首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
On screening the leaf extracts of some higher plants for their volatile antifungal activity against the test organism Aspergillus flavus, the extract of Ocimum adscendens exhibited the strongest fungitoxicity. The leaves showed maximum, fungitoxicity as compared with other plant parts. The volatile fungitoxic fraction obtained as an essential oil was standardized by various physico-chemical properties. The oil showed its fungicidal nature and broad range of activity at its minimum inhibitory concentration. The oil was thermostable and the toxicity remained unchanged even on autoclaving and on storage for up to 360 days. Moreover, the oil proved more active than some prevalent synthetic fungicides and exhibited no phytotoxic effect onVigna radiata.  相似文献   

2.
Summary The essential oil extracted from the epicarp of Citrus sinensis exhibited absolute fungitoxicity against the 10 post-harvest pathogens. GC–MS studies of the oil revealed the presence of 10 chemical constituents, of which limonene was found to be the major component (84.2%). The activity of the oil was tested by the poisoned food technique (PF) and the volatile activity (VA) assay and the oils showed greater toxicity in the VA assay than in the poisoned food assay. The nature of the toxicity was studied in the VA assay and it was observed that the oil was fungicidal for the 10 pathogens in the 700 ppm (mg/l) to 1000 ppm range. The oil was extremely toxic for spore germination and it was found that at 700 ppm, spore germination was inhibited in the 10 test fungi out of the 12 tested. Treatment at 300 ppm concentration exhibited 70–100% inhibition of spore germination in most of the fungi tested. Scanning electron microscopy (SEM) was done to study the mode of action of the oil in Aspergillus niger and it was observed that treatment with the oil leads to distortion and thinning of the hyphal wall and the reduction in hyphal diameter and absence of conidiophores.  相似文献   

3.
A screening of leaves of 25 taxa of angiosperms was made for their volatile toxicity against damping-off fungi. The volatile substances fromHyptis suaveolens andOcimum canum were toxic againstPythium aphanidermatum, P. debaryanum andRhizoctonia solani. The fungitoxicity of the leaves persisted for 15 d of storage. The volatile substances from the leaves ofO. canum were thermostable, while those fromH. suaveolens were thermolabile. The essential oils exhibited strong potency against the pathogens tested, non-phytotoxic nature to the host plants and superiority over commonly used synthetic fungicidesAgrosan G.N. andCaptan. The findings indicate the possibility to use these essential oils as potential natural fungicides in management of damping-off pathogens.  相似文献   

4.
The leaves of Ocimum gratissimum (Clocimum) exhibited strong volatile fungitoxicity against betelvine (Piper betle L.) pathogens—Alternaria alternata, Colletotrichum capsici and Sclerotium rolfsii. Fifteen compounds could be identified from the fungitoxic constituents—the essential oil. The oil at its minimum inhibitory concentrations of 50, 250 and 500 ppm against S. rolfsii, A. alternata and C. capsici, respectively, was fungistatic, although, fungicidal at higher concentrations. Eugenol was found to be the major fungitoxic principle in the oil. The oil was either equally effective or superior to synthetic commercial fungicides and was non-phytotoxic to the host plants. Thus, the oil can be used as a valuable indigenous and biodegradable agent against fungi that cause losses to the betelvine industry.  相似文献   

5.
Essential oils isolated from leaves and seeds of seven umbelliferous plants were tested against the growth ofAspergillus flavus. Those from seeds ofTrachyspermum ammi, Cuminum cyminum, Carum carvi, Daucus carota and from leaves ofAnethum graveolens exhibited antifungal activity against the test fungus. Amongst these, oil from seeds ofTrachyspermum ammi was most toxic. Its minimum inhibitory concentration was 300 ppm, at which it exhibited fungistatic but not phytotoxic properties, when tested at 200, 300 and 400 ppm. The fungitoxic potency ofTrachyspermum seed oil remained unchanged after a long storage period and at high inoculum density of the test fungus. The oil was thermostable and was more efficaceous than the fungicides Agrosan G.N., Benlate, Ceresan, Dithane M-45 and Thiovit commonly used for the control of plant diseases.  相似文献   

