首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanisms responsible for aberrant calcium signaling in parathyroid disease are poorly understood. The loss of appropriate calcium-responsive modulation of PTH secretion observed in parathyroid disease is commonly attributed to decreased expression of the calcium-sensing receptor (CaSR), a G protein-coupled receptor. However, CaSR expression is highly variable in parathyroid adenomas, and the lack of correlation between CaSR abundance and calcium-responsive PTH kinetics indicates that mechanisms independent of CaSR expression may contribute to aberrant calcium sensing in parathyroid disease. To gain a better understanding of parathyroid tumors and the molecular determinants that drive parathyroid adenoma development, we performed gene expression profiling on a panel of 64 normal and neoplastic parathyroid tissues. The microarray data revealed high-level expression of genes known to be involved in parathyroid biology (PTH, VDR, CGA, CaSR, and GCM2). Moreover, our screen identified regulator of G protein signaling 5 (RGS5) as a candidate inhibitor of CaSR signaling. We confirmed RGS5 to be highly expressed in parathyroid adenomas relative to matched-pair normal glands. Transient expression of RGS5 in cells stably expressing CaSR resulted in dose-dependent abrogation of calcium-stimulated inositol trisphosphate production and ERK1/2 phosphorylation. Furthermore, we found that RGS5-nullizygous mice display reduced plasma PTH levels, an outcome consistent with attenuated opposition to CaSR activity. Collectively, these data suggest that RGS5 can act as a physiological regulator of calcium sensing by CaSR in the parathyroid gland. The abnormally elevated expression of RGS5 observed in parathyroid adenomas could thus represent a novel mechanism of CaSR desensitization in patients with primary hyperparathyroidism.  相似文献   

2.
Calcium sensing receptor (CaSR) is implicated in the establishment of neural connections and myelin formation. However, its contribution to brain development remains unclear. We addressed this issue by analyzing brain phenotype in postnatal CaSR null mice, a model of human neonatal severe hyperparathyroidism. One- and 2-week-old CaSR null mice exhibited decreased brain weight and size with a developmental delay in expression of proliferating cell nuclear antigen. Neuronal and glial differentiation markers, neuronal specific nuclear protein, glial fibrillary acidic protein, and myelin basic protein, were also decreased compared with age-matched wild-type littermates. Moreover, deletion of the parathyroid hormone gene that corrects hyperparathyroidism, hypercalcemia, hypophosphatemia, and whole-body growth retardation normalized brain cell proliferation, but not differentiation, in CaSR null mice. Cultured neural stem cells (NSCs) derived from the subventricular zones of CaSR null neonatal mice exhibited normal proliferation capacity but decreased differentiation capacity, compared with wild-type controls. These results demonstrate that direct effects of CaSR absence impair NSC differentiation, while secondary effects of parathyroid hormone-related endocrine abnormalities impair NSC proliferation, both of which contribute to delayed brain development in CaSR null newborn mice.  相似文献   

3.
The Family C G-protein-coupled receptors include the metabotropic glutamate receptors, the gamma-aminobutyric acid, type B (GABAB) receptor, the calcium-sensing receptor (CaSR), which participates in the regulation of calcium homeostasis in the body, and a diverse group of sensory receptors that encompass the amino acid-activated fish 5.24 chemosensory receptor, the mammalian T1R taste receptors, and the V2R pheromone receptors. A common feature of Family C receptors is the presence of an amino acid binding site. In this study, a preliminary in silico analysis of the size and shape of the amino acid binding pocket in selected Family C receptors suggested that some members of this family could accommodate larger ligands such as peptides. Subsequent screening and docking experiments identified GSH as a potential ligand or co-ligand at the fish 5.24 receptor and the rat CaSR. These in silico predictions were confirmed using an [3H]GSH radioligand binding assay and a fluorescence-based functional assay performed on wild-type and chimeric receptors. Glutathione was shown to act as an orthosteric agonist at the 5.24 receptor and as a potent enhancer of calcium-induced activation of the CaSR. Within the mammalian receptors, this effect was specific to the CaSR because GSH neither directly activated nor potentiated other Family C receptors including GPRC6A (the putative mammalian homolog of the fish 5.24 receptor), the metabotropic glutamate receptors, or the GABAB receptor. Our findings reveal a potential new role for GSH and suggest that this peptide may act as an endogenous modulator of the CaSR in the parathyroid gland where this receptor is known to control the release of parathyroid hormone, and in other tissues such as the brain and gastrointestinal tract where the role of the calcium receptor appears to subserve other, as yet unknown, physiological functions.  相似文献   

