carbacyclin effect was significantly attenuated by treatment with miconazole (1542+/-201pmol/mg, n=3, p<0.001 versus carbacyclin alone), but not by SKF525A (3460+/-406pmol/mg, n=3, p=NS versus carbacyclin alone). These results indicate that in addition to its CYP inhibition properties, miconazole inhibits PGI(2) signaling. Hence, experiments using miconazole as a CYP inhibitor should be interpreted with caution.  相似文献   

6.
Myometrium of various animal species makes a considerable amount of prostacyclin (PGI2) which is a potent myometrial and uterine vascular smooth muscle relaxing agent. This action of PGI2 is perhaps mediated by binding to specific receptors, which have never been demonstrated in uterine tissue of any animal species until very recently. The quantitative light microscopic autoradiographic approach used in the present studies demonstrated that while bovine myometrial smooth muscle and uterine vascular smooth muscle contained PGI2 specific binding sites, endometrial and perimetrial cells contained few or no binding sites. The number of binding sites in circular and elongated myometrial smooth muscle and in arteriolar smooth muscle were similar (P greater than 0.05). The PGI2 binding to the uterine cells was greatly reduced (P less than 0.001) following coincubation with excess unlabeled PGI2, but not with its stable metabolite, 6-keto PGF1 alpha, PGE2, PGF2 alpha and leukotriene C4 which bind to nonpregnant bovine uterine tissue, also had no effect of PGI2 binding. In conclusion, nonpregnant bovine uterine tissue contain specific PGI2 binding sites which may mediate its potent relaxing effect on myometrium and uterine vasculature.  相似文献   

7.
A β-galactosidase activity has recently been used as a histochemical marker of replicative senescence in human fibroblasts and keratinocytes. To establish whether this marker could be used to detect senescence of vascular cells, we have investigated its presence in cultures of serially passaged human umbilical vein endothelial cells and rabbit aortic smooth muscle cells. β-Galactosidase activity was detected by light microscopy using the chromogenic substrate 5-bromo-4-chloro-3-indolyl β- -galactopyranoside. In endothelial cell cultures, lysosomal β-galactosidase activity, which is detected at pH 4.0, was present in all cells regardless of their replicative age. In contrast, senescence-associated β-galactosidase activity, which is detected at pH 6.0, was absent in the majority of cells in early passage cultures (<15 cumulative population doublings), but was present in a large proportion of cells (up to 62%) in late passage cultures (>30 cumulative population doublings); in intermediate passage cultures (15–30 cumulative population doublings) it was found in fewer than 15% of the cells. The increase in the percentage of senescence-associated β-galactosidase-positive cells correlated with a decrease in the cell density at confluence and with a marked increase in cell size. Counterstaining with an antibody directed against the endothelial cell marker CD31 showed that senescent cells retained the expression of this antigen. Senescence-associated β-galactosidase was also detected in serially passaged, but not in primary explant cultures of rabbit aortic vascular smooth muscle cells. The presence of senescence-associated β-galactosidase in cultured vascular smooth muscle cells and endothelial cells suggests that this marker could be used to study the role of cellular senescence in vascular disease.  相似文献   

8.
We had previously established that in a model of Ang II-induced hypertension, administration of an anti-TNF-alpha antibody caused additional increases in mean arterial pressure. Production of vasodilator prostanoids (i.e. PGI2 and PGE2) is increased by Ang II in vascular smooth muscle and is part of a counter-regulatory mechanism that opposes increases in vascular tone. We, therefore, examined the effects of TNF-alpha on Ang II-induced increases in PGI2 production in vascular smooth muscle cells (VSMC). Addition of Ang II caused an increase in the production of PGI2, while addition of TNF-alpha had no effect. However, pretreatment with TNF-alpha potentiated the stimulatory effects of Ang II. The potentiating effect of TNF-alpha was neither at the level of prostacyclin synthetase nor at the level of acyl hydrolase activity. This potentiation was dependent on tyrosine kinase activity, as preincubation with genistein completely abolished the effect of TNF-alpha. TNF-alpha upregulated AA-induced PGI2 synthesis, indicating that the effect of TNF-alpha is at the level of cyclooxygenase (COX). These data suggest that TNF-alpha potentiates Ang II-induced synthesis of PGI2 and PGE2 in a tyrosine kinase-dependent manner, an effect that may contribute to the counter-regulatory influence of prostaglandins on the pressor effects of Ang II in the vasculature.  相似文献   