6.
The antifungal action of four essential oils of Foeniculum vulgare (fennel), Thymus vulgaris (thyme), Eugenia caryophyllata (Clove) and Salvia officinalis (sage) was tested in vitro against Penicillium digitatum Sacc. Direct contact and vapour phase were used to test the antifungal activity of these essential oils against P. digitatum that is responsible for green mould rot of citrus fruits. The vapour phase and direct contact of clove and thyme essential oils exhibited the strongest toxicity and totally inhibited the mycelial growth of the test fungus. Thyme and clove essential oils completely inhibited P. digitatum growth either when added into the medium 600 μl l−1 or by their volatiles with 24 μl per 8 cm diameter Petri dish. In in vitro mycelial growth assay showed fungistatic and fungicidal activity by clove and thyme essential oils. Sage and fennel oils did not show any inhibitory activity on this fungus. Scanning electron microscopy (SEM) was done to study the mode of action of clove oil in P. digitatum and it was observed that treatment with the oil leads to large alterations in hyphal morphology.  相似文献   

7.
During screening of twenty six essential oils against Botrytis cinerea, the essential oils of the ten plants viz. Chenopodium ambrosioides, Eucalyptus citriodora, Eupatorium cannabinum, Lawsonia inermis, Ocimum canum, O. gratissimum, O. sanctum, Prunus persica, Zingiber cassumunar and Z. officinale were found to exhibit absolute fungitoxic activity (100% growth inhibition). The essential oils of O. sanctum, P. persica and Z. officinale were selected for further investigation because these oils showed lower Minimum Inhibitory Concentration (MIC) as compared to the other fungitoxic oils. The selected oils were subsequently standardized through physico-chemical and fungitoxic properties. The MIC values of O. sanctum, P. persica and Z. officinale were found to be 200, 100 and 100 ppm (mg/l) respectively. The oils showed fungistatic nature at their respective MIC. The oils were thermostable, and exhibited a wide range of fungitoxicity against 15 other post-harvest fungal pathogens. The oils had the potency to withstand high inoculum density. The antifungal potency of oils was found to be greater in comparison to some prevalent synthetic fungicides. Practical applicability of the essential oils was observed in control of grey mould of grapes caused by B. cinerea during storage. The O. sanctum- and P. persica-oil-treated grapes showed enhancement of storage life up to 5 and 4 days respectively. The storage life of Z. officinale-oil-treated grapes was found to be enhanced up to 6 days. The oils did not exhibit any phytotoxic effect on the fruit peel. Therefore, the oils could be recommended as a potential source of ecofriendly botanical fungicide, after long term and wide ranging trials.  相似文献   

8.
Hyptis suaveolens L. (Poit.) essential oil was tested in vitro on the growth and morphogenesis of Fusarium oxysporum f.sp. gladioli (Massey) Snyder & Hansen, which causes Fusarium corm rot and yellows in various susceptible cultivars of gladiolus. The fungitoxicity of the oil was measured by percentage radial growth inhibition using the poisoned food technique (PF) and volatile activity assay (VA). The mycelial growth of the test fungus was completely inhibited at 0.998 and 0.748 μg ml−1 concentration of oil in PF and VA, respectively. Essential oil was found to be fungicidal in nature at 1.247 and 0.998 μg ml−1 concentration of oil in PF and VA, respectively. Determination of conidial germination in the presence of oil was also carried out and it was found that the oil exhibited 100% inhibition of conidial germination at 0.450 μg ml−1 concentration. The effect of essential oil on the yield of mycelial weight was observed and it was found that at 0.873 μg ml−1 concentration no mycelium was recorded and 100% inhibition was observed. The fungitoxicity of oil did not change even on exposure to 100°C temperature or to autoclaving, and the oil also retained its fungicidal nature even after storage of 24 months. The main changes observed under light microscopy after oil treatment were a decrease and loss of conidiation and anomalies in the hyphae such as a decrease in the diameter of hyphae and granulation of cytoplasm. The treatment of the oil also showed highly reduced cytoplasm in the hyphae, showing clear retraction of the cytoplasm from the hyphae and ultimately in some areas hyphae without cytoplasm were also found. GC-MS studies of the essential oil revealed that the oil consisted of 24 compounds with 1,8-cineole as major component accounting for 44.4% of the total constituents.  相似文献   

