首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Porcine brain tubulin labeled with fluorescein isothiocyanate (FITC) was able to polymerize by itself and co-polymerize with tubulin purified from starfish sperm flagella. When we injected the FITC-labeled tubulin into unfertilized eggs of the sand dollar, Clypeaster japonicus, and the eggs were then fertilized, the labeled tubulin was incorporated into the sperm aster. When injected into fertilized eggs at streak stage, the tubulin was quickly incorporated into each central region of growing asters. It was clearly visualized that the labeled tubulin, upon reaching metaphase, accumulated in the mitotic apparatus and later disappeared over the cytoplasm during interphase. The accumulation of the fluorescence in the mitotic apparatus was observed repeatedly at successive cleavage. After lysis of the fertilized eggs with a microtubule-stabilizing solution, fluorescent fibrous structures around the nucleus and those of the sperm aster and the mitotic apparatus were preserved and coincided with the fibrous structures observed by polarization and differential interference microscopy. We found the FITC-labeled tubulin to be incorporated into the entire mitotic apparatus within 20-30 s when injected into the eggs at metaphase or anaphase. This rapid incorporation of the labeled tubulin into the mitotic apparatus suggests that the equilibrium between mitotic microtubules and tubulin is attained very rapidly in the living eggs. Axonemal tubulin purified from starfish sperm flagella and labeled with FITC was also incorporated into microtubular structures in the same fashion as the FITC-labeled brain tubulin. These results suggest that even FITC-labeled heterogeneous tubulins undergo spatial and stage-specific regulation of assembly-disassembly in the same manner as does sand dollar egg tubulin.  相似文献   

2.
Fluorescently labeled tubulin was quickly incorporated into the mitotic apparatus when injected into a live sand dollar egg. After a rectangular area (1.6 X 16 microns) of the mitotic spindle was photobleached at metaphase or anaphase by the irradiation of a laser microbeam, redistribution of fluorescence was almost complete within 30 sec. The photobleached area did not change in shape during the redistribution. During the period of redistribution, the bleached area moved slightly toward the near pole at metaphase and anaphase (means: 1.6 and 1.8 micron/min, respectively). These results indicate that redistribution was not due to the exchange of tubulin subunits only at the ends of microtubules but to their rapid exchange at sites along the microtubules in the bleached region. Furthermore, treadmilling of tubulin molecules along with the spindle microtubules possibly occurred at the rate of 1.6 micron/min at metaphase. Birefringence of the mitotic apparatus increased with a large increase in both the number and length of astral rays shortly after taxol was injected. However, the microtubules did not all seem to elongate at the same rate but appeared to become equalized in length. Chromosome movement stopped within 60 sec after the injection. Centrospheres became large and the labeled tubulin already incorporated into the centrospheres was excluded from the enlarged centrospheres. Shortly after the labeled tubulin was injected following the injection of taxol, it accumulated in the peripheral region of the centrospheres, suggesting that microtubules first assembled at this region. Fluorescently labeled tubulin in the mitotic apparatus in the egg after injection of taxol was redistributed much more slowly after photobleaching than in uninjected eggs.  相似文献   

3.
In the mitotic sea urchin egg, the spindle microtubules were composed of different tubulin isotypes from those of astral microtubules using monoclonal antibodies [Oka et al. (1990) Cell Motil. Cytoskeleton, 16, 239-250]. Three of the antibodies, D2D6, DM1B, and YL1/2, were specific for spindle microtubules, astral microtubules and reactive with both microtubules, respectively. The mitotic sea urchin egg was treated with microtubule depolymerizing (colcemid and nocodazole) and stabilizing (hexylene glycol) drugs and change in the heterogeneous distribution of the tubulin isotypes was investigated by the immunofluorescence procedure using these three monoclonal anti-tubulin antibodies. We observed that: (1) the microtubule depolymerizing drugs caused quick depolymerization of most mitotic microtubules, and a small number of spindle microtubules remaining were stained with all three antibodies; (2) hexylene glycol induced many microtubules in the mitotic apparatus, which was stained with D2D6 but was not stained with DM1B; (3) hexylene glycol also induced a great number of miniasters in the cytoplasm, and they were stained with three antibodies. These results suggest that these drugs altered the distribution of tubulin isotypes in the mitotic microtubules during depolymerization or polymerization within a short time.  相似文献   

