首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parameters of motor, respiratory, and cardiac activities were studied in rat embryos (E17–20) after changes in activity level of catecholaminergic systems. To conditions for excessive level of catecholamines, the animals were administered individually with L-DOPA at doses of 25, 50, and 100 mg/kg. Also studied was action of L-DOPA after blockade of D1-(antagonist—CHS-23390, 0.1 mg/kg), D2-(antagonist—sulpiride, 50 mg/kg) dopaminic, and β2-(antagonist—propranolol, 1 mg/kg) adrenergic receptors. It was found in E17–18 that the DOPA administration regardless dose, while in E19–20 dose-dependently produces continuous generalized activity. Between E18 and E19, ontogenetically novel is the appearance in 92% of embryos of stereotypical head movements (circular movements, lateral and dorsoventral flexions) following in the near-second rhythm. Injection of DOPA to rat embryos increased 2–6 times the number of respiratory movements of the gasping time in E17–20 and decreased the amount of episodes of continuous rhythmical respiration in E19–20. No significant heart rate changes were observed after introduction of DOPA to E17–20. There was noted a tendency for a weak acceleration of the heart rate. The changes in activities of the motor and respiratory systems due to a rise of catecholamine level are not connected with activation of the dopamine system, as they are not reduced by blockade of dopamine receptors.  相似文献   

2.
Study of parameters of the cardiac, respiratory, and motor activity (MA) was carried out on newborn rat pups for the first day after birth (P0) and at the 14th day of postnatal development (P14) after change of the activity levels of dopaminergic and noradrenergic systems. To provide an excessive level of catecholamines, the animals were administered individually with L-DOPA (25–100 mg/kg) and with the indirect adrenomimetic isoamine (3 and 10 mg/kg). Additionally there were studied effects of L-DOPA and isoamine after blockade of D1 and D2 dopamine receptors (antagonists SCH-23390 and sulpirid). The L-DOPA administration produced a dose-dependent MA enhancement with its subsequent possible conversion into the continuous generalized activity. At P0 the release of monoamines was accompanied by development of weak bradycardia. There was noted a tendency for acceleration of respiration at administration of the low dose both of L-DOPA and of isoamine and for its deceleration at high doses. At P14 the L-DOPA administration was accompanied by deceleration of the heart rate (HR) by 8% and by acceleration of respiration rate (RR) by 26%. The isoamine administration produced an insignificant decrease of HR and an increase of RR by 8% at the low dose and by 21% at the high dose of the agent. At the blockade of D1 receptors, RR remained close to the background values, while at the blockade of D2 receptors it decreased insignificantly. Blockade of D1 and D2 receptors did not cause significant HR changes. Analysis of the HR variability has shown that both after L-DOPA administration and at blockade of dopamine receptors no unidirectional reaction was observed: in 80% of rat pups the portion of nerve mechanisms of HR regulation increased, while in the rest-of sympathetic and humoral factors at a decrease of parasympathetic effects. In all rat pups the isoamine administration was accompanied by a shift of the specter power into the higher frequency area; in 60% of the animals there were enhanced sympathetic effects. At P14 in rat pups after administration both of L-DOPA and of isoamine, the sympathetic nervous effects were predominant. Thus, at P0 both at release of endogenous catecholamines and at their excessive concentration in rat pups there occurs a qualitative change of character of the catecholaminergic effects on functional activity of excitable structures, particularly of those connected with regulation of respiration.  相似文献   

3.
The effect of apomorphine (1 mg/kg egg weight) on a base of the pre-administration of reserpine (2.5 mg/kg e.w.) 30 min or 2 or 4 hours previously was studied in chick embryos from the 13th to 19th day of incubation. Only the depressant effect of apomorphine was manifested in 13-day embryos. In 15-day embryos summation of the depressant effect of both drugs was recorded for the first time. In 17-day and especially 19-day embryos apomorphine raised the frequency of spontaneous movements high above the level of reserpine-induced depression of motor activity. This activating effect of apomorphine depended upon the supraspinal parts of the CNS, as it disappeared in 17-day embryos after decentralization of the spinal cord (particularly after chronic decapitation). We consider these findings to be further experimental evidence of the participation of catecholaminergic (in particular dopaminergic) central systems in supraspinal control of embryonic motor activity.  相似文献   