4.
《Endocrine practice》2015,21(7):743-749
Objective: Cinacalcet increases calcium-sensing receptor (CaSR) sensitivity to serum calcium. CaSR is expressed by adipocytes, and adiponectin is an adipokine with antiatherogenic and insulin-sensitizing properties. The aim of this study was to assess the influence of a 3-month cinacalcet regimen on plasma adiponectin concentration in hemodialyzed patients (HDP) with chronic kidney disease (CKD) and secondary hyperparathyroidism (sHPT).Methods: Plasma adiponectin, advanced oxidation protein products (AOPP), serum interleukin-6 (IL-6) and C-reactive protein (CRP) concentrations were assessed in 65 HDP with sHPT treated with cinacalcet (30–120 mg/day) before the first dose and after 3 months of treatment.Results: There was a significant decrease in serum parathyroid hormone (PTH) concentration: from 1,089 (891–1,286) pg/mL to 775 (574–976) pg/mL after 3 months of treatment (P<.0001). The treatment was associated with a significant (P = .048) increase in plasma adiponectin concentration from 16.9 (14.4–19.5) μg/mL to 17.8 (15.0–20.6) μg/mL. Significant (P = .03) reduction of plasma AOPP concentration was observed from 186.7 (156.7–216.7) pg/mL to 162.6 (141.2–183.9) pg/mL.Conclusions: A 3-month cinacalcet regimen increased plasma adiponectin concentrations in HDP with sHPT. Increased adiponectinemia in these patients may be related to reduced oxidative stress.Abbreviations: AOPP = advanced oxidation protein products BMI = body mass index CaSR = calcium-sensing receptor CKD = chronic kidney disease CRP = C-reactive protein HDP = hemodialyzed patient IL = interleukin PTH = parathyroid hormone sHPT = secondary hyperparathyroidism  相似文献   

5.
Thakker RV 《Cell calcium》2004,35(3):275-282
The human calcium-sensing receptor (CaSR) is a 1078 amino acid cell surface protein, which is predominantly expressed in the parathyroids and kidney, and is a member of the family of G protein-coupled receptors. The CaSR allows regulation of parathyroid hormone (PTH) secretion and renal tubular calcium reabsorption in response to alterations in extracellular calcium concentrations. The human CaSR gene is located on chromosome 3q21.1 and loss-of-function CaSR mutations have been reported in the hypercalcaemic disorders of familial benign (hypocalciuric) hypercalcaemia (FHH, FBH or FBHH) and neonatal severe primary hyperparathyroidism (NSHPT). However, some individuals with loss-of-function CaSR mutations remain normocalcaemic. In addition, there is genetic heterogeneity amongst the forms of FHH. Thus, the majority of FHH patients have loss-of-function CaSR mutations, and this is referred to as FHH type 1. However, in one family, the causative gene for FHH is located on 19p13, referred to as FHH type 2, and in another family it is located on 19q13, referred to as FHH type 3. Gain-of-function CaSR mutations have been shown to result in autosomal dominant hypocalcaemia with hypercalciuria (ADHH) and Bartter's syndrome type V. CaSR auto-antibodies have been found in FHH patients who did not have loss-of-function CaSR mutations, and in patients with an acquired form (i.e. autoimmune) of hypoparathyroidism. Thus, abnormalities of the CaSR are associated with three hypercalcaemic and three hypocalcaemic disorders.  相似文献   

6.
We established that human adipose cells and the human adipose cell line LS14 express the calcium-sensing receptor (CaSR) and that its activation induces inflammatory cytokine production. Also, its expression is enhanced upon exposure to obesity-associated proinflammatory cytokines. We have thus proposed that CaSR activation may be associated with adipose dysfunction. Here, we evaluated a possible effect on adipogenesis. We induced adipose differentiation of primary and LS14 human preadipocytes with or without the simultaneous activation of CaSR, by the exposure to the calcimimetic cinacalcet. Activation of the receptor for 24 h decreased by 40 % the early differentiation marker CCAAT/enhancer-binding protein β. However, upon longer-term (10 day) exposure to the adipogenic cocktail, cinacalcet exerted the opposite effect, causing a dose–response increase in the expression of the mature adipose markers adipocyte protein 2, adiponectin, peroxisome proliferator-activated receptor γ, fatty acid synthase, and glycerol-3-phosphate dehydrogenase. To assess whether there was a time-sensitive effect of CaSR activation on adipogenesis, we evaluated the 10 day effect of cinacalcet exposure for the first 6, 24, 48 h, 6, and 10 days. Our observations suggest that regardless of the period of exposure, 10 day adipogenesis is elevated by cinacalcet. CaSR activation may interfere with the initial stages of adipocyte differentiation; however, these events do not seem to preclude adipogenesis from continuing. Even though adipogenesis (particularly in subcutaneous depots) is associated with insulin sensitivity and adequate adipose function, the implications of our findings in visceral adipocytes, especially in the context of inflamed AT and overnutrition, remain to be established.  相似文献   