9.
The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Zzanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 – 55.8%) and non‐terpenic oxygenated compounds (34.5 – 63.1%). The main components were (E)‐β‐ocimene (12.1 – 39%), octyl acetate (11.6 – 21.8%) and decanol (9.7 – 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.  相似文献   

10.
The in vitro antifungal activity of clove oil was studied against four test fungi namely Alternaria alternata, Fusarium chlamydosporum, Helminthosporum oryzae and Rhizoctonia bataticola by the agar well diffusion method. These test fungi were found to be highly sensitive to clove oil at a concentration of 100 μl/well. The inhibition zone diameter was found to be in the range of 55–65 mm. The toxicity of clove oil on the germination and growth of A. alternata was further examined in liquid medium. Concentration- and time-dependent toxicity was recorded from 0.05 to 20% (v/v) concentration. The minimum fungistatic concentration was found to be 0.05%. Above this concentration, lysis of conidia and inhibition of mycelial growth were detected. Microscopic analysis showed 20–40% lysis of conidia after 72 h of incubation at 5% concentration. However at higher clove oil concentration (10%), up to 20% of conidia were lysed within 24 h of incubation. Similar concentration- and time-dependent toxicity was observed at different concentrations and time intervals. The findings indicated that clove oil possesses fungicidal activity against phytopathogenic fungi. Further study is required to determine whether it could have value in the management of plant infectious diseases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The essential oils (EOs) from leaves, stems, and whole plant of Piper boehmeriifolium were analyzed using GC/FID and GC/MS. The main constituents of P. boehmeriifolium EOs were β‐caryophyllene, caryophyllene oxide, β‐elemene, spathulenol, germacrene D, β‐selinene, and neointermedeol. The antioxidant potential of the EOs were determined using DPPH?, ABTS?+ and FRAP assays. In ABTS?+ assay, the leaf oil exhibited a remarkable activity with an IC50 value of 7.36 μg/mL almost similar to BHT (4.06 μg/mL). Furthermore, the antibacterial activity of the oils as well as their synergistic potential with conventional antibiotics were evaluated using microdilution and Checkerboard assays. The results revealed that the oils from different parts of P. boehmeriifolium inhibited the growth of all tested bacteria and the minimum inhibitory concentrations were determined to be 0.078 – 1.250 mg/mL. In combination with chloramphenicol or streptomycin, the oils showed significant synergistic antibacterial effects in most cases. Besides, the results of MTT assay indicated that the oil of the whole plant exhibited significant cytotoxic activities on human hepatocellular carcinoma cells (HepG2) and human breast cancer cells (MCF‐7). In summary, the P. boehmeriifolium oils could be regarded as a prospective source for pharmacologically active compounds.  相似文献   

12.
The essential oil of Caesulia axillaris has exhibited its fungitoxicity against Aspergillus flavus at its minimum inhibitory concentration of 1300 mg/l. It showed the potentiality of an ideal fungitoxicant because of its long shelf life, thermostable nature, broad fungitoxic spectrum and persistence of fungitoxicity even on introduction of high inoculum density of the test fungus. The fungitoxic principle of the oil was standardized as -asarone which showed fungitoxicity against the test fungus at 500 mg/l.  相似文献   