4.
5.
R J Carey 《Life sciences》1991,48(13):1303-1308
Chronic L-DOPA treatment of Parkinson's disease frequently leads to the development of motoric overstimulation and hyperkinetic movements. To investigate this problem in the laboratory, rats surgically altered by unilateral 6-hydroxydopamine lesions (6-OHDA) were chronically treated with one L-DOPA (10 mg/kg i.p.) injection per day for 20 days. In this 6-OHDA rotation model, the unilateral dopamine denervation results in a profound contralateral sensory-motor neglect and the animals spontaneously rotate in a direction ipsilateral to the dopamine depleted hemisphere. Initially, the L-DOPA treatment did not alter the response bias but after several weeks, the response bias was reversed and the animals rotated in the formerly akinetic direction, contralaterally, at a significantly higher level. Using this overstimulation effect as an analogue of the clinically observed L-DOPA overstimulation, animals were given naloxone in conjunction with the L-DOPA treatment. Naloxone (0.10, 0.25 and 0.50 mg/kg i.p.) produced a dose related decrease in the L-DOPA induced contralateral rotation. Consistent with an expected selective effect on the L-DOPA induced rotation, a dose related increase in ipsilateral rotation was observed. These results suggest that naloxone can attenuate the overstimulation effect of L-DOPA and that this effect is not attributable to non-specific response suppression effects.  相似文献   

6.
The consequences of systemic administration of aminergic transmitters (n-adrenaline 16 microgram/kg egg weight; serotonin 2.5 and 5 mg/kg e.w.; dopamine 2.5 and 5 mg/kg e.w.) for the spontaneous motility and heart rate of 11- to 19-day chick embryos were studied intack eggs. The following results were characteristic for all three transmitters: a) when administered to 11- and 13-day embryos their effect was non-significant; the first signs of activity did not appear until the 15th day of incubation. The effect on 17- and 19-day embryos was stronger. b) After the 15th day of incubation, all these transmitters had a predominantly inhibitory effect on spontaneous motility; in 17- and 19-day embryos this acquired a periodic character. c) The changes in spontaneous motility did not correlate significantly in any way with the relatively small heart rate changes. It is concluded from the results that aminergic mechanisms begin to participate in regulation of the spontaneous motility of chick embryos from the 15th day of incubation, and not before.  相似文献   

7.
The effect of the systemic administration of a novel, orally active, catechol-O-methyltransferase (COMT) inhibitor, Ro 40-7592, on the in vivo extracellular concentrations of dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), was studied by transcerebral microdialysis in the dorsal caudate of freely moving rats. Ro 40-7592 (at doses of 3.0, 7.5, and 30 mg/kg p.o.) elicited a marked and long-lasting reduction of HVA, and at doses of 7.5 and 30 mg/kg, an increase of DOPAC output, but it failed to increase DA output. The administration of L-beta-3,4-dihydroxyphenylalanine (L-DOPA, 20 and 50 mg/kg p.o.) with a DOPA decarboxylase inhibitor (benserazide) increased both HVA and DOPAC output, but failed to modify significantly extracellular DA concentrations in dialysates; in contrast, combined administration of L-DOPA+benserazide with Ro 40-7592 (30 mg/kg p.o.) resulted in a significant increase in DA output. Ro 40-7592 prevented the L-DOPA-induced increase in HVA output and markedly potentiated the increase in DOPAC output. To investigate to what extent the increase in extracellular DA concentrations was related to an exocitotic release, tetrodotoxin (TTX) sensitivity was tested. Addition of TTX to Ringer, although abolishing DA output in the absence of L-DOPA, partially reduced it in the presence of L-DOPA+Ro 40-7592 and even more so after L-DOPA without the COMT inhibitor. The results of the present study suggest that metabolism through COMT regulates extracellular concentrations of DA formed from exogenously administered L-DOPA but not of endogenous DA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
l ‐DOPA‐induced dyskinesia is characterised by debilitating involuntary movement, which limits quality of life in patients suffering from Parkinson’s disease. Here, we investigate effects of the α2 adrenoceptor antagonist idazoxan on l ‐DOPA‐induced dyskinesia as well as on alterations of extracellular l ‐DOPA and dopamine (DA) levels in the striatum in dyskinetic rats. Male Wistar rats were unilaterally lesioned with 6‐hydroxydopamine and subsequently treated with l ‐DOPA/benserazide to induce stable dyskinetic movements. Administration of idazoxan [(9 mg/kg, intraperitoneal (i.p.)] significantly alleviated l ‐DOPA‐induced dyskinesia, whereas idazoxan (3 mg/kg, i.p.) did not affect dyskinetic behaviour. Bilateral in vivo microdialysis revealed that idazoxan 9 mg/kg reduces extracellular peak l ‐DOPA levels in the lesioned and intact striatum as well as DA levels in the lesioned striatum. In parallel, the exposure to idazoxan in the striatum was monitored. Furthermore, no idazoxan and l ‐DOPA drug–drug interaction was found in plasma, brain tissue and CSF. In conclusion, the decrease of l ‐DOPA‐derived extracellular DA levels in the lesioned striatum significantly contributes to the anti‐dyskinetic effect of idazoxan.  相似文献   