4.
It is possible consistently to induce sea urchin and sand dollar eggs to cleave directly from one cell into four cells. This is done by exposing the fertilized eggs to benzimidazole for 20 to 30 min beginning about early metaphase. The mitotic apparatus regresses, the cells do not cleave, and shortly after they are returned to normal sea water an early-prophase-appearing nucleus is present in each cell. Each cell then organizes a tetrapolar tetrahedral mitotic apparatus de novo, instead of transforming a bipolar mitotic apparatus into a tetrapolar figure, and cleaves one-to-four. In another type of experiment, it appears that sand dollar eggs exposed to mercaptoethanol during the first period of mitotic center duplication have only half as many centers by first cleavage metaphase as the normal controls. This is consistent with an earlier report by Mazia et al (1960). Using this same experimental technique, it was demonstrated that benzimidazole, on the contrary, does not interfere with mitotic center duplication in sand dollar eggs. A labeling experiment demonstrated that benzimidazole does not interfere markedly with the normal pattern of incorporation of C14-thymidine into the DNA of sea urchin eggs. The data reported here suggest that judicious treatment of sand dollar eggs (and probably sea urchin eggs, too) with benzimidazole can induce the eggs to cleave into as many cells as there were mitotic centers sometime earlier, for example at early metaphase of the first cleavage division. This provides a very useful tool for studies on the process of mitotic center duplication.  相似文献   

5.
Three types of models have been proposed about how the mitotic apparatus determines the position of the cleavage furrow in animal cells. In the first and second types, the contractile ring appears in a cortical region that least and most astral microtubules reach, respectively. The third type is that the spindle midzone positions the contractile ring. In the previous study, a new model was proposed through analyses of cytokinesis in sand dollar and sea urchin eggs. Gradients of the surface density of microtubule plus ends are assumed to drive membrane proteins whose accumulation causes the formation of contractile-ring microfilaments. In the present study, the validity of each model is examined by simulating the furrow formation in conical sand dollar eggs with the mitotic apparatus oriented perpendicular to the cone axis. The new model predicts that unilateral furrows with cleavage planes roughly parallel to the spindle axis appear between the mitotic apparatus and the vertex besides the normally positioned furrow. The predictions are consistent with the observations by Rappaport & Rappaport (1994, Dev. Biol.164, 258-266). The other three types of models do not predict the formation of the ectopic furrows. Furthermore, it is pointed out that only the new model has the ability to explain the geometrical relationship between the mitotic apparatus and the contractile ring under various experimental conditions. These results strongly suggest the real existence of the membrane proteins postulated in the model.  相似文献   

6.
Summary

Results of recent investigations concerning the mechanisms of animal cell division are reviewed. The mitotic apparatus was aspirated from a blastomere of a sand dollar (Echinarachnius parma) egg before second cleavage, and the time interval between removal and the appearance of the furrow in the control companion blastomere was measured. When the mitotic apparatus is removed 4 min or less before the furrows appear in the controls, furrows also develop in the operated cells. These results show that 4 min before furrowing begins, the surface changes which lead to formation of the division mechanism have become irreversible. When the mitotic apparatus of a cylindrical cell is shifted by pushing in one of the poles when the furrow appears, a new furrow develops in association with the new position of the mitotic apparatus. The same mitotic apparatus could elicit as many as 13 furrows over a 24.5 min period following the appearance of the first furrow. The results show that, in the proper geometrical circumstances, the mitotic apparatus and the surface can interact over a longer period than they do in normal cells.