13.
Soylu EM  Soylu S  Kurt S 《Mycopathologia》2006,161(2):119-128
The aim of this study was to find an alternative to synthetic fungicides currently used in the control of devastating oomycete pathogen Phytophthora infestans, causal agent of late blight disease of tomato. Antifungal activities of essential oils obtained from aerial parts of aromatic plants such as oregano (Origanum syriacum var. bevanii), thyme (Thymbra spicata subsp. spicata), lavender (Lavandula stoechas subsp. stoechas), rosemary (Rosmarinus officinalis), fennel (Foeniculum vulgare), and laurel (Laurus nobilis), were investigated against P. infestans. Both contact and volatile phase effects of different concentrations of the essential oils used were determined by using two in vitro methods. Chemical compositions of the essential oils were also determined by GC-MS analysis. Major compounds found in essential oils of thyme, oregano, rosemary, lavender, fennel and laurel were carvacrol (37.9%), carvacrol (79.8), borneol (20.4%), camphor (20.2%), anethole (82.8%) and 1,8-cineole (35.5%), respectively. All essential oils were found to inhibit the growth of P. infestans in a dose-dependent manner. Volatile phase effect of oregano and thyme oils at 0.3 μg/ml air was found to completely inhibit the growth of P. infestans. Complete growth inhibition of pathogen by essential oil of fennel, rosemary, lavender and laurel was, however, observed at 0.4–2.0 μg/ml air concentrations. For the determination of the contact phase effects of the tested essential oils, oregano, thyme and fennel oils at 6.4 μg/ml were found to inhibit the growth of P. infestans completely. Essential oils of rosemary, lavender and laurel were inhibitory at relatively higher concentrations (12.8, 25.6, 51.2 μg/ml respectively). Volatile phase effects of essential oils were consistently found to be more effective on fungal growth than contact phase effect. Sporangial production was also inhibited by the essential oil tested. Light and scanning electron microscopic (SEM) observation on pathogen hyphae, exposed to both volatile and contact phase of oil, revealed considerable morphological alterations in hyphae such as cytoplasmic coagulation, vacuolations, hyphal shrivelling and protoplast leakage.  相似文献   

14.
During tissue culture of black locust (Robinia pseudoacacia L.), serious problems with plant-associated bacteria led to a reduction of propagation potential in several clones. Four dominant strains of plant-associated bacteria could be isolated and were assigned to the genera Acidovorax, Dyella, Microbacterium and Sphingomonas. Out of five essential oils tested, thyme and lemongrass oil at a concentration of 0.03% each and 0.015% of both oils in combination clearly inhibited the growth of these bacteria strains on bacteriologic medium. There were no significant differences in total bacterial population density when penicillin, thyme and lemongrass oil or thyme plus lemongrass oil were added to the plant propagation media. The use of lemongrass oil changed the proportion of dominant bacterial strains.  相似文献   

15.
The chemical composition of the volatile oils obtained from the roots, leaves, flowers, and stems of Thapsia garganica of Tunisian origin was investigated by GC‐FID and GC/MS analyses. Sesquiterpene hydrocarbons and oxygenated monoterpenes were predominant in the oils of all plant parts. Bicyclogermacrene (21.59–35.09%) was the main component in the former compound class, whereas geranial (3.31–14.84%) and linalool (0.81–10.9%) were the most prominent ones in the latter compound class. Principal‐component (PCA) and hierarchical‐cluster (HCA) analyses revealed some common constituents, but also significant variability amongst the oils of the different plant parts. This organ‐specific oil composition was discussed in relation to their biological and ecological functions. For the evaluation of the intraspecific chemical variability in T. garganica, the composition of the flower volatile oils from four wild populations was investigated. Bicyclogermacrene, linalool, and geranial were predominant in the oils of three populations, whereas epicubenol, β‐sesquiphellandrene, and cadina‐1,4‐diene were the most prominent components of the oil of one population. PCA and HCA allowed the separation of the flower oils into three distinct groups, however, no relationship was found between the volatile‐oil composition and the geographical distribution and pedoclimatic conditions of the studied populations.  相似文献   

16.
Crude oil from Eucalyptus globulus and E. citriodora was extracted and the rich components, cineole and limonene were fractionated. The vapours of these oils and fractions were adsorbed onto the soil in one set of germination trials while in the other set a vapour column of volatile oils was maintained above the oil-treated soil. In both sets seed germination, seedling growth, relative growth rate, water content, height and number of leaves of Phaseolus aureus var. ML-267 were compared to those of controls. All parameters were found to be significantly affected. The effect was more pronounced with a combination of eucalyptus oil onto soil and a vapour-rich air column. There was a strong correlation between the vapour concentration and its inhibitory effect.  相似文献   

17.
Of the five essential oils screened against Helminthosporium oryzae, the oils of Cymbopogon martinii (ginger grass oil), Cymbopogon oliveri, Cymbopogon sp. (rosa sofia oil) and Trachyspermum ammi (dethymolysed oil) exhibited strong fungitoxicity and showed wide range of activity. The oils were found more active than some of the prevalent synthetic fungicides and thus might be exploited as natural fungicides if successful infield trials. Besides, these oils were found toxic to various human pathogens.  相似文献   

