首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translation initiation plays an important role in cell growth, proliferation, and survival. The translation initiation factor eIF4B (eukaryotic initiation factor 4B) stimulates the RNA helicase activity of eIF4A in unwinding secondary structures in the 5′ untranslated region (5′UTR) of the mRNA in vitro. Here, we studied the effects of eIF4B depletion in cells using RNA interference (RNAi). In agreement with the role of eIF4B in translation initiation, its depletion resulted in inhibition of this step. Selective reduction of translation was observed for mRNAs harboring strong to moderate secondary structures in their 5′UTRs. These mRNAs encode proteins, which function in cell proliferation (Cdc25C, c-myc, and ODC [ornithine decarboxylase]) and survival (Bcl-2 and XIAP [X-linked inhibitor of apoptosis]). Furthermore, eIF4B silencing led to decreased proliferation rates, promoted caspase-dependent apoptosis, and further sensitized cells to camptothecin-induced cell death. These results demonstrate that eIF4B is required for cell proliferation and survival by regulating the translation of proliferative and prosurvival mRNAs.Targeting the translation initiation pathway is emerging as a potential therapy for inhibiting cancer cell growth (35, 38). Ribosome recruitment to the 5′ ends of eukaryotic mRNAs proceeds via translation initiation mechanisms that are dependent either on the 5′ cap structure (m7GpppN, where N is any nucleotide) or an internal ribosome entry site (IRES). The majority of translation initiation events in eukaryotes are mediated through cap-dependent translation whereby the 40S ribosomal subunit is recruited to the vicinity of the mRNA 5′ cap structure by the eukaryotic initiation factor 4F (eIF4F) complex. eIF4F is comprised of eIF4E (the cap-binding subunit), eIF4A (an RNA helicase), and eIF4G (a large scaffolding protein for eIF4E, eIF4A, and other initiation factors). Once assembled at the 5′ cap, the 40S ribosomal subunit in association with several initiation factors scans the 5′ untranslated region (5′UTR) of the mRNA until it encounters a start codon in a favorable context, followed by polypeptide synthesis (37).Early in vitro studies have shown that the initiation factor eIF4B acts to potentiate ribosome recruitment to the mRNA (3, 45). eIF4B stimulates translation of both capped and uncapped mRNAs in vitro (1, 36). This function is exerted through stimulation of the helicase activity of eIF4A (43), possibly through direct interactions with eIF4A (44) or with mRNA, the ribosome-associated eIF3, and 18S rRNA (28, 29, 44). Thus, eIF4B is thought to form auxiliary bridges between the mRNA and the 40S ribosomal subunit. Toeprinting studies using mammalian eIF4B underscored its importance in the assembly of the 48S initiation complex, especially on mRNAs harboring secondary structures in the 5′UTRs (11).In vivo studies of eIF4B are limited. Ectopic expression of eIF4B in cultured Drosophila melanogaster cells and in developing eye imaginal discs stimulated cell proliferation (16). Enhanced cell proliferation is most likely mediated by increased translation of a subset of mRNAs, since knockdown of Drosophila eIF4B by RNA interference (RNAi) caused a modest reduction in global translation but compromised the survival of insect cells grown under low serum conditions (16). Studies of eIF4B in mammalian cells yielded contradictory results. Transient overexpression of eIF4B stimulated translation initiation in a phosphorylation-dependent manner in some cells (18, 49) while inhibiting translation in others (30, 31, 41). These differences might be attributed to disparate levels of eIF4B overexpression.To address the physiological role of eIF4B in mRNA translation in the cell, RNAi knockdown of eIF4B was used here. We demonstrate that eIF4B is required for optimal translation. Importantly, the translation of mRNAs bearing structured 5′UTRs, such as the cell cycle regulators Cdc25C, c-myc, and ODC (ornithine decarboxylase), and the antiapoptotic factors Bcl-2 and XIAP (X-linked inhibitor of apoptosis), was reduced as a result of eIF4B silencing by RNAi. Furthermore, eIF4B silencing promoted caspase-dependent apoptosis. Thus, we show that mammalian eIF4B is required for cell proliferation and survival, whereby it acts by regulating the translation of a functionally related subset of mRNAs.  相似文献   

2.