7.
The extracellular calcium-sensing receptor (CaSR) has recently been recognized as an L-amino acid sensor and has been implicated in mediating cholecystokinin (CCK) secretion in response to aromatic amino acids. We investigated whether direct detection of L-phenylalanine (L-Phe) by CaSR results in CCK secretion in the native I cell. Fluorescence-activated cell sorting of duodenal I cells from CCK-enhanced green fluorescent protein (eGFP) transgenic mice demonstrated CaSR gene expression. Immunostaining of fixed and fresh duodenal tissue sections confirmed CaSR protein expression. Intracellular calcium fluxes were CaSR dependent, stereoselective for L-Phe over D-Phe, and responsive to type II calcimimetic cinacalcet in CCK-eGFP cells. Additionally, CCK secretion by an isolated I cell population was increased by 30 and 62% in response to L-Phe in the presence of physiological (1.26 mM) and superphysiological (2.5 mM) extracellular calcium concentrations, respectively. While the deletion of CaSR from CCK-eGFP cells did not affect basal CCK secretion, the effect of L-Phe or cinacalcet on intracellular calcium flux was lost. In fact, both secretagogues, as well as superphysiological Ca(2+), evoked an unexpected 20-30% decrease in CCK secretion compared with basal secretion in CaSR(-/-) CCK-eGFP cells. CCK secretion in response to KCl or tryptone was unaffected by the absence of CaSR. The present data suggest that CaSR is required for hormone secretion in the specific response to L-Phe by the native I cell, and that a receptor-mediated mechanism may inhibit hormone secretion in the absence of a fully functional CaSR.  相似文献   

8.
9.
Involvement of the Calcium-sensing Receptor in Human Taste Perception   总被引:1,自引:0,他引:1  
By human sensory analyses, we found that various extracellular calcium-sensing receptor (CaSR) agonists enhance sweet, salty, and umami tastes, although they have no taste themselves. These characteristics are known as “kokumi taste” and often appear in traditional Japanese cuisine. Although GSH is a typical kokumi taste substance (taste enhancer), its mode of action is poorly understood. Here, we demonstrate how the kokumi taste is enhanced by the CaSR, a close relative of the class C G-protein-coupled receptors T1R1, T1R2, and T1R3 (sweet and umami receptors). We identified a large number of CaSR agonist γ-glutamyl peptides, including GSH (γ-Glu-Cys-Gly) and γ-Glu-Val-Gly, and showed that these peptides elicit the kokumi taste. Further analyses revealed that some known CaSR agonists such as Ca2+, protamine, polylysine, l-histidine, and cinacalcet (a calcium-mimetic drug) also elicit the kokumi taste and that the CaSR-specific antagonist, NPS-2143, significantly suppresses the kokumi taste. This is the first report indicating a distinct function of the CaSR in human taste perception.  相似文献   

10.
1-(Benzothiazol-2-yl)-1-(4-chlorophenyl)ethanol (1) was identified as a positive allosteric modulator (PAM) of the CaSR in a functional cell-based assay. This compound belongs to a class of compounds that is structurally distinct from other known positive allosteric modulators, for example, the phenylalkylamines cinacalcet, a modified analog (13) potently suppressed parathyroid hormone (PTH) release in rats, consistent with its profile as a PAM of CaSRs.  相似文献   

11.
The extracellular calcium-sensing receptor (CaSR) is activated by divalent cations and might mediate some of the effects of strontium ranelate, a new drug for the prevention and treatment of post-menopausal osteoporosis. Here, we showed that the maximal effect of Sr(2+) was comparable to that observed for Ca(2+) for both the cloned rat CaSR expressed in Chinese hamster ovary [CHO(CaSR)] cells and the mouse CaSR constitutively expressed in AtT-20 cells as measured by the accumulation of [(3)H]inositol phosphates (IP) resulting from CaSR activation. Strontium ranelate also displayed comparable agonist activity for the CaSR in both cell lines. Sodium ranelate did not stimulate the IP response in CHO(CaSR) cells. The IP response resulting from activation of other G-protein-coupled receptors was potentiated by Sr(2+), suggesting that entry of Sr(2+) into the cells might influence phospholipase C activity. Modulation of the CaSR activity in bone cells by strontium ranelate may contribute to its reported antiosteoporotic effects.  相似文献   