18.
The tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), is an economically important pest of tea crops, Camellia sinensis (L.) O. Kuntze (Theaceae), in China. The use of non‐host plant essential oils for manipulation of E. vitis was investigated for potential incorporation into a ‘push‐pull’ control strategy for this pest. The effectiveness of 14 plant essential oils in repelling E. vitis was investigated in laboratory assays. Rosemary oil, geranium oil, lavender oil, cinnamon oil, and basil oil repelled leafhoppers in a Y‐shaped olfactometer. We also compared the efficacy of these five plant essential oils to repel E. vitis in the presence of a host plant volatile‐based leafhopper attractant, (Z)‐3‐hexenyl acetate, in a tea plantation. In the treatment combination, four plates (north, south, east, and west) treated with an essential oil surrounded a central sticky plate treated with (Z)‐3‐hexenyl acetate. Fewer E. vitis were found on the plates treated with rosemary oil (12.5% reduction) than on the four water‐sprayed control treatment plates surrounding a central plate with (Z)‐3‐hexenyl acetate. We compared the distribution of E. vitis on the plates, and the relative numbers of E. vitis on each plate were compared with similar plates in the control treatment. When four plates treated with rosemary oil surrounded a central (Z)‐3‐hexenyl acetate‐treated plate, the distribution of E. vitis on the different plates changed significantly compared with that of the control. Relatively fewer E. vitis were found on the east (13.0% reduction) rosemary oil‐treated plates and more E. vitis (11.3% increase) were found on the central attractant‐treated plate. Our findings indicate that rosemary oil is a promising leafhopper repellent that should be tested further in a ‘push‐pull’ strategy for control of E. vitis.  相似文献   

19.
Antimicrobial properties and chemical composition of four citrus fruit essential oils to control Paenibacillus larvae, the causal agent of American foulbrood disease (AFB) were determined. This honeybee larvae disease occurs throughout the world and is found in many beekeeping areas of Argentina. Citrus fruit essential oils tested were those from grapefruit (Citrus paradisi), sweet orange (Citrus sinensis), mandarin (Citrus nobilis) and lemon (Citrus limon). The components of the essential oils were identified by SPME-GC/MS analysis. The antimicrobial activity of the oils against P. larvae were determined by the broth microdilution method. Two way ANOVA tests for minimum inhibitory concentrations (MICs) data and minimal bactericide concentrations (MBCs) data, indicated significant differences between the strains and the oils tested. The antimicrobial assays showed that the oil of C. paradisi inhibited the bacterial strains at the lowest concentrations tested, MICs and MBCs averages of 385.0 mg/l and 770.0 mg/l, respectively. This property could be attributed to the kind and percentage of the volatile components of the oil, like limonene (69.9%) and myrcene (9.6%). The use of essential oils or their specific volatile components individually against pests related to food provision may represent an alternative scope for the control of this serious disease because it does not leave toxic chemical residues in honey nor in its by products.  相似文献   

20.
Abstract

The aim of the present study was to formulate six different plant seed oils namely canola, cotton, flax, olive, sesame and soybean as emulsifiable concentrates. The composition of the formulation comprises at least one organic solvent, one surfactant and one plant oil. Physico-chemical properties of the formulated oils (emulsion stability test, cold stability and heat stability tests) were measured. The successfully emulsified oils were evaluated for nematicidal activity against Meloidogyne incognita infecting tomato plants under greenhouse conditions. Emulsified canola oil proved to be the most effective oil as a protectant against M. incognita infection to tomatoes followed by soybean, cotton, flax and sesame oil. In addition, employing a high rate of the tested emulsified oils gave higher activity in suppressing nematodes both in the soil and in tomato roots than using a low rate. Moreover, all tested formulated oils at both rates of application had no adverse effect on the growth of tomato plants except sesame oil which significantly decreased the shoot length when compared to the control. The prepared plant oils might be used as potential sources for sustainable eco-friendly botanical nematicides to protect plants from nematode attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号