首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms of glycogenolysis have been investigated in a comparative study with Wistar rats and gsd rats, which maintain a high glycogen concentration in the liver as a result of a genetic deficiency of phosphorylase kinase. In Wistar hepatocytes the rate of glycogenolysis, as modulated by glucagon and by glucose, was proportional to the concentration of phosphorylase a. In suspensions of gsd hepatocytes the rate of glycogenolysis was far too high as compared with the low level of phosphorylase a; in addition, only a minor fraction of the glycogen lost was recovered as glucose and lactate, owing to the accumulation of oligosaccharides. When the gsd hepatocytes were incubated in the presence of an inhibitor of alpha-amylase (BAY e 4609) glycogenolysis and the formation of oligosaccharides virtually ceased; the production of glucose plus lactate, already modest in the absence of BAY e 4609, was further decreased by 40%, owing to the suppression of a pathway for glucose production by the successive actions of alpha-amylase and alpha-glucosidase. Evidence was obtained that gsd hepatocytes are more fragile, and that amylolysis of glycogen occurred in damaged cells and/or in the extracellular medium. This may even occur in vivo, since quick-frozen liver samples from anesthetized gsd rats contained severalfold higher concentrations of oligosaccharides than did similar samples from Wistar rats. However, administration of a hepatotoxic agent (CCl4) caused hepatic glycogen depletion in Wistar rats, but not in gsd rats. The administration of phloridzin and of vinblastine, which have been proposed to induce glycogenolysis in the lysosomal system, did not decrease the hepatic glycogen level in gsd rats. Taken together, the data indicate that only the phosphorolytic degradation of glycogen is metabolically important, and that alpha-amylolysis is an indication of an increased fragility of gsd hepatocytes, which becomes prominent when these cells are incubated in vitro.  相似文献   

2.
1. Glycogen, glucose, lactate and glycogen phosphorylase concentrations and the activities of glycogen phosphorylase a and acid 1,4-alpha-glucosidase were measured at various times up to 120 min after death in the liver and skeletal muscle of Wistar and gsd/gsd (phosphorylase b kinase deficient) rats and Wistar rats treated with the acid alpha-glucosidase inhibitor acarbose. 2. In all tissues glycogen was degraded rapidly and was accompanied by an increase in tissue glucose and lactate concentrations and a lowering of tissue pH. In the liver of Wistar and acarbose-treated Wistar rats and in the skeletal muscle of all rats glycogen loss proceeded initially very rapidly before slowing. In the gsd/gsd rat liver glycogenolysis proceeded at a linear rate throughout the incubation period. Over 120 min 60, 20 and 50% of the hepatic glycogen store was degraded in the livers of Wistar, gsd/gsd and acarbose-treated Wistar rats, respectively. All 3 types of rat degraded skeletal muscle glycogen at the same rate and to the same extent (82% degraded over 2 hr). 3. In Wistar rat liver and skeletal muscle glycogen phosphorylase was activated soon after death and the activity of phosphorylase a remained well above the zero-time level at all later time points, even when the rate of glycogenolysis had slowed significantly. Liver and skeletal muscle acid alpha-glucosidase activities were unchanged after death. 4. The decreased rate and extent of hepatic glycogenolysis in both the gsd/gsd and acarbose-treated rats suggests that this process is a combination of phosphorolysis and hydrolysis. 5. Glycogen was purified from Wistar liver and skeletal muscle at various times post mortem and its structure investigated. Fine structural analysis revealed progressive shortening of the outer chains of the glycogen from both tissues, indicative of random, lysosomal hydrolysis. Analysis of molecular weight distributions showed inhomogeneity in the glycogen loss; in both tissues high molecular weight glycogen was preferentially degraded. This material is concentrated in lysosomes of both skeletal muscle and liver. These results are consistent with a role for lysosomal hydrolysis in glycogen degradation.  相似文献   