Eukaryotic mRNAs possess a 5′-terminal cap structure (cap), m7GpppN, which facilitates ribosome binding. The cap is bound by eukaryotic translation initiation factor 4F (eIF4F), which is composed of eIF4E, eIF4G, and eIF4A. eIF4E is the cap-binding subunit, eIF4A is an RNA helicase, and eIF4G is a scaffolding protein that bridges between the mRNA and ribosome. eIF4G contains an RNA-binding domain, which was suggested to stimulate eIF4E interaction with the cap in mammals. In Saccharomyces cerevisiae, however, such an effect was not observed. Here, we used recombinant proteins to reconstitute the cap binding of the mammalian eIF4E-eIF4GI complex to investigate the importance of the RNA-binding region of eIF4GI for cap interaction with eIF4E. We demonstrate that chemical cross-linking of eIF4E to the cap structure is dramatically enhanced by eIF4GI fragments possessing RNA-binding activity. Furthermore, the fusion of RNA recognition motif 1 (RRM1) of the La autoantigen to the N terminus of eIF4GI confers enhanced association between the cap structure and eIF4E. These results demonstrate that eIF4GI serves to anchor eIF4E to the mRNA and enhance its interaction with the cap structure.The cap structure, m7GpppN, is present at the 5′ terminus of all nuclear transcribed eukaryotic mRNAs. Cap-dependent binding of the ribosome to mRNA is mediated by the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E), which forms a complex termed eIF4F together with eIF4G and eIF4A. Mammalian eIF4G, which has two isoforms, eIF4GI and eIF4GII, is a modular, multifunctional protein that binds to poly(A)-binding protein (PABP) (14) and eIF4E (18, 20) via the N-terminal third region. Mammalian eIF4G binds to eIF4A and eIF3 (15) via the middle third region and to eIF4A and Mnk protein kinase at the C-terminal region. eIF4GI also possesses an RNA-binding sequence (2, 9, 33) in the middle region. There are two RNA-binding sites on eIF4GI; one is located amino terminal to the first HEAT domain, and the other is located within the first HEAT domain (23). Mammalian and Saccharomyces cerevisiae eIF4E are similar in size (24 kDa), but mammalian eIF4GI (220 kDa) is larger than its yeast counterpart (150 kDa), as the latter lacks a C-terminal domain corresponding to mammalian eIF4GI (38).The affinity of eIF4E for the cap structure has been a matter of dispute for some time. The earlier works of Carberry et al. (4) and Ueda et al. (39) estimated the equilibrium dissociation constant (Kd) of the eIF4E-cap complex by fluorescence titration to be 2 × 10−6 to 5 × 10−6 M depending on the nature of the cap analog. Later on, development of a new methodology for the fluorescence titration experiments yielded Kd values of 10−7 to 10−8 (29, 41). The source of the difference with the previous reports was thoroughly analyzed (29, 30). The interaction between the cap structure and eIF4E is dramatically enhanced by eIF4GI. This was first reported by showing that cross-linking of mammalian eIF4E to the cap structure is more efficient when it is a subunit of the eIF4F complex (19) or when it is complexed to eIF4GI (11). A similar enhancement of the binding of eIF4E to the cap structure was observed in yeast (40). However, two very different mechanisms were proposed to explain these observations. For the mammalian system, it was postulated that the middle segment of eIF4GI, which binds RNA, stabilizes the eIF4E interaction with the cap structure (11). This model was based primarily on the finding that in poliovirus-infected cells, eIF4GI is cleaved between its N-terminal third and the middle third, and consequently, eIF4E remains attached to the N-terminal eIF4GI fragment lacking the RNA-binding region. Under these conditions, cross-linking of eIF4E to the cap structure was poor (19, 31). In contrast, in yeast, a strong interaction between the cap structure and eIF4E was achieved using an eIF4G fragment containing the eIF4E-binding site that lacks the RNA-binding region (34, 40). Also, the yeast eIF4G fragment from amino acids 393 to 490 (fragment 393-490), which does not contain the RNA-binding site, forms a right-handed helical ring that wraps around the N terminus of eIF4E. This conformational change was suggested in turn to engender an allosteric enhancement of the association of eIF4E with the cap structure (10). Such an interaction between mammalian eIF4GI and eIF4E has not been reported.To understand the mechanism by which eIF4GI stimulates the interaction of eIF4E with the cap structure in mammals, we reconstituted the eIF4E-cap recognition activity in vitro with purified eIF4E and eIF4GI recombinant proteins. Using a chemical cross-linking assay, we demonstrate that only mammalian eIF4GI fragments possessing RNA-binding activity enhance the cross-linking of eIF4E to the cap structure. Our data provide new insight into the mechanism of cap recognition by the eIF4E-eIF4GI complex.  相似文献   

3.
