首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have established the genomic cleavage map of Salmonella enteritidis strain SSU7998 using pulsed-field gel electrophoresis. The chromosome of 4600kb was analysed by XbaI (16 fragments), I-CeuI (7 fragments) and BlnI (12 fragments); the genome also contains a plasmid of 60 kb. Cleavage sites of I-CeuI, in the large subunit ribosomal RNA gene, are conserved from Salmonella typhimurium and Escherichia coli K-12, and the XbaI and BinI sites in glt-tRNA are also conserved, but other sites are less conserved. Transposon Tn10, located at 60 different positions in the chromosome of S. typhimurium, was transduced by bacteriophage P22 into S. enteritidis and the insertion mapped using the XbaI and BlnI sites on Tn10. Gene order in S. enteritidis is identical to S. typhimurium LT2 and similar to E. coli K-12 except for an inversion of 815 kb, which covers the terminus region including T1 and T2. Endpoints are in the NDZs, or non-divisible zones, in which inversion endpoints were not detected in experiments in E. coli K-12 and S. typhimurium LT2. This inversion resembles the inversion between S. typhimurium and E. coli, but is longer at both ends.  相似文献   

2.
Summary Partial homology of Salmonella typhimurium DNA to Escherichia coli DNA was demonstrated by Southern hybridization blots to exist on either side of the lac operon of E. coli but no homology was detected between S. typhimurium DNA and about 12 kb of E. coli DNA including the lac genes as well as about 5 kb of E. coli DNA between lac and proC. Thus portions of DNA seem to have been either added to the E. coli genome or deleted from the S. typhimurium genome since their divergence from a common ancestor. Although an IS1 element was located near the lac operon of E. coli, the insertional element was shown not to be near any of the junctures of discontinuity of E. coli - S. typhimurium homology near lac.  相似文献   

3.
A large plasmid-encoded protein, VirG, on the bacterial surface is essential for the spreading of Shigella by eliciting polar deposition of filamentous actin In the cytoplasm of epithelial cells. VirG expression from the large plasmid is diminished greatly when it is introduced into Escherichia coli K-12 from Shigella. In an attempt to identify factors affecting VirG expression, we found that the absence of the ompT gene, encoding outer membrane protease OmpT, restored full production of VirG protein to E. coli K-12. Conversely, upon introduction of the ompT gene of E. coii K-12 into Shigella, spreading ability was completely abolished, probably because of the proteolytic degradation of VirG protein by OmpT. Analysis of the DNA sequence of the ompT region indicated that the absence of the ompT gene occurred in Shigella and enteroinvasive E. coli strains, and that the absent DNA segment corresponded to a remnant lambdoid phage structure found in E. coli K-12, which encompasses a 21 kb DNA segment spanning from argU through to the ompT genes. Since ompT is located near purE in E. coli K-12 and a virulence locus for provoking keratocon-junctivitis in the eyes of guinea-pigs, named kcpA is located near purE in S. fiexnerl, and the two loci are involved in VirG expression, the KcpA~ mutants of S. flexneri 2a constructed were examined for correlation between acquisition of ompT and VirG degradation. Our data suggest that the previous recognition of a kcpA locus in S. flexneri is the result of transfer of the ompr gene from E. coli K-12, giving rise to a KcpA phenotype. These results indicate that the lack of OmpT protease confers upon Shigella the ability to spread into adjacent epithelial cells.  相似文献   

4.
The araB and araC genes of Salmonella typhimurium have been cloned onto the plasmid pBR322. Restriction analysis and subcloning of restriction fragments localized these genes to a 4.4 kb DNA fragment. Complementation analysis revealed that the cloned araB and araC genes from S. typhimurium complemented araB and araC mutant strains of Escherichia coli. Conversely, cloned araB and araC genes from E. coli complemented araB and araC mutant strains of S. typhimurium. The DNA sequences was determined for the S. typhimurium araB and araC controlling region and for the initially translated portions of these genes. The nucleotide sequence of the araB promoter was 87% homologous with the same region in E. coli and contained no deletions or insertions relative to the E. coli sequence. The presumed AUG codon corresponding to the amino terminus of the S. typhimurium araC protein was in the same location as in E. coli. There was, however, considerable divergence from the E. coli sequence preceding the translation start site. The nucleotide sequence of the initial 237 bp in the open reading frame of the S. typhimurium araC gene was 78% homologous with the same sequence in E. coli. By comparison, the amino acid sequence for this region was 91% conserved.  相似文献   