9.
H Wachtel  W Kehr  G Sauer 《Life sciences》1983,33(26):2583-2597
2-Bromolisuride (2-Br-LIS), a derivative of the ergot dopamine (DA) agonist lisuride, was investigated in rodents in comparison with the DA antagonist haloperidol with regard to its influence on DA related behaviour, cerebral DA metabolism and prolactin (PRL) secretion. 2-Br-LIS produced catalepsy in mice (ED50 3.3 mg/kg i.p.), antagonized apomorphine-induced stereotypies in mice (ED50 0.4 mg/kg i.p.), antagonized DA agonist-induced stereotypies in rats (0.1-1.56 mg/kg i.p.), inhibited locomotor activity in rats (0.025-6.25 mg/kg i.p.), antagonized the hyperactivity produced by various DA agonists in rats (0.025-6.25 mg/kg i.p.) and inhibited the apomorphine-induced hypothermia in mice (0.05-0.78 mg/kg i.p.). 2-Br-LIS (0.03-10 mg/kg i.p.) stimulated DA biosynthesis and DOPAC formation in the striatum and DA rich limbic system of rats, but had no effect on serotonin turnover. In striatum and limbic forebrain of gamma-butyrolactone-pretreated rats 2-Br-LIS reversed the apomorphine-induced inhibition of DOPA accumulation. 2-Br-LIS (0.03 - 3 mg/kg) enhanced PRL secretion in intact male rats. These findings indicate DA antagonistic properties of 2-Br-LIS presumably due to blockade of central pre- and postsynaptic DA receptors being of approximately the same order of potency as haloperidol. 2-Br-LIS is the first ergot compound with definite antidopaminergic properties suggesting its potential usefulness as a neuroleptic.  相似文献   

10.
The effect of tetanus toxin on spontaneous motor activity was studied in chick embryos between the 11th and 19th day of incubation. The toxin--dose 20 mg/kg egg weight ( = 2.86 X 10(3) mouse MLD) in 25 microliters isotonic NaCl solution--was injected into the tibial or the wing muscles. Tetanus toxin induced demonstrable activation of embryonic motility from the 15th day of incubation onwards. Activation attained 155-200% of resting activity. The activating effect was manifested for the first time by motor paroxysms in 17-day and particularly 19-day embryos. Tetanus toxin activation was effectively depressed by glycine (100 mg/kg e.w.) and GABA (100 mg/kg e.w.), the former having a stronger effect than the latter. The effect of tetanus toxin on spinal embryos was relatively more pronounced, while the depressant effect of the inhibitory amino acids (especially glycine) was weaker. The results are evaluated as further evidence that central inhibitory mechanisms are connected up in regulation of the spontaneous motor output activity of chick embryos on about the 15th day of incubation.  相似文献   