4.
5.
The herpes simplex virus (HSV) virion host shutoff protein (vhs) encoded by gene UL41 is an mRNA-specific RNase that triggers accelerated degradation of host and viral mRNAs in infected cells. We report here that vhs is also able to modulate reporter gene expression without greatly altering the levels of the target mRNA in transient-transfection assays conducted in HeLa cells. We monitored the effects of vhs on a panel of bicistronic reporter constructs bearing a variety of internal ribosome entry sites (IRESs) located between two test cistrons. As expected, vhs inhibited the expression of the 5′ cistrons of all of these constructs; however, the response of the 3′ cistron varied with the IRES: expression driven from the wild-type EMCV IRES was strongly suppressed, while expression controlled by a mutant EMCV IRES and the cellular ApaF1, BiP, and DAP5 IRES elements was strongly activated. In addition, several HSV type 1 (HSV-1) 5′ untranslated region (5′ UTR) sequences also served as positive vhs response elements in this assay. IRES activation was also observed in 293 and HepG2 cells, but no such response was observed in Vero cells. Mutational analysis has yet to uncouple the ability of vhs to activate 3′ cistron expression from its shutoff activity. Remarkably, repression of 5′ cistron expression could be observed under conditions where the levels of the reporter RNA were not correspondingly reduced. These data provide strong evidence that vhs can modulate gene expression at the level of translation and that it is able to activate cap-independent translation through specific cis-acting elements.The virion host shutoff protein (vhs) encoded by herpes simplex virus (HSV) gene UL41 is an endoribonuclease that is packaged into the tegument of mature HSV virions. Once delivered into the cytoplasm of newly infected cells, vhs triggers shutoff of host protein synthesis, disruption of preexisting polysomes, and degradation of host mRNAs (reviewed in reference 62). The vhs-dependent shutoff system destabilizes many cellular and viral mRNAs (36, 46, 67). The rapid decline in host mRNA levels presumably helps viral mRNAs gain access to the cellular translational apparatus. In addition, the relatively short half-lives of viral mRNAs contribute to the sharp transitions between the successive phases of viral protein synthesis by tightly coupling changes in the rates of synthesis of viral mRNAs to altered mRNA levels (46). These effects enhance virus replication and may account for the modest reduction in virus yield displayed by vhs mutants in cultured Vero cells (55, 61).vhs also plays a critical role in HSV pathogenesis: vhs mutants are severely impaired for replication in the corneas and central nervous systems of mice and cannot efficiently establish or reactivate from latency (63, 65, 66). Mounting evidence indicates that this attenuation stems at least in part from an impaired ability to disarm elements of the innate and adaptive host immune responses (reviewed in reference 62). For example, vhs suppresses certain innate cellular antiviral responses, including production of proinflammatory cytokines and chemokines (68); dampens the type I interferon system (11, 45, 49, 78); and blocks activation of dendritic cells (58). Moreover, vhs mutants display enhanced virulence in knockout mice lacking type I interferon (IFN) receptors (37, 45) or Stat1 (48) and are hypersensitive to the antiviral effects of IFN in some cells in tissue culture (11, 49, 68). Thus, vhs is arguably a bona fide virulence factor.vhs present in extracts of HSV virions or purified from bacteria has nonspecific RNase activity capable of degrading all RNA substrates (15, 70, 71, 79). However, vhs is highly selective in vivo, targeting mRNAs and sparing other cytoplasmic RNAs (36, 46). In vivo and in mammalian whole-cell extracts, vhs-induced decay of at least some mRNAs initiates near regions of translation initiation and proceeds in an overall 5′-to-3′ direction (12, 13, 29, 52). Moreover, vhs binds to the translation initiation factors eIF4H, eIF4B, and eIF4A II, all components of the