9.
Osteopontin (OPN), a 41-kDa phosphorylated glycoprotein, has been detected in rat aorta and carotid arteries, and expression of its mRNA in blood vessels is strongly increased in response to vascular injury. To investigate the potential role of OPN in vascular pathophysiology, we studied the effect of rat OPN on aortic smooth muscle cell migration and proliferation in vitro. OPN enhanced the migration of rat smooth muscle cells in a time- and concentration-dependent manner with an EC50 value of 46 ± 11 nmol/liter (n = 5). The maximal increase in cell migration by OPN was 29-fold over basal levels. OPN-induced smooth muscle cell migration was inhibited in a concentration-dependent manner by the monoclonal antibody F11, which recognizes the rat integrin subunit β3. In contrast, polyclonal antiserum recognizing the rat integrin β1 subunit did not inhibit smooth muscle cell migration in response to OPN, but did block fibronectin-promoted migration. Moreover, OPN-induced smooth muscle cell migration was dependent on the presence of extracellular divalent cations and was significantly inhibited by anti-OPN antibodies. OPN did not stimulate [3H]thymidine incorporation into cultured smooth muscle cells, indicating that it selectively enhanced migration. In view of the pathological significance of arterial smooth muscle cell migration in the formation of intimal thickening, our results suggest that smooth muscle cell recognition of OPN, probably through the vitronectin receptor, αvβ3, could play a role in the cells' response to vascular injury and especially neointima formation.  相似文献   

10.
Normal pregnancy is associated with reductions in total vascular resistance and arterial pressure possibly due to enhanced endothelium-dependent vascular relaxation and decreased vascular reactivity to vasoconstrictor agonists. These beneficial hemodynamic and vascular changes do not occur in women who develop preeclampsia; instead, severe increases in vascular resistance and arterial pressure are observed. Although preeclampsia represents a major cause of maternal and fetal morbidity and mortality, the vascular and cellular mechanisms underlying this disorder have not been clearly identified. Studies in hypertensive pregnant women and experimental animal models suggested that reduction in uteroplacental perfusion pressure and the ensuing placental ischemia/hypoxia during late pregnancy may trigger the release of placental factors that initiate a cascade of cellular and molecular events leading to endothelial and vascular smooth muscle cell dysfunction and thereby increased vascular resistance and arterial pressure. The reduction in uterine perfusion pressure and the ensuing placental ischemia are possibly caused by inadequate cytotrophoblast invasion of the uterine spiral arteries. Placental ischemia may promote the release of a variety of biologically active factors, including cytokines such as tumor necrosis factor-alpha and reactive oxygen species. Threshold increases in the plasma levels of placental factors may lead to endothelial cell dysfunction, alterations in the release of vasodilator substances such as nitric oxide (NO), prostacyclin (PGI(2)), and endothelium-derived hyperpolarizing factor, and thereby reductions of the NO-cGMP, PGI(2)-cAMP, and hyperpolarizing factor vascular relaxation pathways. The placental factors may also increase the release of or the vascular reactivity to endothelium-derived contracting factors such as endothelin, thromboxane, and ANG II. These contracting factors could increase intracellular Ca(2+) concentrations ([Ca(2+)](i)) and stimulate Ca(2+)-dependent contraction pathways in vascular smooth muscle. The contracting factors could also increase the activity of vascular protein kinases such as protein kinase C, leading to increased myofilament force sensitivity to [Ca(2+)](i) and enhancement of smooth muscle contraction. The decreased endothelium-dependent mechanisms of vascular relaxation and the enhanced mechanisms of vascular smooth muscle contraction represent plausible causes of the increased vascular resistance and arterial pressure associated with preeclampsia.  相似文献   