5.
Summary We have cloned the complete functional ompB locus of Salmonella typhimurium LT-2 into Escherichia coli K-12 using a cosmid vector and in vitro packaging into . The ompB locus of Salmonella was found to complement both envZ and ompR mutations in E. coli as well as an ompR mutation of Salmonella. The ompR part of the ompB locus was further subcloned into the multicopy plasmid pKN410 as a 1.3 kb fragment. This fragment coded for a single 28.5 kd protein corresponding to about 820 bp in length. Furthermore, the OmpR proteins of S. typhimurium and E. coli were shown to be structurally and functionally highly similar.Abbreviations SDS sedium dodecyl sulfate - kb kilobase pairs - bp base pairs - kd kilodaltons  相似文献   

6.
The murB gene of Salmonella typhimurium was cloned and found to be 75% and 82% identical to the DNA and protein sequences, respectively, of the same gene in Escherichia coli. These identities are among the lowest recorded between the two bacteria. Nevertheless, wild-type S. typhimurium murB complemented the known temperature-sensitive E. coli mutant, and wild-type E. coli murB complemented three temperature-sensitive mutants of S. typhimurium. The 5S rRNA gene, rrfB, and the region between murB and rrfB were also cloned and sequenced. The rrfB gene of S. typhimurium differs from rrfB of E. coli in only 2 of 120 nt, but the region between murB and rrfB has diverged greatly and includes a sequence that elosely resembles a repetitive extragenic palindrome of the type normally associated with E. coli. Previous comparisons of gene divergence have suggested that the chromosomal mutation rate is lower in the vicinity of the origin of replication. However, the S. typhimurium murB gene, located 6 map minutes from the origin of replication, is highly substituted at synonymous sites and the sequence between murB and rrfB is significantly modified as well. Thus, murB is an exception to the general observation that genes near the origin of replication show less divergence than do genes elsewhere in the bacterial chromosome.Abbreviations CAI codon adaptation index - REP repetitive extragenic palindrome  相似文献   

7.
Summary An envB mutation isolated in Salmonella typhimurium LT2 was transferred by conjugation to Escherichia coli K-12. The mutation produced the same alterations in E. coli as in S. typhimurium concerning cell shape, sensitivity to drugs, autolysis, and fermentation of carbohydrates. However, although the mutation conferred sensitivity to UV irradiation in Salmonella, in E. coli it behaved as a genuine envB mutation producing resistance to UV inactivation. The fact that the mutation produced opposite effects in the survival of UV-irradiated S. typhimurium and E. coli discloses an intriguing difference between these closely related species.Career Investigator of the Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina  相似文献   

8.
Cloning of bacterial DNA replication genes in bacteriophage lambda   总被引:1,自引:0,他引:1  
Summary Recombinant lambda phages containing the genes for dnaZ protein (the subunit of DNA polymerse III holoenzyme), primase (dnaG protein) and dnaC protein from Escherichi coli and Salmonella typhimurium were isolated. Each gene cloned from S. typhimurium has extensive DNA sequence homology to the corresponding E. coli gene. Clones selected by complementation of a dnaA temperature-sensitive mutant appear similar to other isolated suppressors of dnaA (Projan and Wechsler 1981). Derivatives of each cloned fragment suitable for overproduction of the protein were constructed. Of those tested, only the phage containing the E. coli dnaZ gene resulted in significant overproduction.Abbreviations DTT dithiothreitol - Ec Escherichia coli - EDTA ethylene diamine tetra acetic acid - kb kilobase 1,000 bases or base-pairs - moi multiplicity of infection - pol I E. coli DNA polymerase I - pol III holoenzyme E. coli DNA polymerase III holoenzyme - pri dnaG, primase-coding gene - SSB single-strand binding protein - St Salmonella typhimurium - sup gene coding for suppressor - ts temperature-sensitive  相似文献   