cap recognition factor eIF4F (10, 16, 17). Thus, it has been proposed that vhs selectively targets actively translated mRNAs through interactions with eIF4F components (17). Consistent with this hypothesis, recent data document that eIF4H is required for vhs activity in vivo (59).A previous report from this laboratory documented that the internal ribosome entry sites (IRESs) of the picornaviruses poliovirus and encephalomyocarditis virus (EMCV) strongly target vhs-induced RNA cleavage events to sequences immediately 3′ to the IRES in an in vitro translation system derived from rabbit reticulocyte lysates (RRL) (13). IRES elements are highly structured RNA sequences that are able to direct cap-independent translational initiation (reviewed in references 21, 25, 30, and 64). In the case of the poliovirus and EMCV elements, this is achieved by directly recruiting the eIF4F scaffolding protein eIF4G, thus bypassing the requirement for the cap-binding eIF4F subunit, eIF4E (reviewed in reference 30). Based on these data, we suggested that vhs is strongly targeted to the picornavirus IRES elements via interactions with eIF4 factors.A growing number of cellular mRNAs have been proposed to bear IRES elements in their 5′ untranslated regions (5′ UTRs). These include many that are involved in cellular stress responses, apoptosis, and cell cycle progression (24, 64, 74). Given the striking ability of picornavirus IRES elements to target vhs RNase activity in vitro, we asked whether viral and cellular IRES elements are able to modify the susceptibility of mRNAs to vhs in vivo. During the course of preliminary experiments designed to test this hypothesis, we unexpectedly discovered that vhs is able to strongly activate gene expression controlled by some cellular IRES elements and HSV 5′ UTR sequences in in vivo bicistronic reporter assays. These observations are the subject of the present report.  相似文献   

6.
7.
8.
9.
RNAs of many positive strand RNA viruses lack a 5′ cap structure and instead rely on cap-independent translation elements (CITEs) to facilitate efficient translation initiation. The mechanisms by which these RNAs recruit ribosomes are poorly understood, and for many viruses the CITE is unknown. Here we identify the first CITE of an umbravirus in the 3′-untranslated region of pea enation mosaic virus RNA 2. Chemical and enzymatic probing of the ∼100-nucleotide PEMV RNA 2 CITE (PTE), and mutagenesis revealed that it forms a long, bulged helix that branches into two short stem-loops, with a possible pseudoknot interaction between a C-rich bulge at the branch point and a G-rich bulge in the main helix. The PTE inhibited translation in trans, and addition of eIF4F, but not eIFiso4F, restored translation. Filter binding assays revealed that the PTE binds eIF4F and its eIF4E subunit with high affinity. Tight binding required an intact cap-binding pocket in eIF4E. Among many PTE mutants, there was a strong correlation between PTE-eIF4E binding affinity and ability to stimulate cap-independent translation. We conclude that the PTE recruits eIF4F by binding eIF4E. The PTE represents a different class of translation enhancer element, as defined by its structure and ability to bind eIF4E in the absence of an m7G cap.Regulation of translation occurs primarily at the initiation step. This involves recognition of the 5′ m7G(5′)ppp(5′)N cap structure on the mRNA by initiation factors, which recruit the ribosome to the 5′-end of the mRNA (15). The 5′ cap structure and the poly(A) tail are necessary for efficient recruitment of initiation factors on eukaryotic mRNAs (3, 68). The cap is recognized by the eIF4E subunit of eukaryotic translation initiation factor complex eIF4F (or the eIFiso4E subunit of eIFiso4F in higher plants). The poly(A) tail is recognized by poly(A)-binding protein. In plants, eIF4F is a heterodimer consisting of eIF4E and eIF4G, the core scaffolding protein to which the other factors bind. eIF4A, an ATPase/RNA helicase, interacts with eIF4F but is not part of the eIF4F heterodimer (9, 10). For translation initiation, the purpose of eIF4E is to bring