首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heme protein indoleamine 2,3-dioxygenase (IDO) initiates oxidative metabolism of tryptophan along the kynurenine pathway, and this requires reductive activation of Fe(3+)-IDO. The current dogma is that superoxide anion radical (O(2)(*-)) is responsible for this activation, based largely on previous work employing purified rabbit IDO and rabbit enterocytes. We have re-investigated this role of O(2)(*-) using purified recombinant human IDO (rhIDO), rabbit enterocytes that constitutively express IDO, human endothelial cells, and monocyte-derived macrophages treated with interferon-gamma to induce IDO expression, and two cell lines transfected with the human IDO gene. Both potassium superoxide and O(2)(*-) generated by xanthine oxidase modestly activated rhIDO, in reactions that were prevented completely by superoxide dismutase (SOD). In contrast, SOD mimetics had no effect on IDO activity in enterocytes and interferon-gamma-treated human cells, despite significantly decreasing cellular O(2)(*-) Similarly, cellular IDO activity was unaffected by increasing SOD activity via co-expression of Cu,Zn-SOD or by increasing cellular O(2)(*-) via treatment of cells with menadione. Other reductants, such as tetrahydrobiopterin, ascorbate, and cytochrome P450 reductase, were ineffective in activating cellular IDO. However, recombinant human cytochrome b(5) plus cytochrome P450 reductase and NADPH reduced Fe(3+)-IDO to Fe(2+)-IDO and activated rhIDO in a reconstituted system, a reaction inhibited marginally by SOD. Additionally, short interfering RNA-mediated knockdown of microsomal cytochrome b(5) significantly decreased IDO activity in IDO-transfected cells. Together, our data show that cytochrome b(5) rather than O(2)(*-) plays a major role in the activation of IDO in human cells.  相似文献   

2.
Indoleamine 2,3-dioxygenase 1 (IDO1) plays a vital role in tumor immune escape and has emerged as a promising target for cancer immunotherapy. In this study, a novel series of 2,5-dimethylfuran-3-carboxylic acid derivatives were designed, synthesized and evaluated for inhibitory activities against IDO1, and their structure-activity relationship was investigated. Among these, compound 19a exhibited excellent IDO1 inhibitory activity (HeLa cellular IC50?=?4.0?nM, THP-1 cellular IC50?=?4.6?nM). Further molecular docking studies revealed that the compound 19a formed a coordinate bond with the heme iron through the carboxylic acid moiety. These results indicate that compound 19a is a potential IDO1 inhibitor for further investigation.  相似文献   

3.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are constitutively overexpressed in many types of cancer cells and exert important immunosuppressive functions. In this article, a series of 4,6-substituted-1H-indazole derivatives were synthesized and evaluated the inhibitory activities against IDO1 and TDO, as well as their structure-activity relationships (SARs). Among these, compound 35 displayed the most IDO1 inhibitory potency with an IC50 value of 0.74?μM in an enzymatic assay and 1.37?μM in HeLa cells. Quantitative analysis of the Western blot results indicated that 35 significantly decreased the INFγ-induced IDO1 expression in a concentration-dependent manner. In addition, 35 showed promising TDO inhibition with an IC50 value of 2.93?μM in the enzymatic assay and 7.54?μM in A172 cells. Moreover, compound 35 exhibited in vivo antitumor activity in the CT26 xenograft model. These findings suggest that 1H-indazole derivative 35 is a potent IDO1/TDO dual inhibitor, and has the potential to be developed for IDO1/TDO-related cancer treatment.  相似文献   

4.
A novel class of phenyl benzenesulfonylhydrazides has been identified as potent inhibitors of indoleamine 2,3-dioxygenase (IDO), and their structure–activity relationship was explored. Coupling reactions between various benzenesulfonyl chlorides and phenylhydrazides were utilized to synthesize the sulfonylhydrazides bearing various substituents. Compound 3i exhibited 61 nM of IC50 in enzymatic assay and 172 nM of EC50 in the HeLa cell. The computational study of 3i suggested that the major interactions between 3i and IDO protein are the coordination of sulfone and heme iron, the hydrogen bonding and hydrophobic interactions between 3i and IDO. This novel class of IDO inhibitor provides a new direction to discover effective anti-cancer agents.  相似文献   