3.
Perfusion of normal rat livers under anoxic conditions or the addition of KCN to aerobic perfusions activated phosphorylase and stimulated glycogen breakdown and glucose output. Livers from rats with a deficiency of liver phosphorylase kinase (gsd/gsd) showed a much smaller activation of phosphorylase with anoxia or KCN and produced glucose at about half the rate of normal livers. The increase in phosphorylase a in gsd/gsd livers was insufficient to account for the increase in glucose output. The addition of KCN to normal hepatocytes, activated phosphorylase and stimulated glucose output almost as effectively as glucagon. Hepatocytes from gsd/gsd rats showed only a very small increase in phosphorylase a on the addition of KCN, and glucose output did not increase. We conclude that in the perfused liver, anoxia and KCN stimulate glycogen breakdown and glucose output, at least in part, by a mechanism that does not involve conversion of phosphorylase b to phosphorylase a. In isolated hepatocytes KCN stimulates glucose output only by increasing the content of phosphorylase a.  相似文献   

4.
1. Livers from gsd/gsd rats, which do not express phosphorylase kinase activity, also contain much less particulate type-1 protein phosphatases. In comparison with normal Wistar rats, the glycogen/microsomal fraction contained 75% less glycogen-synthase phosphatase and 60% less phosphorylase phosphatase activity. This was largely due to a lower amount of the type-1 catalytic subunit in the particulate fraction. In the cytosol, the synthase phosphatase activity was also 50% lower, but the phosphorylase phosphatase activity was equal. 2. Both Wistar rats and gsd/gsd rats responded to an intravenous injection of insulin plus glucose with an acute increase (by 30-40%) in the phosphorylase phosphatase activity in the liver cytosol. In contrast, administration of glucagon or vasopressin provoked a rapid fall (by about 25%) in the cytosolic phosphorylase phosphatase activity in Wistar rats, but no change occurred in gsd/gsd rats. 3. Phosphorylase kinase was partially purified from liver and subsequently activated. Addition of a physiological amount of the activated enzyme to a liver cytosol from Wistar rats decreased the V of the phosphorylase phosphatase reaction by half, whereas the non-activated kinase had no effect. The kinase preparations did not change the activity of glycogen-synthase phosphatase, which does not respond to glucagon or vasopressin. Furthermore, the phosphorylase phosphatase activity was not affected by addition of physiological concentrations of homogeneous phosphorylase kinase from skeletal muscle (activated or non-activated). 4. It appears therefore that phosphorylase kinase plays an essential role in the transduction of the effect of glucagon and vasopressin to phosphorylase phosphatase. However, this inhibitory effect either is specific for the hepatic phosphorylase kinase, or is mediated by an unidentified protein that is a specific substrate of phosphorylase kinase.  相似文献   

5.
Glycogenolysis was studied in glycogen-rich perfused livers in which glycogen phosphorylase was fully converted into the a form by exposure of the livers to dibutyryl cyclic AMP. We monitored intracellular Pi by 31P n.m.r. Perfusion with Pi-free medium during 30 min caused a progressive decrease of the Pi signal to 50% of its initial value. In contrast, exposure of the livers to KCN and/or 2,4-dinitrophenol resulted in a rapid doubling of the Pi signal. Alterations in the intracellular Pi coincided with proportional changes in the rate of hepatic glycogenolysis (measured as the output of glucose plus lactate). The results indicate that the rate of glycogenolysis catalysed by phosphorylase a depends linearly on the hepatic Pi concentration. Hence the Km of phosphorylase a for its substrate Pi must be considerably higher than the concentrations that occur in the cytosol, even during hypoxia.  相似文献   

6.
Intraperitoneal injection of 3-mercaptopicolinate into 24 h-food-deprived 27-week-old female control (GSD/GSD) rats lowered the concentration of circulating glucose by 66%, but glycerol and lactate concentrations were increased up to 3- and 4-fold respectively. In phosphorylase b kinase-deficient (gsd/gsd) rats the corresponding changes for blood glucose, lactate and glycerol were half those observed in the controls. Although the concentration of liver glycogen (approx. 12%, w/w) in the gsd/gsd rats was not altered during food deprivation, total hepatic glycogen was decreased by 17%. It is suggested that the gradual breakdown of the extensive hepatic glycogen stores during starvation assists in the maintenance of normoglycaemia in the gsd/gsd rat.  相似文献   