9.
Tn7-encoded proteins   总被引:1,自引:0,他引:1  
Summary Proteins encoded by Tn7 have been studied in Escherichia coli maxicells harbouring either various deleted ColE1:: Tn7 plasmids or Tn7 fragments cloned in pBR322. Six Tn7-encoded proteins were detected and named p18, p32, p40, p54, p85-a and p85-b according to their apparent molecular weight. Protein p18 is dihydrofolate reductase type I and p32 is probably the protein conferring resistance to streptomycin/spectinomycin. Both genes map on the lefthand part of Tn7. The genes for the four other proteins are located on the right-hand part of Tn7. We propose that they fully cover a 6.9 kb DNA fragment without any overlapping. Starting from the right-hand end towards the middle of the transposon, these four genes are in the following order: p85-a, p54, p40 and p85-b. Transposition of Tn7 onto E. coli plasmids requires the proteins p85-a, p85-b, p54 and p40. However, transposition onto the chromosome does not require the p85-b and p40 products.  相似文献   

10.
Summary Mutations at the cpxA locus of Escherichia coli K-12 affect cellular processes that are not otherwise related. We have now determined the physical and genetic structure of the E. coli chromosome in the region of cpxA (87.5 min). Our results indicate that cpxA is a single gene. Previous studies showed cpxA to be linked to tpiA. We therefore isolated two tpiA + recombinant plasmids, pRA200 and pRA300, from EcoRI and BamHI digests of F133, respectively. By genetic complementation or enzyme overproduction, the 9.5 kb EcoRI fragment in pRA200 was shown to include glpK, tpiA and cdh. The 13.6 kb BamHI fragment of pRA300 lacks glpK, but includes tpiA, pfkA and cpxA. Neither fragment complemented a deletion of the rha operon. These data indicate the chromosomal gene order: 87 min-rha-cpxA-pfkA-cdh-tpiA-glpK-88 min. The EcoRI and BamHI fragments overlap in an interval corresponding to about 8.2 kb of DNA. The total region of the E. coli K12 chromosome covered by the two fragments is about 15 kb. A terminal 2 kb EcoRI-BamHI fragment from pRA300 complemented the chromosomal cpxA2[Ts] allele with respect to isoleucine and valine synthesis, RNA bacteriophage sensitivity and surface exclusion in Hfr strains, and envelope protein composition. Complementation occurred when the fragment was subcloned in pBR325 but not when it was subcloned in pBR322, suggesting that the 2 kb fragment lacks expression sequences that are supplied by cat (chloramphenicol acetyltransferase gene) expression sequences of pBR325. The cpxA locus on the E. coli chromosome was established with respect to two chromosomal Tn10 insertions by a combination of genetic and physical analyses. The locus established by those analyses was consistent with the location of the 2 kb EcoRI-BamHI fragment in the physical map of the region. Physical analyses of (rha-pfkA) and (rha-tpiA) deletion strains showed that they lack cpxA and surrounding genes. Since these strains were viable, cpxA is not essential under all growth conditions.  相似文献   

11.
Enhanced Chromosome Mobilizing (ECM) plasmids derived from the IncP-1 plasmid R68 were isolated in Escherichia coli K-12 by the same methods which have given similar plasmids such as R68.45 in Pseudomonas aeruginosa. The chromosome mobilizing properties of such plasmids in E. coli were similar to those of R68.45 but while retaining the ability to transfer to P. aeruginosa they did not mobilize the chromosome of that organism. Restriction enzyme analysis of two such plasmids, pMO163 and pMO168, showed that they both possessed an additional segment of DNA. With pMO163, an addition of 0.8 kb is located near the TnA region and is characterized by the cleavage site pattern SmaI-HpaI-PstI-BamHI. For pMO168, the additional DNA segment is located at a different site, about 4.0 kb anti-clockwise from the EcoRI site. It was also characterized by the sites SmaI-(HpaI-PstI)-BamHI. No sequence homology has been found between the additional segments of either pMO163 or pMO168 and IS21 of R68.45. However homology of these additional segments was found with the E. coli K-12 chromosome suggesting that pMO163 and pMO168 arise by the acquisition of a transposable element from the E. coli K-12 chromosome.  相似文献   