eIF4G to the capped mRNA. eIF4G then recruits the 43 S ternary ribosomal complex via interaction with eIF3.The RNAs of many positive sense RNA viruses contain a cap-independent translation element (CITE)3 that allows efficient translation in the absence of a 5′ cap structure (1113). In animal viruses and some plant viruses, the CITE is an internal ribosome entry site (IRES) located upstream of the initiation codon. Most viral IRESes neither interact with nor require eIF4E, because they lack the m7GpppN structure, which, until this report, was thought to be necessary for mRNA to bind eIF4E with high affinity (3, 14). Translation initiation efficiency of mRNA is also influenced by the length of, and the degree of secondary structure in the 5′ leader (1517).Many uncapped plant viral RNAs harbor a CITE in the 3′-UTR that confers highly efficient translation initiation at the 5′-end of the mRNA (1822). These 3′ CITEs facilitate ribosome entry and apparently conventional scanning at the 5′-end of the mRNA (17, 23, 24). A variety of unrelated structures has been found to function as 3′ CITEs, suggesting that they recruit the ribosome by different interactions with initiation factors (13).The factors with which a plant CITE interacts to recruit the ribosome have been identified for only a potyvirus, a luteovirus, and a satellite RNA. The 143-nt 5′-UTR CITE of the potyvirus, tobacco etch virus is an IRES that functions by binding of its AU-rich pseudoknot structure with eIF4G (25). It binds eIF4G with up to 30-fold greater affinity than eIFiso4G and does not require eIF4E for IRES activity. In addition to RNA elements, the genome-linked viral protein (VPg) of potyviruses may participate in cap-independent translation initiation by interacting with the eIF4E and eIFiso4E subunits of eIF4F and eIFiso4F, respectively (2631). In contrast, the 130-nt cap-independent translation enhancer domain (TED) in the 3′-UTR of satellite tobacco necrosis virus (STNV) RNA forms a long bulged stem-loop, which interacts strongly with both eIF4F and eIFiso4F and weakly with their eIF4E and eIFiso4E subunits (32), suggesting that the TED requires the full eIF4F or eIFiso4F for a biologically relevant interaction. Barley yellow dwarf luteovirus (BYDV) and several other viruses, have a different structure, called a BYDV-like CITE (BTE), in the 3′-UTR. The BTE is characterized by a 17-nt conserved sequence incorporated in a structure with a variable number of stem-loops radiating from a central junction (20, 33, 34). It requires and binds the eIF4G subunit of eIF4F and does not bind free eIF4E, eIFiso4E, or eIFiso4G, although eIF4E slightly enhances the BTE-eIF4G interaction (35). Other 3′ CITEs have been identified, but the host factors with which they interact are unknown.Here we describe unprecedented factor interactions of a CITE found in an umbravirus and a panicovirus. Umbraviruses show strong similarity to the Luteovirus and Dianthovirus genera in (i) the sequence of the replication genes encoded by ORFs 1 and 2, (ii) the predicted structure of the frameshift signals required for translation of the RNA-dependent RNA polymerase from ORF 2 (36, 37), (iii) the absence of a poly(A) tail, and (iv) the lack of a 5′ cap structure (37, 38). Umbraviruses are unique in that they encode no coat protein. For the umbravirus pea enation mosaic virus 2 (PEMV-2), the coat protein is provided by PEMV-1, an enamovirus (39). Uncapped PEMV-2 RNA (PEMV RNA 2), transcribed in vitro, is infectious in pea (Pisum sativa),4 indicating it must be translated cap-independently. The 3′-UTRs of some umbraviruses such as Tobacco bushy top virus and Groundnut rosette virus harbor sequences resembling BYDV-like CITEs (BTE).5 However, no BTE is apparent in the 3′-UTR of PEMV RNA 2. In this report we identify a different class of CITE in the 705-nt long 3′-UTR of PEMV RNA 2, determine its secondary structure, which may include an unusual pseudoknot, and we show that, unlike any other natural uncapped RNA, it has a high affinity for eIF4E, which is necessary to facilitate cap-independent translation.  相似文献   

10.