7.
Sulphate ions have been known for some years to enhance the activity of hepatic glycogen phosphorylase b in vitro. Here we report that intravenous injections of 4.92 mmol of Na2SO4/kg body wt. to rats induced marked hepatic glycogenolysis in vivo, accompanied by polyuria, glycosuria and a mild hyperglycaemia. These effects were observed both in normal (Wistar) rats and in gsd/gsd rats that lacked hepatic phosphorylase kinase. In both rat strains the activity of glycogen phosphorylase in liver extracts was enhanced by pretreatment of the animals with Na2SO4, but in phosphorylase kinase-deficient livers the enhancement was solely in phosphorylase b activity, whereas both the a and b forms of the enzyme were activated in normal livers. Hepatic glycogenolysis was also induced by perfusing rat livers, both normal and gsd/gsd, with 25 mM-Na2SO4. Under these conditions both the rat strains showed only enhanced activities of glycogen phosphorylase b. This suggested that the increased activity of phosphorylase a in the extracts of normal livers after Na2SO4 administration in vivo was due to a hormonally mediated conversion of the b form into the a form. The activation of glycogen phosphorylase b was stable to dilution and appeared to be due to a long-lasting structural change in the enzyme or very tight binding of an activator.  相似文献   

8.
The effects of food deprivation on body weight, liver weight, hepatic glycogen content, glycogenolytic enzymes and blood metabolites were compared in young and old phosphorylase b kinase-deficient (gsd/gsd) rats. Although the concentration of glycogen in liver from 9-week-old female gsd/gsd rats (730 mumol of glucose equivalents/g wet wt.) was increased by 7-8% during starvation, total hepatic glycogen was decreased by 12% after 24 h without food. In 12-month-old male gsd/gsd rats the concentration of liver glycogen (585 mumol of glucose equiv./g wet wt.) was decreased by 16% and total hepatic glycogen by nearly 40% after food deprivation for 24 h. Phosphorylase b kinase and phosphorylase a were present at approx. 10% of the control activities in 9-week-old gsd/gsd rats, but both enzyme activities were increased more than 3-fold in 12-month-old affected rodents. It is concluded that the age-related ability to mobilize hepatic glycogen appears to result from the augmentation of phosphorylase b kinase during maturation of the gsd/gsd rat.  相似文献   

9.
Liver glycogen degradation and phosphorylase activity were measured in normal and phosphorylase kinase-deficient (gsd/gsd) rats. During perfusion or ischaemia, gsd/gsd-rat livers showed a brisk glycogenolysis. There was also a small (1.9-fold) but significant transient increase in their phosphorylase alpha activity during ischaemia, despite their phosphorylase b kinase deficiency; it seems unlikely, however, that this was the main determinant of the glycogenolysis.  相似文献   

10.
Vasopressin, phenylephrine, and A23187 cause an accumulation of fructose 2,6-bisphosphate in hepatocytes from fed rats, but not in Ca2+-depleted hepatocytes from fed rats or in phosphorylase kinase-deficient hepatocytes from (gsd/gsd) rats. The effect of vasopressin and phenylephrine is not found in hepatocytes from overnight-starved rats. Thus, the accumulation of fructose 2,6-bisphosphate by these agents may depend on the stimulation of glycogenolysis and on the resulting accumulation of hexose 6-phosphate. In support of this hypothesis, conditions are described for the enzymatic synthesis of fructose 2,6-bisphosphate from fructose 6-phosphate and Mg-ATP in liver extracts. Half-maximal activity (0.8 nmol/min.g) is obtained with about 60 microM fructose 6-phosphate, and the activity can be separated fom phosphofructokinase by ammonium sulfate fractionation. Treatment of rats or isolated hepatocytes with glucagon results in a 4-5-fold decrease in the maximal activity of this enzyme.  相似文献   