12.
13.
Obesity is a major current public health problem worldwide due to the severe co-morbid conditions that this disease entails. The development of obesity-related cardiometabolic disorders is in direct association with adipose tissue inflammation that leads to its functional impairment. Activation of the Calcium-Sensing Receptor (CaSR) in adipose tissue contributes to inflammation and adipose dysfunction. Autophagy, a process of cell component degradation, is closely related to inflammation in many diseases, however, whether autophagy is associated with CaSR-induced inflammation remains unknown. Using LS14 and SW872 preadipose cell lines as well as primary human preadipocytes, we show that CaSR activation with the allosteric activator cinacalcet induces autophagosome formation. Cinacalcet-induced LC3II content elevation was precluded by knockdown of the CaSR and enhanced by CaSR overexpression, indicating a specific effect. Autophagy inhibition using 3-methyladenine prevented CaSR-induced TNFα production, indicating that autophagy contributes to CaSR-induced inflammation in human preadipocytes. Our results suggest that modulation of CaSR-induced autophagy is an attractive target in obese inflamed adipose tissue, to prevent the development of diseases triggered by adipose dysfunction. We describe a novel mechanism and possible new target to modulate and prevent adipose inflammation and hence the resulting disease-generating adipose tissue dysfunction.  相似文献   

14.
15.
The extracellular calcium-sensing receptor (CaSR) enables the parathyroid gland cells to sense the extracellular calcium concentration, to adapt the amount of parathyroid hormone secreted by those glands and, in turn, by its action on kidney and bone, to maintain steady the extracellular calcium concentration. The prominent role of CaSR is illustrated by the fact that CaSR mutations are responsible for disorders in extracellular calcium metabolism. Drugs that either activate or inactivate CaSR will open new therapeutic opportunities in several areas of mineral metabolism.  相似文献   

16.
17.
Although the calcium-sensing receptor (CaSR) and parathyroid hormone (PTH) may each exert skeletal effects, it is uncertain how CaSR and PTH interact at the level of bone in primary hyperparathyroidism (PHPT). Therefore, we simulated PHPT with 2 wk of continuous PTH infusion in adult mice with deletion of the PTH gene (Pth(-/-) mice) and with deletion of both PTH and CaSR genes (Pth(-/-)-Casr (-/-) mice) and compared skeletal phenotypes. PTH infusion in Pth(-/-) mice increased cortical bone turnover, augmented cortical porosity, and reduced cortical bone volume, femoral bone mineral density (BMD), and bone mineral content (BMC); these effects were markedly attenuated in PTH-infused Pth(-/-)-Casr(-/-) mice. In the absence of CaSR, the PTH-stimulated expression of receptor activator of nuclear factor-κB ligand and tartrate-resistant acid phosphatase and PTH-stimulated osteoclastogenesis was also reduced. In trabecular bone, PTH-induced increases in bone turnover, trabecular bone volume, and trabecular number were lower in Pth(-/-)-Casr(-/-) mice than in Pth(-/-) mice. PTH-stimulated genetic markers of osteoblast activity were also lower. These results are consistent with a role for CaSR in modulating both PTH-induced bone resorption and PTH-induced bone formation in discrete skeletal compartments.  相似文献   

18.
Calcium is an essential nutrient that induces a distinctive taste quality, but the sensing mechanism of calcium in the tongue is poorly understood. A recent study linked calcium to T1R3 receptor. Here, we propose another system for calcium taste involving the extracellular calcium-sensing receptor (CaSR). This G protein-coupled receptor that responds to calcium and magnesium cations is involved in calcium homeostasis regulating parathyroid and kidney functions. In this study, CaSR was found in isolated taste buds from rats and mice. It was expressed in a subset of cells in circumvallate and foliate papillae, with fewer cells in the fungiform papillae. This is the first evidence in mammals that locates CaSR in gustatory tissue and provides the basis for better understanding not only calcium taste but also the taste of multiple CaSR agonists.  相似文献   

19.
In this study, we describe a 52-year-old woman, who was diagnosed with familial benign hypocalciuric hypercalcemia (FBHH), a condition characterized by hypercalcemia, low urinary calcium excretion, and normal parathyroid hormone PTH levels, resulting from inactivating mutations of the calcium-sensing receptor (CaSR). In order to identify and characterize the underlying mutation in the CASR gene, direct sequence analysis of CASR exons 2-7 was performed, and functional activity was examined by transient transfection of human embryonic kidney (HEK-293) cells with wild-type and mutant CaSRs, followed by intracellular calcium measurement using fluorometry, and Western blot analysis. Sequence analysis demonstrated, in addition to the already described A986S polymorphism, a novel heterozygous G--> A substitution in CASR exon 5 that causes an arginine to glutamine substitution at codon 465 (R465Q). Functional analysis showed a rightward shift of the dose-response curve with a significant increase of the EC50 from 5.4 mM of the CaSR carrying the A986S polymorphism alone to 11.3 mM of the CaSR carrying the R465Q mutation in the presence of the A986S polymorphism. Western blot analysis of membrane protein revealed an even higher expression level of the R465Q mutant protein compared to wild-type CaSR. In conclusion, we identified a novel heterozygous loss-of-function R465Q mutation of the CASR gene, which is characterized by a blunted response to calcium stimulation, thereby causing FBHH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号