11.
The effects of prostacyclin (PGI2) and its stable metabolite 6-oxo-PGF1alpha on various bioassay tissues are compared with those of PGE2 and PGF2alpha, using the cascade superfusion method. On vascular smooth muscle, PGI2 caused relaxation of all tissues tested except the rabbit aorta. PGE2 relaxed rabbit coeliac and mesenteric artery but contracted bovine coronary artery and had no effect on rabbit aorta. 6-oxo-PGF1alpha was ineffective at the concentrations tested. On gastro-intestinal smooth muscle, PGI2 contracted strips of rat and hamster stomach and the chick rectum. It was less potent than PGE2 or PGF2alpha. None of these substances contracted the cat terminal ileum. 6-oxo-PGF1alpha was inactive on these tissues at the doses tested. PGI2 was less active than PGE2 or PGF2alpha in contracting guinea-pig trachea and rat uterus; 6-oxo-PGF1alpha was active only on the rat uterus. Thus, PGI2 can be distinguished from the other stable prostaglandins using the cascade method of superfusion.  相似文献   

12.
The release of prostanoids from the three different vascular cell types derived from rat aortic explants has been studied in vitro. Under resting conditions and when incubated with exogenous arachidonic acid (AA, 10 microM), the endothelial cells (EC) produced the highest concentration of prostacyclin (PGI2 PGE2 PGF2 alpha TxA2). In contrast, PGE2 was the major prostanoid produced by the smooth muscle cells and fibroblasts. Pretreatment of EC with aspirin (10 microM) or indomethacin (10 microM) effectively inhibited the production of prostanoids by these cells. Incubation with the calcium ionophore A23187 (10 microM) did not stimulate production of PGI2 or leukotriene B4 (LTB4) by EC. However, treatment of EC with a combination of A23187 and AA led to production of amounts of both PGI2 and LTB4 which were greater than the summed values for the different drug treatments. These findings indicate that the concentration of substrate, AA, is a limiting factor in prostanoid formation by these cultured vascular cells but that rat EC are relatively poor in the enzymes required for leukotriene formation.  相似文献   

13.
Prostaglandin (PG) production was evaluated in the three cell types (endothelial, smooth muscle, and fibroblast) comprising the bovine pulmonary artery. Prostacyclin (PGI2) was the predominant prostaglandin (PG) produced by endothelial, smooth muscle, and fibroblast cells as they exist in culture or in freshly excised tissue fragments. In addition to PGI2, measurable amounts of PGE2, PGF2a, and thromboxane A2 (TXA2) were also produced by these cells. Endothelial cells were the most active producers of PGs. However, the type of PG produced was characteristic of the particular cell type, while the level of production was dependent on external factors. Prostaglandin production by cultured cells, both under basal conditions and in response to stimulatory agents, was quite similar to that of the respective freshly excised tissue fragments containing a given cell type. These cells in culture could be stimulated to produce PGI2 by both angiotensin and bradykinin at very low (physiological) concentrations, a further indication of the retention of the physiological responsiveness of these cells in culture. Endothelial cells and fibroblasts were activated by bradykinin at concentrations as low as 10(-12) M but did not respond to angiotensin. Smooth muscle cells in primary and first passage cultures were activated by both bradykinin and angiotensin at 10(-12) M concentrations. Serial subcultivations of smooth muscle cells resulted in a progressive loss in their responsiveness to bradykinin stimulation. The state of cell growth proved to be an important determinant of PG production. Actively growing cells in culture synthesized less PG when compared to cells which had entered into a "quiescent" nongrowth state.  相似文献   