11.
The effects of adrenalectomy on glucagon activation of liver glycogen phosphorylase and glycogenolysis were studied in isolated hepatocytes. Adrenalectomy resulted in reduced responsiveness of glycogenolysis and phosphorylase to glucagon activation. Stimulation of cAMP accumulation and cAMP-dependent protein kinase activity by glucagon was unaltered in cells from adrenalectomized rats. Adrenalectomy did not alter the proportion of type I and type II protein kinase isozymes in liver, whereas this was changed by fasting. Activation of phosphorylase kinase by glucagon was reduced in hepatocytes from adrenalectomized rats, although the half-maximal effective concentration of glucagon was unchanged. No difference in phosphorylase phosphatase activity between liver cells from control and adrenalectomized rats was detected. Glucagon-activated phosphorylase declined rapidly in hepatocytes from adrenalectomized rats, whereas the time course of cAMP increase in response to glucagon was normal. Addition of glucose (15 mM) rapidly inactivated glucagon-stimulated phosphorylase in both adrenalectomized and control rat hepatocytes. The inactivation by glucose was reversed by increasing glucagon concentration in cells from control rats, but was accelerated in cells from adrenalectomized rats. It is concluded that impaired activation of phosphorylase kinase contributes to the reduced glucagon stimulation of hepatic glycogenolysis in adrenalectomized rats. The possible role of changes in phosphorylase phosphatase is discussed.  相似文献   

12.
D-mannose is an essential monosaccharide constituent of glycoproteins and glycolipids. However, it is unknown how plasma mannose is supplied. The aim of this study was to explore the source of plasma mannose. Oral administration of glucose resulted in a significant decrease of plasma mannose concentration after 20 min in fasted normal rats. However, in fasted type 2 diabetes model rats, plasma mannose concentrations that were higher compared with normal rats did not change after the administration of glucose. When insulin was administered intravenously to fed rats, it took longer for plasma mannose concentrations to decrease significantly in diabetic rats than in normal rats (20 and 5 min, respectively). Intravenous administration of epinephrine to fed normal rats increased the plasma mannose concentration, but this effect was negated by fasting or by administration of a glycogen phosphorylase inhibitor. Epinephrine increased mannose output from the perfused liver of fed rats, but this effect was negated in the presence of a glucose-6-phosphatase inhibitor. Epinephrine also increased the hepatic levels of hexose 6-phosphates, including mannose 6-phosphate. When either lactate alone or lactate plus alanine were administered as gluconeogenic substrates to fasted rats, the concentration of plasma mannose did not increase. When lactate was used to perfuse the liver of fasted rats, a decrease, rather than an increase, in mannose output was observed. These findings indicate that hepatic glycogen is a source of plasma mannose.  相似文献   

13.
To determine whether feedforward control of liver glycogenolysis during exercise is subject to negative feedback by elevated blood glucose, glucose was infused into exercising rats at a rate that elevated blood glucose greater than 10 mM. Liver glycogen content decreased 22.4 mg/g in saline-infused rats compared with 13.6 mg/g in glucose-infused rats during the first 40 min of treadmill running (21 m/min, 15% grade). Liver adenosine 3',5'-cyclic monophosphate (cAMP) concentration was significantly lower in the glucose-infused rats during the exercise bout. The concentration of hepatic fructose 2,6-bisphosphate remained elevated throughout the exercise bout in glucose-infused rats but decreased markedly in saline-infused rats. Plasma insulin concentration was higher and plasma glucagon concentration lower in glucose-infused rats than in saline-infused rats during exercise. Early in exercise, liver glycogenolysis proceeds in the glucose-infused rats despite the fact that glucose and insulin concentrations are markedly elevated and liver cAMP is unchanged from resting values. These observations suggest the existence of a cAMP-independent feedforward system for activation of liver glycogenolysis that can override classical negative feedback mechanisms during exercise.  相似文献   