By artificially constricting sand dollar eggs with a glass loop, the normal distance relations between the astral centers and the polar and equatorial surfaces can be reversed. Constricted cells cleave normally. The blocking effect of ethyl urethane can be reversed by moving the equatorial surface closer to the spindle portion of the mitotic apparatus. Relocation of other parts of the surface closer to the mitotic apparatus was ineffective. These results help elucidate the geometrical relations that are essential for furrow formation between the mitotic apparatus and the surface.

In cylindrical sand dollar eggs, single asters and the widely separated asters of a broken mitotic apparatus can cause furrow-like constrictions in the adjacent cylindrical surface. This reaction can be blocked by treating cells with ethyl urethane, which reduces astral size. The nature of the shape change that the aster causes depends upon the surface region affected. These results aid in understanding the nature of the change in surface physical activity caused by the mitotic apparatus.  相似文献   

7.
The effects of the phosphatase inhibitors, okadaic acid (OA), adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), and calyculin A (CL-A) on anaphase chromosome movement, cytokinesis, and cytoskeletal structures at cell division were examined by being microinjected into mitotic sand dollar eggs. When OA was injected, chromosome movement was inhibited and, moreover, chromosomes were ejected from the polar regions of the mitotic apparatus. By immunofluorescence, microtubules were observed to be severed in the OA-injected eggs, causing the smooth cell surface to be changed to an irregular surface. When ATPgammaS and CL-A were injected, the effect on cell shape was remarkable: In dividing eggs, furrowing stopped within several seconds after injection, small blebs appeared on the cell surface and became large, spherical or dumbbell cell shapes then changed to irregular forms, and subsequently cytoplasmic flow occurred. Microfilament detection revealed that actin accumulation in the cortex, which was not limited to the furrow cortex, occurred shortly after injection. Cortical accumulation of actin is thought to induce force generation and random cortical contraction, and accordingly to result in bleb extrusion from the cortex. Consequently, the phosphatase inhibitors inhibited the transition from mitosis to interphase by mediating cortical accumulation of actin filaments and/or fragmentation of microtubules.  相似文献   

8.
Centriolar complexes isolated from sperm of the starfish, Asterina pectinifera, could initiate irregular cleavage by injecting them into the fertilized eggs of the sand dollar, Scaphechinus mirabilis. Unfertilized sand dollar eggs could be activated when Ca2+ concentration in the egg cytoplasm increased by means of microinjecting calcium buffers in which the concentration of free Ca2+ was controlled by mixing calcium salt and calcium chelator at various proportions. When the centriolar complexes were injected into Ca2+-activated eggs, aster formation was induced in 25 out of the 55 eggs injected with calcium buffers at an intracellular Ca2+ level above 2.9 μM. The number of asters detected in one egg was quite variable, ranging from 2 to 20. The pronucleus in injected eggs was seen to migrate towards the induced asters. Eight of those 25 eggs cleaved.  相似文献   

9.
The effect of myosin antibody on the division of starfish blastomeres   总被引:50,自引:31,他引:19       下载免费PDF全文
Antiserum against starfish egg myosin was produced in rabbits. Antibody specificity to myosin was demonstrated by Ouchterlony's immunodiffusion test and by immunoelectrophoresis in the presence of sodium dodecylsulfate (SDS). The latter technique showed that the antibody binds to both heavy and light chains of egg myosin. Furthermore, the antibody reacted with starfish sperm mysosin and starfish adult muscle myosin at both the heavy and light chains. It did not react with bovine platelet mysosin or rabbit skeletal muscle myosin in Ouchterlony's test; however, a weak reaction was observed in the presence of SDS between the antibody and these myosin heavy chains. Ca- and Mg-ATPase activities of egg myosin were not affected by the antibody, but it did inhibit actin-activated ATPase activity of egg myosin. Microinjection of the antibody into blastomeres of starfish eggs at the two-cell stage was carried out. Anti-egg myosin γ-globulin inhibited the subsequent cleavages at an amount of more than 0.3 ng when injected at interphase. The inhibition was reduced when the injection was carried out near the initiation of cleavage. At the onset of the second cleavage the antibody was not inhibitory; however, an appropriate amount inhibited the third cleavage. Although the disappearance of the nuclear membrane was observed in the presence of the antibody, the formation of the mitotic apparatus was more or less disturbed. However the formation of daughter nuclei seemed to be scarcely affected by the antibody except that the distance between the nuclei was significantly smaller than normal.  相似文献   