5.
6.
Indoleamine 2,3‐dioxygenase (IDO) is an interferon‐γ (IFN‐γ)–induced tryptophan‐degrading enzyme, producing kynurenine (KYN) that participates in the mechanism of tumor immune tolerance. Thus, IDO inhibition has been considered a strategy for anticancer therapy. The aim of this study was to identify whether the metabolites originated from the competitive routes of tryptophan metabolism, such as the serotonergic or N, N‐dimethyltryptamine (DMT) pathways, have inhibitory effects on recombinant human IDO (rhIDO) activity. Serotonin and melatonin had no effect; on the other hand, tryptamine (TRY) and DMT modulated the activity of rhIDO as classical non‐competitive inhibitors, with Ki values of 156 and 506 μM, respectively. This inhibitory effect was also observed on constitutively expressed or IFN‐γ–induced IDO in the A172 human glioma cell line. TRY and DMT increased the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) in co‐culture assays. We conclude that the IDO inhibition by TRY and DMT contributed to a more effective tumor‐reactive response by the PBMCs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as a promising target for cancer immunotherapy. Many naphthoquinone derivatives have been reported as IDO1 inhibitors so far. Herein, two series of naphthoquinone derivatives, naphthoindolizine and indolizinoquinoline-5,12-dione derivatives, were synthesized and evaluated for their IDO1 inhibitory activity. Most of the target compounds showed significant inhibition potency and high selectivity for IDO1 over tryptophan 2,3-dioxygenase (TDO). The structure-activity relationship was also summarized. The most potent compounds 5c (IC50 23?nM, IDO1 enzyme), and 5b′ (IC50 372?nM, HeLa cell) were identified as promising lead compounds.  相似文献   

8.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are promising drug development targets due to their implications in pathologies such as cancer and neurodegenerative diseases. The search for IDO1 inhibitor has been intensely pursued but there is a paucity of potent TDO and IDO1/TDO dual inhibitors. Natural product tryptanthrin has been confirmed to bear IDO1 and/or TDO inhibitory activities. Herein, twelve novel tryptanthrin derivatives were synthesized and evaluated for the IDO1 and TDO inhibitory potency. All of the compounds were found to be IDO1/TDO dual inhibitors, in particular, compound 9a and 9b bore IDO1 inhibitory activity similar to that of INCB024360, and compound 5a and 9b had remarkable TDO inhibitory activity superior to that of the well-known TDO inhibitor LM10. This work enriches the collection of IDO1/TDO dual inhibitors and provides chemical molecules for potential development into drugs.  相似文献   

9.
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing enzyme that acts on the first and rate-limiting step of the tryptophan/kynurenine pathway. Since the pathway is one of the means of cancer immune evasion, IDO1 inhibitors have drawn interest as potential therapeutics for cancers. We found a 4,6-disubstituted indazole 1 as a hit compound that showed both IDO1 inhibitory activity and binding affinity for IDO1 heme. Structural modification of 1 yielded compound 6, whose relatively large substituent at the 4-position and proper size substituent at the 6-position were found to be important for the enhancement of IDO1 inhibitory activity and heme affinity. A series of compounds synthesized in this work were evaluated by in silico docking simulations and by in vitro experiments using a C129Y mutant of the pocket-A of IDO1. Our results revealed that proper substituents at the 6- and 4-positions of the compounds interact with pockets A and B, respectively, and that, in particular, a good fit in pocket-A is important for the compounds’ biological activities. Absorption spectral analysis of these compounds showed that they strongly bound to the ferrous heme rather than its ferric heme. Furthermore, we observed that the heme affinities of these compounds strongly correlate with their IDO1 inhibitory activities.  相似文献   

10.
S-Benzylisothiourea 3a was discovered by its ability to inhibit indoleamine-2,3-dioxygenase (IDO) in our screening program. Subsequent optimization of the initial hit 3a lead to the identification of sub-μM inhibitors 3r and 10h, both of which suppressed kynurenine production in A431 cells. Synthesis and structure–activity relationship of S-benzylisothiourea analogues as small-molecule inhibitors of IDO are described.  相似文献   

11.
Excessive phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) plays a major role in the dysregulation of mRNA translation and the activation of tumor cell signaling. eIF4E is exclusively phosphorylated by mitogen-activated protein kinase interacting kinases 1 and 2 (MNK1/2) on Ser209. So, MNK1/2 inhibitors could decrease the level of p-eIF4E and regulate tumor-associated signaling pathways. A series of pyridone–aminal derivatives were synthesized and evaluated as MNK1/2 inhibitors. Several compounds exhibited great inhibitory activity against MNK1/2 and selected compounds showed moderate to excellent anti-proliferative potency against hematologic cancer cell lines. In particular, compound 42i (MNK1 IC50?=?7.0?nM; MNK2 IC50?=?6.1?nM) proved to be the most potent compound against TMD-8 cell line with IC50 value of 0.91?μM. Furthermore, 42i could block the phosphorylation level of eIF4E in CT-26 cell line, and 42i inhibited the tumor growth of CT-26 allograft model significantly. These results indicated that compound 42i was a promising MNK1/2 inhibitor for the potent treatment of colon cancer.  相似文献   