11.
17beta-estradiol has been reported to possess antidepressant-like activity in animal models of depression, although the mechanism for its effect is not well understood. The present study is an effort in this direction to explore the mechanism of the antidepressant-like effect of 17beta-estradiol in a mouse model(s) of behavioral depression (despair behavior). Despair behavior, expressed as helplessness to escape from a situation (immobility period), as in a forced swim test in which the animals are forced to swim for a total of 6 min, was recorded. The antiimmobility effects (antidepressant-like) of 17beta-estradiol were compared with those of standard drugs like venlafaxine (16 mg/kg, i.p.). 17beta-estradiol produced a U-shaped effect in decreasing the immobility period. It had no effect on locomotor activity of the animal. The antidepressant-like effect was comparable to that of venlafaxine (16 mg/kg, i.p.). 17beta-estradiol also exhibited a similar profile of antidepressant action in the tail suspension test. When coadministered with other antidepressant drugs, 17beta-estradiol (5 microg/kg, i.p.) potentiated the antiimmobility effect of subeffective doses of fluoxetine (5 mg/kg, i.p.), venlafaxine (2 mg/kg, i.p.), or bupropion (10 mg/kg, i.p.), but not of desipramine (5 mg/kg, i.p.) or tranylcypromine (2 mg/kg, i.p.), in the forced swim test. The reduction in the immobility period elicited by 17beta-estradiol (20 microg/kg, i.p.) was reversed by haloperidol (0.5 mg/kg, i.p.; a D(2) dopamine receptor antagonist), SCH 23390 (0.5 mg/kg, i.p.; a D(1) dopamine receptor antagonist), and sulpiride (5 mg/kg, i.p.; a specific dopamine D(2) receptor antagonist). In mice pretreated with (+)-pentazocine (2.5 mg/kg, i.p.; a high-affinity sigma-1 receptor agonist), 17beta-estradiol (5 microg/kg, i.p.) produced a synergistic effect. In contrast, pretreatment with progesterone (10 mg/kg, s.c.; a sigma-1 receptor antagonist neurosteroid), rimcazole (5 mg/kg, i.p.; another sigma-1 receptor antagonist), or BD 1047 (1 mg/kg, i.p.; a novel sigma-1 receptor antagonist) reversed the antiimmobility effects of 17beta-estradiol (20 microg/kg, i.p.). Similarly, in mice pretreated with a subthreshold dose of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, a 5-HT1A serotonin receptor agonist), 17beta-estradiol (5 microg/kg, i.p.) produced an antidepressant-like effect. These findings demonstrate that 17beta-estradiol exerted an antidepressant-like effect preferentially through the modulation of dopaminergic and serotonergic receptors. This action may also involve the participation of sigma-1 receptors.  相似文献   