12.
Summary Two 50s (50-10 and 50-12) and two 30s (30-4 and 30-7) ribosomal proteins could be distinguished between Shigella dysenteriae Sh/s and Escherichia coli K-12 JC411 with CMC column chromatography. On the other hand, E. coli K-12 AT2472 was shown to have a 30s ribosomal protein, 30-6(AT), which is specific to this strain and distinguishable from 30-6 of other E. coli K-12 strains. Transduction experiments by phage Plkc between Sh. dysenteriae Sh/s and E. coli ATSPCO1, a spectinomycin resistant mutant derived from AT2472 in which the 30-4 protein is altered, indicated that the genes specifying the above five ribosomal protein components are located in the streptomycin region on the E. coli chromosome.The gene order for three 50s (50-8, 50-10 and 50-12) and three 30s [str (30-?), 30-4 and 30-6] ribosomal proteins on the chromosome was determined by transduction technique between Sh. dysenteriae Sh/s and E. coli ATSPC01, between E. coli ATSPC01 and E. coli ER05 (an erythromycin resistant strain in which the 50-8 protein is altered), and between Sh. dysenteriae Sh/s and E. coli ERSPC14 (str s spc r ery r), respectively. It was found that these protein genes are arranged on the chromosome in the order of str (30-?)-30-4-30-6-50-8-50-10-50-12.  相似文献   

13.
14.
Summary The complete nucleotide sequences of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida were determined; the DNA sequences of the lexA genes from these bacteria were 86%, 76%, 61% and 59% similar, respectively, to the Escherichia coli K12 gene. The predicted amino acid sequences of the S. typhimurium, E. carotovora and P. putida LexA proteins are 202 residues long whereas that of P. aeruginosa is 204. Two putative LexA repressor binding sites were localized upstream of each of the heterologous genes, the distance between them being 5 by in S. typhimurium and E. carotovora, as in the lexA gene of E. coli, and 3 by in P. putida and P. aeruginosa. The first lexA site present in the lexA operator of all five bacteria is very well conserved. However, the second lexA box is considerably more variable. The Ala-84 — Gly-85 bond, at which the LexA repressor of E. coli is cleaved during the induction of the SOS response, is also found in the LexA proteins of S. typhimurium and E. carotovora. Likewise, the amino acids Ser-119 and Lys-156 are present in all of these three LexA repressors. These residues also exist in the LexA proteins of P. putida and P. aeruginosa, but they are displaced by 4 and 6 residues, respectively. Furthermore, the structure and sequence of the DNA-binding domain of the LexA repressor of E. coli are highly conserved in the S. typhimurium, E. carotovora, P. aeruginosa and P. putida LexA proteins.  相似文献   

15.
Polynucleotide sequence similarity tests were carried out to determine the extent of divergence present in a number of Escherichia coli strains, obtained from diverse human, animal, and laboratory sources, and closely related strains of Shigella, Salmonella, and the Alkalescens-Dispar group. At 60 C, relative reassociation of deoxyribonucleic acid (DNA) from the various strains with E. coli K-12 DNA ranged from 100 to 36%, with the highest level of reassociation found for three strains derived from K-12, and the lowest levels for two “atypical” E. coli strains and S. typhimurium. The change in thermal elution midpoint, which indicates the stability of DNA duplexes, ranged from 0.1 to 14.5 C, with thermal stability closely following the reassociation data. Reassociation experiments performed at 75 C, at which temperature only the more closely related DNA species form stable duplexes, gave similar indications of relatedness. At both temperatures, Alkalescens-Dispar strains showed close relatedness to E. coli, supporting the idea that they should be included in the genus Escherichia. Reciprocal binding experiments with E. coli BB, 02A, and K-12 yielded different reassociation values, suggesting that the genomes of these strains are of different size. The BB genome was calculated to be 9% larger than that of K-12, and that of 02A 9% larger than that of BB. Calculation of genome size for a series of E. coli strains yielded values ranging from 2.29 × 109 to 2.97 × 109 daltons. E. coli strains and closely related organisms were compared by Adansonian analysis for their relatedness to a hypothetical median strain. E. coli 0128a was the most closely related to this median organism. In general, these data compared well with the data from reassociation experiments among E. coli strains. However, anomalous results were obtained in the cases of Shigella flexneri, S. typhimurium, and “atypical” E. coli strains.  相似文献   