10.
《The Journal of cell biology》1983,97(5):1467-1475
The antigenic site recognized by a rat monoclonal antibody (clone YL 1/2) reacting with alpha-tubulin (Kilmartin, J.V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) has been determined and partially characterized. YL 1/2 reacts specifically with the tyrosylated form of brain alpha-tubulin from different mammalian species. YL 1/2 reacts with the synthetic peptide Gly-(Glu)3-Gly-(Glu)2- Tyr, corresponding to the carboxyterminal amino acid sequence of tyrosylated alpha-tubulin, but does not react with Gly-(Glu)3-Gly- (Glu)2, the constituent peptide of detyrosylated alpha-tubulin. Electron microscopy as well as direct and indirect immunofluorescence microscopy shows that YL 1/2 binds to the surface of microtubules polymerized in vitro and in vivo. Further in vitro studies show that the antibody has no effect on the rate and extent of microtubule polymerization, the stability of microtubules, and the incorporation of the microtubule-associated proteins (MAP2) and tau into microtubules. In vivo studies using Swiss 3T3 fibroblasts injected with YL 1/2 show that; when injected at low concentration (2 mg IgG/ml in the injection solution), the antibody binds to microtubules without changing their distribution in the cytoplasm. Injection of larger concentration of YL 1/2 (6 mg IgG/ml) induces the formation of microtubule bundles, and still higher concentrations cause the aggregation of microtubule bundles around the nucleus (greater than 12 mg IgG/ml).  相似文献   

11.
Colchicine forms a complex in vivo with a protein present in fertilized or unfertilized sea urchin eggs; similar binding was obtained in vitro with the soluble fraction from egg homogenates. Kinetic parameters and binding equilibrium constant were essentially the same in vivo and in vitro. The binding site protein was shown to have a sedimentation constant of 6S by zone centrifugation. The protein was present in extracts of the isolated mitotic apparatus at a concentration which was several times higher than in whole-egg homogenates. It was extracted from the mitotic apparatus at low ionic strength under conditions which lead to the disappearance of microtubules. No binding could be detected to the 27S protein, previously described by Kane, which is a major protein component of the isolated mitotic apparatus. The properties of the colchicine-bindinG protein, (binding constant, sedimentation constant, Sephadex elution volume) are similar to those obtained with the protein from mammalian cells, sea-urchin sperm tails, and brain tissue, and thus support the conclusion that the protein is a subunit of microtubules.  相似文献   

12.
Cell cleavage is spatially and temporally coordinated with karyokinesis. In astral division, as occurs in sea urchin eggs, coordination is accomplished by the mitotic asters. We have explored the following hypotheses:
1. 1. That microtubules of the two asters cross at the cell's equator.
2. 2. That because they cross, or by some other configuration, more microtubules interact with the equatorial cortex than with the polar cortex.
3. 3. That the microtubule component of astral rays differentially stimulates the equatorial cortex for cleavage contraction.
Using a fixation procedure which enhances visibility of microtubules, we have determined that aster microtubules do not cross at the equatorial cortex at any stage of mitosis relevant to cleavage stimulation, contrary to the first hypothesis. Aster microtubules extend progressively farther during anaphase, but the two arrays occupy mutually exclusive hemispheres in the egg. Using another fixation procedure which results in more conventional microtubule morphology, we have systematically counted microtubules penetrating the cortex at both the equator and the poles in sections cut parallel and perpendicular to the axis of the mitotic apparatus, respectively, at all stages of mitosis. We did not observe any microtubules in the cortex of the equator during prometaphase, metaphase, early anaphase or mid-anaphase. In comparison, small numbers of microtubules were observed in the polar cortex during this time. By late anaphase there are some microtubules in the equatorial cortex but many more are observed in the polar cortex. These findings are contrary to the second hypothesis and therefore do not establish the morphological basis for the third hypothesis. We conclude that there is no positive correlation between microtubule numbers at the egg equator and the timing of cleavage stimulation. Therefore, coordination between karyokinesis and cell cleavage is achieved by some process other than the simple numerical increase of microtubules at the equatorial cortex.  相似文献   