The eukaryotic translation initiation factor 4GI (eIF4GI) serves as a central adapter in cap-binding complex assembly. Although eIF4GI has been shown to be sensitive to proteasomal degradation, how the eIF4GI steady-state level is controlled remains unknown. Here, we show that eIF4GI exists in a complex with NAD(P)H quinone-oxydoreductase 1 (NQO1) in cell extracts. Treatment of cells with dicumarol (dicoumarol), a pharmacological inhibitor of NQO1 known to preclude NQO1 binding to its protein partners, provokes eIF4GI degradation by the proteasome. Consistently, the eIF4GI steady-state level also diminishes upon the silencing of NQO1 (by transfection with small interfering RNA), while eIF4GI accumulates upon the overexpression of NQO1 (by transfection with cDNA). We further reveal that treatment of cells with dicumarol frees eIF4GI from mRNA translation initiation complexes due to strong activation of its natural competitor, the translational repressor 4E-BP1. As a consequence of cap-binding complex dissociation and eIF4GI degradation, protein synthesis is dramatically inhibited. Finally, we show that the regulation of eIF4GI stability by the proteasome may be prominent under oxidative stress. Our findings assign NQO1 an original role in the regulation of mRNA translation via the control of eIF4GI stability by the proteasome.In eukaryotes, eukaryotic translation initiation factor 4G (eIF4G) plays a central role in the recruitment of ribosomes to the mRNA 5′ end and is therefore critical for the regulation of protein synthesis (14). Two homologues of eIF4G, eIF4GI and eIF4GII, have been cloned (15). Although they differ in various respects, both homologues clearly function in translation initiation. The most thoroughly studied of these is eIF4GI, which serves as a scaffolding protein for the assembly of eIF4F, a protein complex composed of eIF4E (the mRNA cap-binding factor) and eIF4A (an ATP-dependent RNA helicase). Thus, via its association with the mRNA cap-binding protein eIF4E and with another translation initiation factor (eIF3) which is bound to the 40S ribosomal subunit, eIF4GI creates a physical link between the mRNA cap structure and the ribosome, thus facilitating cap-dependent translation initiation (25). eIF4GI functions also in cap-independent, internal ribosome entry site (IRES)-mediated translation initiation. For instance, upon picornavirus infection, eIF4G is rapidly attacked by viral proteases. The resulting eIF4GI cleavage products serve to reprogram the cell''s translational machinery, as the N-terminal cleavage product inhibits cap-dependent translation of host cell mRNAs by sequestering eIF4E while the C-terminal cleavage product stimulates IRES-mediated translation of viral mRNAs (23). Similarly, apoptotic caspases cleave eIF4G into an N-terminal fragment that blocks cap-dependent translation and a C-terminal fragment that is utilized for IRES-mediated translation of mRNAs encoding proapoptotic proteins (22).The regulation of eIF4GI cleavage by viral proteases or apoptotic caspases has been extensively studied. Little is known, however, about the regulation of eIF4GI steady-state levels. Yet the eIF4GI amount that exists at a given moment results from the sum of the effects of de novo synthesis and ongoing degradation. Many cellular proteins are physiologically degraded by the proteasome. This has been shown to be true for eIF4GI, as the factor can be degraded by the proteasome in vitro (5) and in living cells (6). However, how eIF4GI targeting for or protection from destruction by the proteasome is regulated remains unknown.There are two major routes to degradation by the proteasome. In the more conventional route, polyubiquitinated proteins are targeted to the 26S proteasome. Alternatively, a few proteins can be degraded by the 20S proteasome (and sometimes by the 26S proteasome) in a ubiquitin-independent manner (16). Interestingly, it has been shown recently that a few of these proteins (1, 2, 13) can be protected from degradation by the 20S proteasome by binding to the NAD(P)H quinone-oxydoreductase 1 (NQO1). It has been proposed that NQO1 may interact with the 20S proteasome and may consequently block access of target proteins to the 20S degradation core. Because eIF4GI can be degraded in vitro by the 20S proteasome (5) and since it appears that proteasomes can degrade eIF4GI in living cells independently of ubiquitination (6), we asked whether NQO1 could protect eIF4GI from degradation by the proteasome.  相似文献   

11.