14.
Serotonin (5-hydroxytryptamine, 5-HT) is mitogenic for several cell types including pulmonary arterial smooth muscle cells (PASMC), and is associated with the abnormal vascular smooth muscle remodeling that occurs in pulmonary arterial hypertension. RhoA/Rho kinase (ROCK) function is required for 5-HT-induced PASMC mitogenesis, and 5-HT activates RhoA; however, the signaling steps are poorly defined. Rho guanine nucleotide exchange factors (Rho GEFs) transduce extracellular signals to Rho, and we found that 5-HT treatment of PASMC led to increased membrane-associated Lbc Rho GEF, suggesting modulation by 5-HT. Lbc knockdown by siRNA attenuated 5-HT-induced thymidine uptake in PASMC, indicating a role in PASMC mitogenesis. 5-HT triggered Rho-dependent serum response factor-mediated reporter activation in PASMC, and this was reduced by Lbc depletion. Lbc knockdown reduced 5-HT-induced RhoA/ROCK activation, but not p42/44 ERK MAP kinase activation, suggesting that Lbc is an intermediary between 5-HT and RhoA/ROCK, but not ERK. 5-HT stimulation of PASMC led to increased association between Lbc, RhoA, and the α-catulin scaffold. Furthermore, α-catulin knockdown attenuated 5-HT-induced PASMC thymidine uptake. 5-HT-induced PASMC mitogenesis was reduced by dominant-negative Gq protein, suggesting cooperation with Lbc/α-catulin. These results for the first time define a Rho GEF involved in vascular smooth muscle cell growth and serotonin signaling, and suggest that Lbc Rho GEF family members play distinct roles. Thus, the Lbc/α-catulin axis participates in 5-HT-induced PASMC mitogenesis and RhoA/ROCK signaling, and may be an interventional target in diseases involving vascular smooth muscle remodeling.  相似文献   

15.
To define the roles of eicosanoids in vascular smooth muscle cells (VSMC) growth, we examined the effects of exogenous eicosanoids on (3H)thymidine uptake by cultured VSMC of Wistar rats. Stable prostacyclin (PGI2) analog, OP-41483, significantly decreased the incorporation of (3H)thymidine into deoxyribonucleic acid (DNA) of VSMC in a dose dependent manner from 10(-8) to 10(-4) M. Prostaglandin E2 (PGE2) and PGD2 ranging from 10(-8) to 10(-4) M also dose-dependently decreased the (3H)thymidine uptake by VSMC. In contrast, stable thromboxane A2 analog, STA2, significantly increased the incorporation of (3H)thymidine into DNA in a dose dependent manner from 10(-8) to 10(-4) M. The dose response curve of STA2 was shifted toward a lowered response when 10(-5) M PGI2 analog, PGE2 or PGD2 was added in the culture medium. Thus, it is indicated that vasodepressor eicosanoids decrease the proliferation of VSMC, whereas vasoconstrictor TXA2 enhances the VSMC growth. Vascular smooth muscle cells possibly autoregulate the cell proliferation through the eicosanoids generation.  相似文献   

16.
Prostaglandin-like material was extracted from the mucosa and muscle wall of chronically inflamed human gallbladders. Bioassay showed that “synthesised” levels were 3–5 times corresponding “basal” levels, indicating that both mucosa and muscle wall can synthesise PG-like substances, and that indomethacin (10μg/ml) inhibited this synthesis. Mucosal PG levels were higher in gallbladders with multiple gallstones than with a solitary stone, and overall the mean PG level in mucosa was 12–13 times higher than in the muscle wall. Chromatography of mucosal extracts showed substances indistinguishable from primary PGE and F compounds together with a PGD2-like component. An attempt has been made to relate these findings to the degree of chronic inflammatory cell infiltration and to radiological visualisation at pre-operative cholecystography.  相似文献   

17.
In vascular cells, prostacyclin (PGI2) synthase (PGI2s) has been localized in the endoplasmic reticulum of endothelial cells and in the nuclear and plasma membrane of smooth muscle cells. In human umbilical vein endothelial (HUVE) cells, we detected the enzyme in abundant cytoplasmic vesicles apparently originating from the plasma membrane and similar to those stained by gold-albumin, which interacts with a caveolar receptor. This prompted us to try a direct confocal microscopy approach aimed at colocalizing gold-albumin, caveolin-1, and PGI2 synthase. Moreover, the staining of HUVE cells with an anti-BiP7Grp78 antibody (a marker of endoplasmic reticulum) shows a perinuclear localization, sharply separated from PGI2 synthase localization. The results indicate that more than 80% of the enzyme resides in cellular sites costaining with caveolin-1 antibody and gold-albumin. This evidence was confirmed by the demonstration that PGI2 synthase and caveolin-1 coimmunoprecipitate in HUVE cell lysates and that they are associated to detergent-insoluble membrane domains in the same low-density fractions of a sucrose gradient. In addition, depletion of cellular cholesterol by mevalonate and methyl-beta-cyclodextrin leads to the shift of PGI2 synthase and caveolin-1 to higher density fractions of the gradient. Biochemical evidence about colocalization was supported by the use of a fusion protein glutathione S-transferase (GST)/caveolin-1, which retained either PGI2s purified from ram seminal vesicles or PGI2s present in HUVE cell lysates. Binding of PGI2s to caveolin "scaffolding domain" and to C-terminal region was deduced by using full-length GST--Cav-1, GST--Cav 61--101, and GST C- and N-terminal fusion proteins. A double approach based on the usage of filipin as a specific caveolae-disrupting agent and antisense oligonucleotides targeting PGI2 synthase mRNA suggests that the production of PGI2 in caveolae is likely to be connected to the regulation of angiogenesis, at least in vitro.  相似文献   