14.
1. The metabolism of hepatic glycogen, labelled with [6-3H]glucose at day 19.5 of gestation and with 14C from [U-14C]galactose at delivery, was followed for 10 h in food-deprived gsd/gsd and control (GSD/GSD) neonatal rats. 2. In the affected pups glycogen was maintained at 12% (w/w) and there was no loss of incorporated radioactivity. 3. The 3H and 14C in glycogen from the controls were both decreased by 80%, but 14C was removed at 0--5 h and [6-3H]glucose at 5--10 h. 4. Blood glucose concentrations in the unaffected neonatal rats fell from 5.3 mM at 20 min to 1.7 mM after 10 h. In the gsd/gsd pups blood glucose concentration was decreased from 2 mM at birth to 0.3 mM at 2.5 h: it was maintained at 0.8 mM between 5 and 10 h. 5. In neonatal rats that had been dead for 10 h, hepatic glycogen was decreased by 34% in the controls and by 22% in the gsd/gsd pups. These results demonstrate that liver from the affected rats contains glycogenolytic activity, but that it is not expressed in living tissue.  相似文献   

15.
Skeletal muscle glycogen content and structure, and the activities of several enzymes of glycogen metabolism are reported for the hepatic glycogen phosphorylase b kinase deficient (gsd/gsd) rat. The skeletal muscle glycogen content of the fed gsd/gsd rat is 0.50 +/- 0.11% tissue wet weight, and after 40 hours of starvation this value is lowered 40% to 0.30 +/- 0.05% tissue wet weight. In contrast the gsd/gsd rat liver has an elevated glycogen content which remains high after starvation. The skeletal muscle phosphorylase b kinase, glycogen phosphorylase, glycogen synthase and acid alpha-glucosidase activities are 17.2 +/- 2.9 units/g tissue, 119.9 +/- 6.4 units/g tissue, 12.2 +/- 0.4 units/g tissue and 1.4 +/- 0.4 milliunits/g tissue, respectively, with approx. 20% of phosphorylase and approx. 24% of synthase in the active form (at rest). These enzyme activities resemble those of Wistar skeletal muscle, and again this contrasts with the situation in the liver where there are marked differences between the Wistar and the gsd/gsd rat. Fine structural analysis of the purified glycogen showed resemblance to other glycogens in branching pattern. Analysis of the molecular weight distribution of the purified glycogen indicated polydispersity with approx. 66% of the glycogen having a molecular weight of less than 250 X 10(6) daltons and approx. 25% greater than 500 X 10(6) daltons. This molecular weight distribution resembles those of purified Wistar liver and skeletal muscle glycogens and differs from that of the gsd/gsd liver glycogen which has an increased proportion of the low molecular weight material.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Infusion of the thromboxane A2 analogue U-46619 into isolated perfused rat livers resulted in dose-dependent increases in glucose output and portal vein pressure, indicative of constriction of the hepatic vasculature. At low concentrations, e.g. less than or equal to 42 ng/ml, glucose output occurred only during agonist infusion; whereas at concentrations greater than or equal to 63 ng/ml, a peak of glucose output also was observed upon termination of agonist infusion coincident with relief of hepatic vasoconstriction. Effluent perfusate lactate/pyruvate and beta-hydroxybutyrate/acetoacetate ratios increased significantly in response to U-46619 infusion. Hepatic oxygen consumption increased at low U-46619 concentrations (less than or equal to 20 ng/ml) and became biphasic with a transient spike of increased consumption followed by a prolonged decrease in consumption at higher concentrations. Increased glucose output in response to 42 ng/ml U-46619 was associated with a rapid activation of glycogen phosphorylase, slight increases in tissue ADP levels, and no increase in cAMP. At 1000 ng/ml, U-46619 activation of glycogen phosphorylase was accompanied by significant increases in tissue levels of AMP and ADP, decreases in ATP, and slight increases in cAMP. In isolated hepatocytes, U-46619 did not stimulate glucose output or activate glycogen phosphorylase. Reducing the perfusate calcium concentration from 1.25 to 0.05 mM resulted in a marked reduction of the glycogenolytic response to U-46619 (42 ng/ml) with no efflux of calcium from the liver. U-46619-induced glucose output and vasoconstriction displayed a similar dose dependence upon the perfusate calcium concentration. Thus, U-46619 exerts a potent agonist effect on glycogenolysis and vasoconstriction in the perfused rat liver. The present findings support the concept that U-46619 stimulates hepatic glycogenolysis indirectly via vasoconstriction-induced hypoxia within the liver.  相似文献   