12.
13.
14.
15.
16.
17.
The C-terminal domain (CTD) of the a/Tif32 subunit of budding yeast eukaryotic translation initiation factor 3 (eIF3) interacts with eIF3 subunits j/Hcr1 and b/Prt1 and can bind helices 16 to 18 of 18S rRNA, suggesting proximity to the mRNA entry channel of the 40S subunit. We have identified substitutions in the conserved Lys-Glu-Arg-Arg (KERR) motif and in residues of the nearby box6 element of the a/Tif32 CTD that impair mRNA recruitment by 43S preinitiation complexes (PICs) and confer phenotypes indicating defects in scanning and start codon recognition. The normally dispensable CTD of j/Hcr1 is required for its binding to a/Tif32 and to mitigate the growth defects of these a/Tif32 mutants, indicating physical and functional interactions between these two domains. The a/Tif32 CTD and the j/Hcr1 N-terminal domain (NTD) also interact with the RNA recognition motif (RRM) in b/Prt1, and mutations in both subunits that disrupt their interactions with the RRM increase leaky scanning of an AUG codon. These results, and our demonstration that the extreme CTD of a/Tif32 binds to Rps2 and Rps3, lead us to propose that the a/Tif32 CTD directly stabilizes 43S subunit-mRNA interaction and that the b/Prt1-RRM-j/Hcr1-a/Tif32-CTD module binds near the mRNA entry channel and regulates the transition between scanning-conducive and initiation-competent conformations of the PIC.Eukaryotic translation initiation factor 3 (eIF3) is a multisubunit protein complex that has been implicated in several steps of the translation initiation pathway (reviewed in reference 19). These steps include recruitment of the eIF2-GTP-Met-ternary complex (TC) and other eIFs to the small (40S) ribosomal subunit to form the 43S preinitiation complex (PIC), mRNA recruitment by the 43S PIC, and subsequent scanning of the 5′ untranslated region (UTR) for an AUG start codon. The eIF3 in the budding yeast Saccharomyces cerevisiae is composed of only 6 subunits (a/Tif32, b/Prt1, c/Nip1, i/Tif34, g/Tif35, and j/Hcr1), which have homologs in the larger, 13-subunit eIF3 complex in mammals. Yeast eIF3 can be purified with the TC, eIF1, and eIF5 in a ribosome-free assembly called the multifactor complex (MFC) (2), whose formation appears to promote assembly or stability of the 43S PIC and to stimulate scanning and AUG selection (10, 23, 32, 42, 48, 49, 51).In mammals, there is evidence that eIF3 enhances recruitment of mRNA by interacting directly with eIF4G, the “scaffold” subunit of mRNA cap-binding complex eIF4F, and forming a protein bridge between mRNA and the 43S PIC (24, 25, 35). In budding yeast, direct eIF3-eIF4G interaction has not been detected, and the eIF3-binding domain (25) is not evident in yeast eIF4G. Moreover, depletion of eIF3, but not eIF4G, from yeast cells provokes a strong decrease in the amount of an mRNA (RPL41A) associated with native PICs (23). However, since depletion of eIF3 also reduced the amounts of other MFC components associated with PICs, it remained unclear whether eIF3 acts directly in mRNA recruitment.In favor of a direct role for eIF3, cross-linking analysis of reconstituted mammalian 48S PICs identified contacts of subunits eIF3a and eIF3d with mRNA residues 8 to 17 nucleotides (nt) upstream of the AUG codon, suggesting that these subunits form an extension of the mRNA exit channel (37). Consistent with this, we found that the N-terminal domain (NTD) of yeast a/Tif32 binds Rps0A, located near the mRNA exit pore, and functionally interacts with sequences 5′ to the regulatory upstream open reading frame 1 (uORF1) in GCN4 mRNA (42). Despite these advances, in vivo evidence supporting a direct role of eIF3 in mRNA recruitment by 43S PICs is lacking.Recently, there has been progress in elucidating the molecular mechanisms involved in ribosomal scanning and AUG