13.
《The Journal of cell biology》1983,97(5):1476-1490
A rat monoclonal antibody against yeast alpha-tubulin (clone YL 1/2; Kilmartin, J. V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) that reacts specifically with the tyrosylated form of alpha- tubulin and readily binds to tubulin in microtubules when injected into cultured cells (see Wehland, J., M. C. Willingham, and I. V. Sandoval, 1983, J. Cell Biol., 97:1467-1475) was used to study microtubule organization and function in living cells. Depending on the concentration of YL 1/2 that was injected the following striking effects were observed: (a) When injected at a low concentration (2 mg IgG/ml in the injection solution), where microtubules were decorated without changing their distribution, intracellular movement of cell organelles (saltatory movement) and cell translocation were not affected. Intermediate concentrations (6 mg IgG/ml) that induced bundling but no perinuclear aggregation of microtubules abolished saltatory movement and cell translocation, and high concentrations (greater than 12 mg IgG/ml) that induced perinuclear aggregation of microtubules showed the same effect. (b) YL 1/2, when injected at intermediate and high concentrations, arrested cells in mitosis. Such cells showed no normal spindle structures. (c) Injection of an intermediate concentration of YL 1/2 that stopped saltatory movement caused little or no aggregation of intermediate filaments and no dispersion of the Golgi complex. After injection of high concentrations, resulting in perinuclear aggregation of microtubules, intermediate filaments formed perinuclear bundles and the Golgi complex became dispersed analogous to results obtained after treatment of cells with colcemid. (d) When rhodamine-conjugated YL 1/2 was injected at concentrations that stopped saltatory movement and arrested cells in mitosis, microtubule structures could be visualized and followed for several hours in living cells by video image intensification microscopy. They showed little or no change in distribution and organization during observation, even though these microtubule structures appeared not to be stabilized by injected YL 1/2 since they were readily depolymerized by colcemid or cold treatment and repolymerized upon drug removal or rewarming to 37 degrees C, respectively. These results are discussed in terms of the participation of microtubules in cellular activities such as cell movement and cytoplasmic organization and in terms of the specificity of YL 1/2 for the tyrosylated form of alpha-tubulin.  相似文献   

14.
Time-lapse analyses of nuclear multiplication in the eggs of the gall midge Wachtliella persicariae L., documented in film D 1235 (available from the IWF, Göttingen), give evidence of a special migration organelle of cleavage nuclei. Each of these “migration cytasters” represents one greatly enlarged polar cytaster of the mitotic apparatus, which is connected to one nucleus. From the films it can be concluded that the astral rays temporarily adhere to peripheral egg structures and exert tractive forces toward the cytaster center. These forces combine and pull the accompanying daughter nucleus through the ooplasm after each mitosis. This “active” mode of migration, which is accompanied by extensive polarized transport of yolk particles toward the cytaster center, enables the energids (= cleavage nucleus and its associated island of cytoplasm) to move relative to the surrounding ooplasm. In addition, there is a “passive” mode of nuclear migration: The energids are moved by means of plasmic flows, thereby maintaining their position in relation to the surrounding ooplasm. Electron microscopic studies show solitary microtubules running radially toward the cytaster center. As a result of colchicine injection (1) the microtubules disintegrate, (2) the polarized transport of yolk particles cases, (3) the active nuclear migration stops and the nuclei are only passively moved by rhythmic ooplasmic flows. This inhibition of active nuclear migration gives further evidence that microtubules take an essential part in it. Control experiments with lumicolchicine show no effect on nuclear migration. Conversely, under the influence of cytochalasin B active nuclear migration is continued, while the ooplasmic flows are inhibited. Thus the mechanisms of active and passive nuclear migration can work independently of each other. The generation of tractive forces along the astral rays is discussed with respect to current models of spindle function.  相似文献   