12.
The normal development of Purkinje cell dendrites is dependent on afferent innervation. To investigate the role of neuronal activity in Purkinje cell dendritic development, chick embryos were chronically treated with a potent, selective, and systemically active competitive N-methyl-D -aspartate (NMDA) receptor antagonist, NPC 12626. The NMDA receptor was chosen as a target for pharmacological blockade because of the importance of the NMDA receptor in synaptic plasticity and stabilization in development. Chick embryos were given daily injections of NPC 12626 (25 to 100 mg/kg) from embryonic day 14 (E14) to E17. The initial injections of NPC 12626 dramatically blocked embryo movements, but activity levels partially recovered following subsequent injections. Embryo movements were reduced by 24% at the end of the experiment. Embryos were killed on E18, and their brains processed for Golgi-Cox staining. The morphology of Golgi-stained Purkinje cells in drug-treated embryos was similar to control embryos. Morphometric analysis showed, however, that chronic treatment with NPC 12626 resulted in a 19% reduction in Purkinje cell dendritic tree area and a 13% reduction in the number of dendritic branch points. The overall width and height of the drug-treated dendritic trees were not significantly different from controls, suggesting that NPC 12626 reduced Purkinje cell dendritic area by interfering with branch formation. The volume of the granule cell layer and the heights of the molecular and external granule cell layers was not reduced, suggesting that NPC 12626 treatment did not simply delay development. These results suggest that activation of the NMDA receptor may mediate the afferent-target interactions in the cerebellum that regulate the elaboration of Purkinje cell dendrites. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
In order to determine whether L-DOPA-derived extracellular dopamine (DA) in the striatum with dopaminergic denervation is affected by activation of serotonin autoreceptors (5-HT(1A) and 5-HT(1B) receptors), we applied in vivo brain microdialysis technique to 6-hydroxydopamine-lesioned rats and examined the effects of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the selective 5-HT(1B) receptor agonist CGS-12066 A on L-DOPA-derived extracellular DA levels. Single L-DOPA injection (50 mg/kg i.p.) caused a rapid increase and a following decrease of extracellular DA, with a peak value at 100 min after L-DOPA injection. Pretreatment with both 0.3 mg/kg and 1 mg/kg 8-OH-DPAT (i.p.) significantly attenuated an increase in L-DOPA-derived extracellular DA and the times of peak DA levels were prolonged to 150 min and 225 min after L-DOPA injection, respectively. These 8-OH-DPAT-induced changes in L-DOPA-derived extracellular DA were antagonized by further pretreatment with WAY-100635, a selective 5-HT(1A) antagonist. In contrast, intrastriatal perfusion with the 5-HT(1B) agonist CGS-12066 A (10 nM and 100 nM) did not induce any changes in L-DOPA-derived extracellular DA. Thus, stimulation of 5-HT(1A) but not 5-HT(1B) receptors attenuated an increase in extracellular DA derived from exogenous L-DOPA. These results support the hypothesis that serotonergic neurons are primarily responsible for the storage and release of DA derived from exogenous L-DOPA in the absence of dopaminergic neurons.  相似文献   

14.
C L Broekkamp 《Life sciences》1982,31(25):2913-2920
Cats were observed after treatment with different doses of d-amphetamine, apomorphine, piribedil, nomifensine and L-DOPA + benserazide. Nomifensine (30 mg/kg, ip), d-amphetamine (3, 5 and 7.5 mg/kg, ip) and L-DOPA (100 mg/kg, ip) induced stereotyped behaviors without a significant increase in dyskinetic movements. Piribedil (80 and 150 mg/kg, ip) induced dyskinetic movements without stereotypies. Apomorphine (3 and 10 mg/kg, ip) induced a high frequency of dyskinetic movements with stereotypies occurring only at the highest dose level (10 mg/kg). The dissociation between the stereotyped behaviors and dyskinesias induced by psychomotor stimulants parallels the distinction between indirect and direct receptor stimulation.  相似文献   

15.
The levels of two isomers of dopamine sulfate, dopamine-3-O-sulfate (DA3S) and dopamine-4-O-sulfate (DA4S), in human plasma were measured by HPLC-fluorometry. The basal plasma levels of DA3S and DA4S in the early morning were 13.8 +/- 1.9 and 3.2 +/- 0.5 pmoles/ml, respectively (means +/- S.E.M.). Oral administrations of dopamine (50 mg/body) and 1-dihydroxyphenylalanine (L-DOPA, 250 mg/body) increased the plasma levels of these dopamine sulfates almost 100-fold to 1807 +/- 266 and 1674 +/- 195 pmoles/ml of DA3S, and 466 +/- 83 and 321 +/- 76 pmoles/ml of DA4S. Intravenous dopamine infusion (5 micrograms/kg/min for 30 min) markedly increased the plasma free dopamine concentration, as expected, but increased the levels of DA3S and DA4S only slightly to 110 +/- 32 and 25 +/- 9 pmoles/ml, respectively. In contrast, intravenous L-DOPA (25 mg/body) resulted in a slight increase of free dopamine followed by marked increases of DA3S and DA4S to 691 +/- 219 and 139 +/- 40 pmoles/ml, respectively. These data indicate that O-sulfation of dopamine, especially 3-O-sulfation, is the main pathway for metabolism of intravenously and orally administered L-DOPA and orally ingested dopamine. This sulfation is suggested to occur in the gut wall.  相似文献   