12.
Indoleamine 2,3-dioxygenase 1 (IDO1)-mediated kynurenine pathway of tryptophan degradation is identified as an important immune effector pathway in the tumor cells to escape a potentially effective immune response. IDO1 is an attractive target for anticancer therapy and the discovery of IDO1 inhibitors has been intensely ongoing in both academic research laboratories and pharmaceutical organizations. Our study discovered that 1H-indazole was a novel key pharmacophore with potent IDO1 inhibitory activity. A series of new 1H-indazole derivatives were synthesized and determined the enzyme inhibitory activities, and the compound 2g exhibited the highest activity with an IC50 value of 5.3 μM. The structure–activity relationships (SARs) analysis of the 1H-indazole derivatives as novel IDO1 inhibitors indicated that the 1H-indazole scaffold is necessary for IDO1 inhibition, and the substituent groups at the both 4-position and 6-position largely affect inhibitory activity. The docking model exhibited that the effective interactions of 1H-indazoles with ferrous ion of heme and key residues of hydrophobic Pocket A and B ensured the IDO1 inhibitory activities. The study suggested that the 1H-indazole was a novel interesting scaffold for IDO inhibition for further development.  相似文献   

13.
14.
Indoleamine 2,3-dioxygenase (IDO) plays a significant role in several disorders such as Alzheimer’s disease, age-related cataracts and tumors. A series of novel tryptoline derivatives were synthesized and evaluated for their inhibitory activity against IDO. Substituted tryptoline derivatives (11a, 11c, 11e, 12b and 12c) were demonstrated to be more potent than known inhibitor MTH-Trp. Suzuki–Miyaura cross-coupling reaction of 11ad with phenylboronic acid proceeded in high yields. In most cases, C5 and C6 substitutions on the corresponding indole ring were well tolerated. The tryptoline derivative 11c is a promising chemical lead for the discovery of novel IDO inhibitors.  相似文献   

15.
In recent years, inhibition of HDAC6 became a promising therapeutic strategy for the treatment of cancer and HDAC6 inhibitors were considered to be potent anti-cancer agents. In this work, celecoxib showed moderate degree of HDAC6 inhibition activity and selectivity in preliminary enzyme inhibition activity assay. A series of hydroxamic acid derivatives bearing phenylpyrazol moiety were designed and synthesized as HDAC6 inhibitors. Most compounds showed potent HDAC6 inhibition activity. 11i was the most selective compound against HDAC6 with IC50 values of 0.020 µM and selective factor of 101.1. Structure-activity relationship analysis indicated that locating the linker group at 1′ of pyrazol gave the most selectivity. The most compounds 11i (GI50 = 3.63 μM) exhibited 6-fold more potent than vorinostat in HepG2 cells. Considering of the high selectivity against HDAC6 and anti-proliferation activity, such compounds have potential to be developed as anti-cancer agents.  相似文献   

16.
Tryptophan-2,3-dioxygenase (TDO) is an immune checkpoint enzyme expressed in human tumors and involved in immune evasion and tumor tolerance. While glutathione S-transferases (GSTs) are pharmacological targets for several cancer. Here we demonstrated the utility of NBDHEX (GSTs inhibitor) and TDO inhibitor by the combinatorial linker design. Two novel conjugates with different linkers were prepared to reverse tumor immune suppression. The conjugates displayed significant antitumor activity against TDO and GSTs expression of HepG2 cancer cells. Further study indicated that compound 4 could induce higher apoptotic effect than its mother compounds via a mitochondrial-dependent pathway, simultaneously more effective to inhibit TDO and GSTs protein expression. Further study indicated that 4 could decrease the production of kynurenine and deactivate aryl hydrocarbon receptor (AHR), leading to CD3+ T-cell activation and proliferation to involve in antitumor immune response.  相似文献   

17.
Screening of a fragment library identified 2-hydrazinobenzothiazole as a potent inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme expressed by tumours that suppresses the immune system. Spectroscopic studies indicated that 2-hydrazinobenzothiazole interacted with the IDO1 haem and in silico docking predicted that the interaction was through hydrazine. Subsequent studies of hydrazine derivatives identified phenylhydrazine (IC50 = 0.25 ± 0.07 μM) to be 32-fold more potent than 2-hydrazinobenzothiazole (IC50 = 8.0 ± 2.3 μM) in inhibiting rhIDO1 and that it inhibited cellular IDO1 at concentrations that were noncytotoxic to cells. Here, phenylhydrazine is shown to inhibit IDO1 through binding to haem.  相似文献   