15.
Microinjected Polystyrene Beads Move Along Astral Rays in Sand Dollar Eggs   总被引:2,自引:2,他引:0  
Movements of polystyrene beads along astral rays of the sperm aster and the mitotic aster were investigated in eggs of the sand dollars, Clypeaster japonicus and Scaphechinus mirabilis . Polystyrene beads injected into the unfertilized egg were at a standstill in the protoplasm. After fertilization, these beads exhibited movements toward the center of the sperm aster along the rays, and finally gathered around the astral center. They were distributed in blastomeres together with the mitotic centers during successive cleavages. When injected into eggs during mitosis, beads moved to the centers of the mitotic asters along astral rays. The injected beads did not move when the aster was disorganized by treatment with Colcemid, and moved when it formed after UV-irradiation. These results indicate that microtubules of astral rays are essential to the movement of polystyrene beads. The movement of small polystyrene beads (0.2–0.3 μm in diameter) resembled the saltatory movement of endogenous cytoplasmic granules, and the movement of large beads (ca. 1 μm in diameter) resembled the female pronuclear migration. All of these movements observed in fertilized eggs were demonstrated to be microtubule-dependent, perhaps sharing the same basic mechanisms.  相似文献   

16.
In spherical cells with a central mitotic apparatus, the centers of the asters are closer to the poles than to the equator. This circumstance is basic to several hypothetical explanations of the way in which the mitotic apparatus establishes the division mechanism. This investigation was designed to determine whether that geometrical relationship is necessary for division. Fertilized, mechanically denuded sand dollar eggs were inserted into glass loops, which reduced the diameter in the constriction plane from the normal 142 to 78-80 microns and partly constricted the cell into equal parts. The mitotic apparatus straddled the constriction, and its length was not significantly changed. The manipulation increased the distance from the astral centers to the poles and decreased the distance from the astral centers to the equator to a degree that reversed the normal distance relations. These cells divided normally. Ethyl urethane (0.06 M) reduces the size of the mitotic apparatus and blocks cleavage in spherical cells. When treated cells are confined in 80-microns i.d. capillaries, they divide. Treated cells also divide when they are constricted by an 80-microns i.d. glass loop if the mitotic apparatus straddles the constriction. An equal degree of constriction in the subfurrow and subpolar areas did not reverse the effect of urethane. The results demonstrate that cleavage does not depend on the normal distance relation between the mitotic apparatus and the poles, and that the urethane effect can be remedied only by reducing the distance between the mitotic apparatus and the equatorial surface. Both findings are inconsistent with the polar stimulation hypothesis.  相似文献   

17.
The effect of slightly acidic intracellular pH (pHi) on the development of the sea urchin, Hemicentrotus pulcherrimus was investigated. At first cleavage, the fertilized eggs were treated with artificial sea water containing sodium acetate (Ac-pHSW) at pH 6.8 or 7.0 at the onset of nuclear envelope breakdown, and their pHi decreased from 7.30 to 6.68 or 6.78, respectively. When the eggs were observed after fixation by indirect immunofluorescence and differential interference contrast microscopy, the mitotic stage of the treated eggs was arrested at metaphase and the mitotic apparatus was maintained until more than 50 min after the treatment, although it was smaller in size than that of non-treated eggs. On the other hand, the number of the mitotic asters increased from 2 to 3-4, and further to 6-8 following prolonged exposure, suggesting that the centrosomes had divided and replicated. These results suggest that the centrosome cycle advanced at slightly acidic pHi, even when the mitotic cycle did not advance beyond metaphase.  相似文献   