16.
(1) The treatment of choice for Parkinson’s disease (PD) is 3,4-dihydroxyphenylalanine (L-DOPA) with peripheral decarboxylase inhibitor, but long-term therapy leads to motor and psychiatric complications. In the present study we investigated 5-hydroxytryptamine (5-HT) and dopamine concentrations in serotonergic and dopaminergic nuclei following chronic administration of L-DOPA to find whether the neurotransmitter synthesis in these brain areas are compensated. (2) Rats were administered L-DOPA (250 mg/kg) and carbidopa (25 mg/kg) daily for 59 and 60 days, and killed on the 60th day, respectively at 24 h and 30 min after the last dose. L-DOPA, norepinephrine, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), dopamine, homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in striatum, nucleus raphe dorsalis (NRD), nucleus accumbens (NAc), substantia nigra, cerebellum, and cortex employing HPLC-electrochemical procedure. (3) Prolonged treatment of L-DOPA caused depression in the animals as revealed in a forced swim test. Serotonin content was significantly decreased in all brain regions studied 30 min after long-term L-DOPA, except in NAc. The cortex and striatum showed lowered levels of this indoleamine 24 h after 59 doses of L-DOPA. Dopamine, HVA, and DOPAC concentrations were significantly higher in all the regions studied after 30 min, and in the cerebellum after 24 h of L-DOPA. The levels of DOPAC were elevated in all the brain areas studied 24 h after prolonged L-DOPA treatment. (4) The present results suggest that long-term L-DOPA treatment results in significant loss of 5-HT in serotonergic and dopaminergic regions of the brain. Furthermore, while L-DOPA metabolism per se was uninfluenced, dopamine synthesis was severely impaired in all the regions. The imbalance of serotonin and dopamine formation may be the cause of overt cognitive, motor, and psychological functional aberrations seen in parkinsonian patients following prolonged L-DOPA treatment.  相似文献   

17.
We have earlier shown that d-lysergic acid diethylamide, LSD and its 2-bromo derivative, BOL like the dopamine (DA) antagonists haloperidol increased the rate of the in vivo tyrosine hydroxylation in the striatum measured as the accumulation of DOPA after decarboxylase inhibition.Now we have found that several agents structurally similar to LSD increase the in vivo tyrosine hydroxylation in the striatum. Psilocybin (50 mg/kg i.p.) and N,N-dimethyltryptamine (50 mg/kg i.p.) caused a short-lasting increase of DOPA accumulation, while mescaline (10 – 100 mg/kg i.p.) did not increase the DOPA accumulation. A marked increase of DOPA accumulation was observed after the 5-hydroxytryptamine (5-HT) antagonist cyproheptadine. The effects of LSD and structurally related drugs on the DOPA accumulation in the striatum appear to be mediated via DA antagonism at receptor level. However, these agents may control the DOPA accumulation via other receptors than DA receptors e.g. 5-HT receptors. A control of DOPA accumulation via receptors other than DA receptors appears to be predominant after treatment with N,N-dimethyltryptamine or psilocybin.  相似文献   

18.
The focus was on haloperidol (central dopamine antagonist)-stomach lesion, a longly described suitable counterpart of dopamine blocker cysteamine-duodenal lesion. In this, the contribution of blockade of central/peripheral dopamine receptors and prostaglandins synthesis, along with influence of antiulcer agents was evaluated in mice. Male NMRI Hannnover mice were sacrificed 24 h after haloperidol (25 mg/kg b.w. i.p., given alone or with saline (haloperidol+saline) (i) or in combination (ii,iii)). Supporting central dopamine predominance for haloperidol stomach lesion induction, co-administration of peripheral dopamine receptor antagonist domperidone (5 mg/kg i.p.) (haloperidol+ domperidone) (ii), or prostaglandin synthesis inhibitor indomethacin (10 mg/kg s.c.) (haloperidol+ indomethacin) (iii) did not aggravate this lesion. (i) In haloperidol+saline challenged mice the lesions were inhibited by co-administration (/kg i.p.) of a gastric pentadecapeptide BPC 157, GlyGluProProProGlyLysProAlaAspAspAlaGlyLeuVal, M.W. 1419 (10 microg, 10 ng, 10 pg, but not 1 pg, 100 fg, 10 fg), bromocriptine (10 mg), omeprazole (10 mg, 100 mg, but not 1 mg). Atropine (10, 100, 200 mg), pirenzepine (10, 100, 200 mg), misoprostol (10, 100, 200 microg), pantoprazole (1, 10, 100 mg), lansoprazole (0.1, 1, 10 mg), cimetidine (10, 100, 200 mg) and ranitidine (10, 100, 200 mg) were not effective. (ii) Dopamine peripheral blockade influence: in haloperidol+domperidone mice, previously effective bromocriptine, pentadecapeptide BPC 157 (10 microg) or omeprazole (10 mg) did not attenuate stomach lesions. (iii) Prostaglandins synthesis blockade effect: in haloperidol+indomethacin mice, previously effective agents, bromocriptine or omeprazole were not active, while BPC 157 effect was only lessened.  相似文献   