18.
Arachidonic acid is the precursor of several potent derivatives that regulate physiological functions in the cardiovascular system. Thromboxane (TXA2) and prostacyclin (PGI2) are synthesized by the cyclooxygenase enzyme. The proaggregatory and vasoconstrictive TXA2 produced by platelets is opposed in vivo by the antiaggregatory and vasodilating activity of PGI2 synthesized by blood vessels. Arachidonic acid is also converted via a 5-lipoxygenase to leukotrienes, the vasoconstrictive components of SRSA. We have shown that this latter pathway is regulated by 15-HETE, a product of the 15-lipoxygenase present in lymphocytes. Confluent cultures of rat aorta smooth muscle cells (RSM) were superfused briefly with [14C]arachidonic acid. The products were isolated and analyzed by thin-layer chromatography-radioautography, high performance liquid chromatography, and gas-liquid chromatography-mass spectrometry. Prostacyclin (PGI2) was identified as the major product both by its biological properties in a platelet aggregation assay and by the mass spectrum of its tetra-trimethylsilylether-methyl ester derivative. Minor quantities of PGE2, PGD2, and PGF2 alpha were also synthesized. Three other compounds with chromatographic properties of mono-hydroxy eicosanoic acids were also formed in major amounts. These were shown to be cyclooxygenase products since their synthesis, together with that of prostacyclin, was blocked by the cyclooxygenase inhibitors aspirin (0.2 mM) and indomethacin (10 microM). Quantities of the hydroxy-eicosanoids were isolated from large scale incubations by silicic acid chromatography. Following methylation and reduction with platinum oxide/H2, the compounds were converted to their trimethylsilylether derivatives and analyzed by gas-liquid chromatography-mass spectrometry. The compounds were identified as 11-hydroxy-5,8,12,14-eicosatetraenoic acid (11-HETE), 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), and hydroxy-5,8,10-heptadeca-trienoic acid (HHT) by simultaneous ion monitoring of characteristic ions at M/e ratios of 287, 258, 229 for 11-HETE and 343, 314, 173 for 15-HETE, and by comparison with the mass spectra of authentic samples. Rat smooth muscle cells, prelabeled by 24-hour incubation with [14C]arachidonic acid, released large amounts of prostacyclin together with enhanced amounts of 11- and 15-HETE in response to physiological levels of thrombin (0.5-5 units/ml). These experiments demonstrate that, in addition to the thromboxane antagonist prostacyclin, vascular smooth muscle cells produce significant quantities of the leukotriene inhibitor 15-HETE via the cyclooxygenase pathway in response to physiological stimuli such as thrombin. The release of both prostacyclin and 15-HETE by vascular smooth muscle cells may thus play an important role in vascular homeostasis.  相似文献   

19.
20.
J V Levy 《Prostaglandins》1978,16(1):93-97
Prostacyclin (PGI2), in a wide concentration range, produced neither contraction nor relaxation of isolated human saphenous vein. Isolated portal veins and vena cava from normal and spontaneously hypertensive rats (SHR) responded only with an increase in contractile tension when exposed to PGI2. This constrictor effect was absent in a calcium-free buffer. PGI2 failed to relax KCI contracted vena cava. The constrictor effect of PGI2 on portal vein was attenuated in a glucose-free, oxygen deficient buffer. No tachyphylaxis or tolerance to the constrictor effect of PGI2 was noted. Results emphasize that PGI2 may produce differing effects on vascular smooth muscle tension depending on species and type of blood vessel studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号