18.
When calf thymus histones were labeled fluorescently and microinjected into oocytes of the starfish, Asterina pectinifera, the labeled histones visualized chromosomes during maturation division and cleavage. In doing so, we confirmed the previously reported phenomenon that chromosomes became incompetent at the first cleavage in the aphidicolin-treated egg, although cleavage itself took place. Moreover, we found that chromosomes were aligned at the equator of the metaphase spindle of the first cleavage and that they did not separate into two groups at all, but made a lump in the middle of the spindle. Chromosomes finally entered one blastomere, although they did not participate in the following karyokinesis. DNA and microtubules were examined by cytochemistry and immunofluorescence in order to investigate the relation between chromosome movement and the microtubular cytoskeleton. The mitotic apparatus developed and grew in the aphidicolin-treated cells in the same manner as those in normal cells without normal chromatin condensation or chromosome movement during the first cleavage. However, the mitotic apparatus consisted of two asters without the spindle formed at subsequent cleavages. Electron microscopic study revealed that chromosomes did not condense normally and kinetochores were not detected during the first cleavage. These results indicate that the dynamic changes in microtubular structures during mitosis have poor relation with the chromosome behavior such as prophase chromosome condensation and anaphase chromosome movement.  相似文献   

19.
F-actin accumulations and their possible functions were investigated during cleavage of the polychaete Ophryotrocha puerilis. Unusual cytoplasmic accumulations of F-actin were detected which have never been described before in animal embryos. As shown by TRITC-phalloidin labeling, envelopes of F-actin surrounded late prophase nuclei for a short period of time. DTAF-immunofluorescence of beta-tubulin showed that the F-actin envelope was closely associated with microtubules of the developing spindle apparatus. However, experimental disassembly of microtubules by nocodazole did not prevent the assembly of the F-actin envelope. Disturbance of F-actin envelope formation by cytochalasin B did not alter the course of mitotic events, i.e. position of the nuclei and orientation of the spindle apparatus were not affected, although the respective blastomeres remained uncleaved. However, disassembly of the F-actin envelope correlated temporally with breakdown of the nuclear envelope. Therefore, it is suggested that this new structure plays a role in fragmentation of the nuclear envelope during cleavage of Ophryotrocha puerilis.  相似文献   

20.
Summary In the eggs ofWachtliella persicariae the cleavage nuclei move relative to the surrounding ooplasm. This active migration is caused by an organelle whose ultrastructure was studied throughout the mitotic cycle. It consists of a greatly enlarged polar cytaster derived from the mitotic apparatus, linked to the nucleus by 100 Å filaments. The microtubules of the cytaster were found only during periods of active nuclear migration, i.e., from the onset of anaphase to the early prophase of the next mitotic cycle. They are always solitary and follow the course of the astral rays, which are known to temporarily adhere to peripheral structures of the egg cell and to exert tractive forces. In contrast to the cytaster microtubules, the microtubules in the spindle are bundled and persist from early metaphase through late telophase.During ontogenesis the first migration cytaster is built up between 3 and 12 min after oviposition near the anterior egg pole, in the vicinity of the sperm nucleus. In non-inseminated eggs time lapse films show a migration cytaster to develop autonomously in a region free from nuclei, but it does not follow the normal path of the male pronucleus. In several cases the female pronucleus, which remains without a cytaster of its own, was observed to move to the cytaster generated in the absence of the male pronucleus. Whether or not it is adhering to a nucleus, the cytaster divides into two at the correct time, i.e, corresponding to the first cleavage division in fertilized eggs. In some non-inseminated eggs this type of pseudocleavage has been observed to occur repeatedly, giving rise to an increasing number of anucleate cytasters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号