16.
Four serotypes of two genera, Escherichia coli O8 and O9 and Klebsiella O3 and O5, produce the O polysaccharides consisting of mannose homopolymers. Previously we reported the isolation and expression of E. coli O9 rfb in E. coli K-12 strains (Kido et al, J. Bacteriol., 171: 3629–3633, 1989). In this study, R' plasmids carrying his-rfb region of the other three strains were isolated and expressed in E. coli K-12 strain. Serological study of lipopolysaccharides (LPS) synthesized in E. coli K-12 strain was carried out. His-linked rfb genes from E. coli O9 and Klebsiella O3 directed the synthesis of O polysaccharides with the same antigenicity as those of the parental strains in E. coli K-12 strain. On the other hand, rfb genes from E. coli O8 and Klebsiella O5 directed the synthesis of O polysaccharides which were antigenically not identical but partially common to those of the parental strains. A rough strain derived from E. coli O8 synthesized LPS which showed the identical antigenicity as the wild strain when the his-rfb region of E. coli O8 was introduced. The results suggest that some genes located distantly from his are additionally required to complete the synthesis of O polysaccharides of E. coli O8 and Klebsiella O5.  相似文献   

17.
Summary Among the four seemingly adjacent loci of the argECBH cluster of E. coli K-12, the last three are shown to belong to the same unit of coordinated expression; the latter exhibits a clockwise polarity in contrast to all other known E. coli operons, except the cluster governing the synthesis of the pyruvate dehydrogenase complex.The analysis of several deletion and nonsense mutants suggests that argE (the expression of which is not strictly correlated with the functioning of the argCBH group) has the same polarity but is not integrated with the three other genes into one operon.Between polar argC B and B mutants the coefficient of repressibility of enzyme H synthesis varies widely. This feature resembles the reduced repressibility of distal gene activity found in polar mutants in the tryptophan operons of E. coli and S. typhimurium but not in the lac, gal (E. coli) and his (S. typhimurium) operons.Possible implications of the present results and some relevant data that have appeared in the recent literature are discussed.Research fellow of the Institute for the Encouragement of Scientific Research in Industry and Agriculture, Belgium.Research fellow of the National Fund of Scientific Research, Belgium.  相似文献   

18.
Summary A 6.5 kb region from the genome of the cyanobacterium, Anacystis nidulans 6301 was cloned using the tobacco chloroplast gene for ribosomal protein S12 as a probe. Sequence analysis revealed the presence of genes for ribosomal proteins S12 and S6 and elongation factors EF-G and EF-Tu in this DNA region. The arrangement is rps12 (124 codons)-167 bp spacer-rps7 (156 codons)-77 bp spacer-fus (694 codons)-26 bp spacer-tufA (409 codons), which is similar to that of the Escherichia coli str operon. The deduced amino acid sequences of the A. nidulans S12 and EF-Tu show high homology (72%–82%) with the E. coli and chloroplast counterparts while those of the A. nidulans S7 and EF-G give low homology (51%–59%). Striking structural homology was found between the potential S7 binding region of 16S rRNA and the beginning of S7 mRNA, suggesting that feedback regulation of rps7 expression operates in A. nidulans.  相似文献   