18.
Inhibitors of a human member (AKR1C3) of the aldo-keto reductase superfamily are regarded as promising therapeutics for the treatment of prostatic and breast cancers. Baccharin [3-prenyl-4-(dihydrocinnamoyloxy)cinnamic acid], a component of propolis, was shown to be both potent (Ki 56 nM) and highly isoform-selective inhibitor of AKR1C3. In this study, a series of derivatives of baccharin were synthesized by replacing the 3-prenyl moiety with aryl and alkyl ether moieties, and their inhibitory activities for the enzyme were evaluated. Among them, two benzyl ether derivatives, 6m and 6n, showed an equivalent inhibitory potency to baccharin. The molecular docking of 6m in AKR1C3 has allowed the design and synthesis of (E)-3-{3-[(3-hydroxybenzyl)oxy]-4-[(3-phenylpropanoyl)oxy]phenyl}acrylic acid (14) with improved potency (Ki 6.4 nM) and selectivity comparable to baccharin. Additionally, 14 significantly decreased the cellular metabolism of androsterone and cytotoxic 4-oxo-2-nonenal by AKR1C3 at much lower concentrations than baccharin.  相似文献   

19.
BackgroundMultidrug resistant cancer cells are hard to eradicate for the inefficacy of conventional anticancer drugs. Besides escaping the cytotoxic effects of chemotherapy, they also bypass the pro-immunogenic effects induced by anticancer drugs: indeed they are not well recognized by host dendritic cells and do not elicit a durable anti-tumor immunity. It has not yet been investigated whether multidrug resistant cells have a different ability to induce immunosuppression than chemosensitive ones. We addressed this issue in human and murine chemosensitive and multidrug resistant cancer cells.ResultsWe found that the activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes the conversion of tryptophan into the immunosuppressive metabolite kynurenine, was higher in all the multidrug resistant cells analyzed and that IDO1 inhibition reduced the growth of drug-resistant tumors in immunocompetent animals. In chemoresistant cells the basal activity of JAK1/STAT1 and JAK1/STAT3 signaling was higher, the STAT3 inhibitor PIAS3 was down-regulated, and the autocrine production of STAT3-target and IDO1-inducers cytokines IL-6, IL-4, IL-1β, IL-13, TNF-α and CD40L, was increased. The disruption of the JAK/STAT signaling lowered the IDO1 activity and reversed the kynurenine-induced pro-immunosuppressive effects, as revealed by the restored proliferation of T-lymphocytes in STAT-silenced chemoresistant cells.ConclusionsOur work shows that multidrug resistant cells have a stronger immunosuppressive attitude than chemosensitive cells, due to the constitutive activation of the JAK/STAT/IDO1 axis, thus resulting chemo- and immune-evasive. Disrupting this axis may significantly improve the efficacy of chemo-immunotherapy protocols against resistant tumors.  相似文献   

20.
Indoleamine 2,3‐dioxygenase (IDO) is the rate‐limiting enzyme in the kynurenine (Kyn) pathway of tryptophan (Trp) metabolism. IDO is immunosuppressive and is induced by inflammation in macrophages and dendritic cells (DCs). Previous studies have shown the serum Kyn/Trp levels in patients with hemolytic anemia to be notably high. In the present study, we demonstrated that hemoglobin (Hb), but not hemin or heme‐free globin (Apo Hb), induced IDO expression in bone marrow‐derived myeloid DCs (BMDCs). Hb induced the phosphorylation and degradation of IκBα. Hb‐induced IDO expression was inhibited by inhibitors of PI3‐kinase (PI3K), PKC and nuclear factor (NF)‐κB. Hb translocated both RelA and p52 from the cytosol to the nucleus and induced the intracellular generation of reactive oxygen species (ROS). Hb‐induced IDO expression was inhibited by anti‐oxidant N‐acetyl‐L ‐cysteine (NAC) or mixtures of SOD and catalase, however, IDO expression was enhanced by 3‐amino‐1,2,4‐triazole, an inhibitor of catalase, suggesting that the generation of ROS such as O, H2O2, and hydroxyl radical is required for the induction of IDO expression. The generation of ROS was inhibited by a PKC inhibitor, and this action was further enhanced by addition of a PI3K inhibitor. Hb induced Akt phosphorylation, which was inhibited by a PI3K inhibitor and enhanced by a PKC inhibitor. These results suggest that the activation of NF‐κB through the PI3K‐PKC‐ROS and PI3K‐Akt pathways is required for the Hb‐induced IDO expression in BMDCs. J. Cell. Biochem. 108: 716–725, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号