17.
Phenylephrine, vasopressin and the bivalent cation ionophore A23187 mobilized Ca2+ normally, but failed to activate phosphorylase, in hepatocytes from gsd/gsd rats with a deficiency of liver phosphorylase b kinase. These data provide strong evidence that phosphorylase b kinase is the site of action of the Ca2+ mobilized intracellularly during alpha 1-adrenergic activation of phosphorylase in liver cells.  相似文献   

18.
On the mechanism of hepatic glycogenolysis induced by anoxia or cyanide   总被引:1,自引:0,他引:1  
Addition of glucagon to isolated hepatocytes increased glycogenolysis and phosphorylase a in a proportional manner. KCN caused slightly more glycogenolysis at considerably lower levels of phosphorylase a; the discrepancy was most pronounced after pretreatment of the hepatocytes with EGTA. When incubated with tagatose, the hepatocytes accumulated tagatose 1-phosphate, a presumed inhibitor of phosphorylase a. In these conditions the glucagon-induced glycogenolysis was blocked, but the glycogen loss caused by KCN or anoxia was not affected. Cyanide and anoxia may allow phosphorylase b and a to become equally active, or they may trigger a non-phosphorolytic glycogenolysis.  相似文献   

19.
Inhibition of gluconeogenesis and glycogenolysis by 2,5-anhydro-D-mannitol   总被引:1,自引:0,他引:1  
2,5-Anhydro-D-mannitol (100 to 200 mg/kg) decreased blood glucose by 17 to 58% in fasting mice, rats, streptozotocin-diabetic mice, and genetically diabetic db/db mice. Serum lactate in rats was elevated 56% by 2,5-anhydro-D-mannitol, but this could be prevented by dichloroacetate (200 mg/kg) or thiamin (200 mg/kg). In hepatocytes from fasted rats, 1 mM 2,5-anhydro-D-mannitol inhibited gluconeogenesis from a mixture of alanine, lactate, and pyruvate. It also inhibited glucose production and stimulated lactate formation from glycerol or dihydroxyacetone. Glycogenolysis in hepatocytes from fed rats was markedly inhibited by 1 mM 2,5-anhydro-D-mannitol both in the presence or absence of 1 microM glucagon. 2,5-Anhydro-D-mannitol can be phosphorylated by fructokinase or hexokinase to the 1-phosphate and then by phosphofructokinase to the 1,6-bisphosphate. Rat liver glycogen phosphorylase was inhibited by 2,5-anhydro-D-mannitol 1-phosphate (apparent Ki = 0.66 +/- 0.09 mM) but was little affected by 2,5-anhydro-D-mannitol 1,6-bisphosphate. Rat liver phosphoglucomutase was inhibited by 2,5-anhydro-D-mannitol 1-phosphate (apparent Ki = 2.8 +/- 0.2 mM), whereas 2,5-anhydro-D-mannitol 1,6-bisphosphate served as an alternative activator (apparent K alpha = 7.0 +/- 0.5 microM). Rabbit liver pyruvate kinase was activated by 2,5-anhydro-D-mannitol 1,6-bisphosphate (apparent K alpha = 9.5 +/- 0.9 microM), whereas rabbit liver fructose 1,6-bisphosphatase was inhibited by 2,5-anhydro-D-mannitol 1,6-bisphosphate (apparent Ki = 3.6 +/- 0.3 microM). The phosphate esters of 2,5-anhydro-D-mannitol would, therefore, be expected to inhibit glycogenolysis and gluconeogenesis and stimulate glycolysis in liver.  相似文献   

20.
It has been known for same time that sulphate ions stimulate liver glycogen phosphorylase b, both in the presence and in the absence of AMP. In the present paper we describe some observations (like a modified method of purification of the enzyme after sulphate treatment of the animals) suggesting that actual changes of the physical properties of the enzyme occur after intravenous injection of sodium sulphate. In order to avoid formation of phosphorylase a these studies were performed on enzyme from phosphorylase-b-kinase deficient (gsd/gsd) rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号