19.
Lytic Replication of Coliphage Lambda in Salmonella typhosa Hybrids   总被引:2,自引:0,他引:2       下载免费PDF全文
Hybrids between Escherichia coli K-12 and Salmonella typhosa which conserved a continuous K-12 chromosomal diploid segment extending from pro through ara to the strA locus were sensitive to plaque formation by wild-type λ. These partially diploid S. typhosa hybrids could be lysogenized with λ and subsequently induced to produce infectious phage particles. When the K-12 genes were segregated from a lysogenic S. typhosa hybrid, phage-productive ability was no longer detectable due to loss of a genetic region necessary for vegetative replication of λ. However, λ prophage was shown to persist in a quiescent state in the S. typhosa hybrid segregant with phage-productive ability being reactivated after replacement of the essential K-12 λ replication region. Low-frequency transduction and high-frequency transduction lysates containing the gal+ genes of S. typhosa were prepared by induction of λ-lysogenic S. typhosa hybrids indicating that the attλ site is chromosomally located in S. typhosa in close proximity to the gal locus as in E. coli K-12. After propagation in S. typhosa hybrids, λ was subject to restriction by E. coli K-12 recipients, thus establishing that S. typhosa does not perform the K-12 modification of λ deoxyribonucleic acid. Hybrids of S. typhosa, however, did not restrict λ grown previously on E. coli K-12. The K-12 genetic region required for λ phage production in S. typhosa was located within min 66 to min 72 on the genetic map of the E. coli chromosome. Transfer of an F-merogenote encompassing the 66 to 72 min E. coli chromosomal region to λ-insensitive S. typhosa hybrids enabled them to replicate wild-type λ. The λ-insensitive S. typhosa hybrid, WR4255, which blocks λ replication, can be mutagenized to yield mutant strains sensitive to λvir and λimm434. These WR4255 mutants remained insensitive to plaque formation by wild-type λ.  相似文献   

20.
Cloning of the rfb genes of Shigella flexneri 2a into Escherichia coli K-12 strain DH1 results in the synthesis of lipopolysaccharides (LPS) with an O-antigen chain having type antigen IV and group antigens 3,4. During genetic studies of these rfb genes in E. coli K-12, we observed that strains harbouring plasmids with certain mutations (inversion and transposon insertions) which should have blocked O-antigen synthesis nevertheless still produced LPS with O-antigen chains. These LPS migrated differently on silver-stained SDS—polyacrylamide gels, compared with the LPS produced by wild-type rfb genes, and the group 3,4 antigens were barely detectable, suggesting that the O-antigen was altered. Investigation of the genetic determinants for production of the altered O-antigen/LPS indicated that: (i) these LPS are produced as a result of mutations which are either polar on rfbF or inactivate rfbF; (ii) the rfbX gene product (or a similar protein in the E. coli K-12 rfb region) is needed for production of the altered O-antigen in the form of LPS; (iii) the rfbG gene product is required for the production of both the parental and altered LPS; (iv) the dTDP-rhamnose biosynthesis genes are required. Additionally, an E. coli K-12 gene product(s) encoded outside the rfb region also contributes to production of the O-antigen of the altered LPS. An antiserum raised to the altered LPS from strain DH1(pPM2217 (rfbX::Tn1725)) was found to cross-react with nearly all S. flexneri serotypes, and with the altered LPS produced by other DH1 strains harbouring plasmids with different rfb mutations, as described above. The reactivity of the altered LPS with a panel of monoclonal antibodies specific for various S. flexneri O-antigen type and group antigens demonstrated that their O-antigen components were closely related to that of S. flexneri serotype 4. The RfbF and RfbG proteins were shown to have similarity to rhamnose transferases, and we identified a motif common to the N-termini of 6-deoxy-hexose nucleotide sugar transferases. We propose that the E. coli K-12 strains harbouring the mutated S. flexneri rfb genes produce LPS with a hybrid O-antigen as a consequence of inactivation of RfbF and complementation by an E. coli K-12 gene product. Analysis of the genetic and immunochemical data suggested a possible structure for the O-antigen component of the altered LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号