19.
Salsolinol, an endogenous isoquinoline, induces selective prolactin release in rats [Tóth, B.E., Homicskó, K., Radnai, B., Maruyama, W., DeMaria, J.E., Vecsernyés, M., Fekete, M.I.K., Fül?p, F., Naoi, M., Freeman, M.E., Nagy, G.M., 2001. Salsolinol is a putative neurointermediate lobe prolactin releasing factor. J. Neuroendocrinol. 13, 1042-1050]. The possible role of dopaminergic and adrenergic signal transduction was investigated to learn the mechanism of this action. The effect of salsolinol (10mg/kg i.v.) was inhibited by reserpine treatment (2.5mg/kg i.p.) and reinstated by pretreatment with monoamine oxidase inhibitor (pargyline 75 mg/kg i.p.). Salsolinol did not affect the in vitro release of dopamine (DA) in the median eminence, and did not inhibit the L-DOPA induced increase of DA level in the median eminence. 1-Methyl dihydroisoquinoline (1MeDIQ) is an antagonist of salsolinol induced prolactin release and causes increase in plasma NE level [Mravec, B., Bodnár, I., Fekete, M.I.K., Nagy, G.M., Kvetnansky, R., 2004. An antagonist of prolactoliberine induces an increase in plasma catecholamine levels in the rat. Autonom. Neurosci. 115, 35-40]. Using tissue catecholamine contents as indicators of the interaction between salsolinol and 1MeDIQ we found no interaction between these two agents to explain the changes in prolactin release in the median eminence, lobes of the pituitary, superior cervical and stellate ganglion. Increasing doses of salsolinol caused a dose dependent decrease of tissue dopamine concentration and increase of NE/DA ratio in the salivary gland, atrium and spleen. These changes of DA level and NE/DA ratio run parallel in time with the increase of prolactin release. 1MeDIQ antagonized the increase of prolactin release and decrease of tissue DA content caused by salsolinol. Neither this increase of prolactin secretion nor the decrease of DA level in spleen could be demonstrated in NE transporter (NET) knock out mice. The results presented argue for the possible role of peripheral norepinephrine release as a target for salsolinol in its action releasing prolactin. The dominant role of norepinephrine transporter may be suggested.  相似文献   

20.
The effects of L-dihydroxyphenylalanine (L-DOPA) and 20-hydroxyecdysone (20E) were studied with respect to the content of dopamine (DA), intensity of the juvenile hormone (JH) degradation, and fecundity of the wildtype flies (Canton S) and JH-deficient apterous56f mutants (in young females, carrying this mutation, the levels of DA and 20E production were strongly increased). Fly feeding with L-DOPA proved to increase the level of DA in a dose-dependent manner and reduce JH degradation in 2-day-old females of both strains. Feeding with 20E produced the same effect. Treating the wild-type flies with 2.5 mg L-DOPA caused a 24-h delay in beginning of oviposition and reduction in fecundity throughout the experiment. An L-DOPA dose of 1 mg caused no such changes. An experimental increase in 20E titer led to reduced fecundity of the wild-type flies, though no delay in oviposition was observed. In mutant flies, an increase in DA and 20E levels accelerated beginning of oviposition and increased fecundity of young females, though the latter parameter was reduced in mature individuals. Thus, an increase in endogenous DA and 20E characteristic of young apterous56f females is assumed to be a compensatory response that leads to a higher JH titer and induction of vitellogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号