selection. Reconstituted mammalian 43S PICs containing only eIF1, -1A, and -3 and the TC can scan the leader of an unstructured message and form a stable 48S PIC at the 5′-proximal AUG codon (35). eIF1 and -1A are thought to promote scanning by stabilizing an open conformation of the 40S subunit (6, 13, 26, 27), which appears to involve opening the “latch” on the mRNA entry channel formed by helices 18 and 34 of 18S rRNA (33). eIF1A also promotes a mode of TC binding conducive to scanning (39) and seems to prevent full accommodation of Met-in the P site at non-AUG codons (53). The GTP bound to eIF2 is hydrolyzed, in a manner stimulated by eIF5, but release of phosphate (Pi) from eIF2-GDP-Pi is blocked by eIF1 (1). Entry of AUG into the P site triggers relocation of eIF1 from its binding site on the 40S subunit (27), allowing Pi release (1) and stabilizing the closed, scanning-arrested conformation of the 40S subunit (33).Mutations in eIF1 and eIF1A that reduce the stringency of start codon recognition have been isolated by their ability to increase initiation at a UUG codon in his4 alleles lacking the AUG start codon (the Sui phenotype) (6, 12, 13, 29, 38, 39, 52). eIF1A mutations with the opposite effect of lowering UUG initiation in the presence of a different Sui mutation (the Ssu phenotype) were also obtained (13, 39). Previously, we identified Sui and Ssu mutations in the N-terminal domain of eIF3 subunit c/Nip1, which alter its contacts with eIF1, -2, and -5, suggesting that integrity of the MFC is important for the accuracy of AUG selection (49).Several genetic findings also implicate eIF3 in the efficiency of scanning and AUG recognition. The prt1-1 point mutation in b/Prt1 (S518F) (11) impairs translational control of GCN4 mRNA in a manner suggesting a reduced rate of scanning between the short uORFs involved in this control mechanism (30). Disrupting an interaction between a hydrophobic pocket of the noncanonical RNA recognition motif (RRM) in the N terminus of b/Prt1 (henceforth referred to as b/RRM) and a Trp residue in the N-terminal acidic motif of j/Hcr1 (Trp-37) severely reduces the efficiency of initiation at the AUG of uORF1 in GCN4 mRNA, the phenomenon of leaky scanning, implicating the connection between the b/RRM and j/Hcr1 NTD (henceforth referred to as j/NTD) in efficient AUG recognition (10). Similarly, a multiple Ala substitution in RNP1 of the b/RRM evoked leaky scanning of the AUG codon of GCN4 uORF1 (uAUG-1) (32).Interestingly, besides the b/RRM-j/NTD contact, the b/RRM can simultaneously bind to the j/Hcr1-like domain (HLD) in a/Tif32, and j/Hcr1 also independently binds a/Tif32 (50). This network of interactions involving the b/RRM, a/Tif32-HLD, and j/Hcr1 segments was shown to stabilize an eIF3 subassembly (50), referred to below as the b/RRM-j/Hcr1-a/Tif32-CTD module; however, it was not known whether the a/Tif32 HLD component of this module also participates in AUG recognition or other specific steps of initiation.In this report, we provide evidence that the evolutionarily conserved KERR motif in the a/Tif32 HLD (hereafter referred to as a/HLD) functions to enhance mRNA recruitment by 43S PICs, processivity of scanning, and the efficiency of AUG recognition. The identification of Ssu phenotypes for both KERR mutations and replacement of a nearby element (box6) further implicates the a/HLD in promoting the closed, scanning-arrested conformation of the PIC at start codons. Combining these results with our finding that the a/Tif32 CTD binds the 40S proteins Rps3 and Rps2 and the recent evidence that j/Hcr1 promotes AUG recognition and binds Rps2 leads us to propose that the a/HLD is positioned near the 40S mRNA entry channel, where it promotes mRNA binding and, together with j/Hcr1 and the b/RRM, modulates the transition between the open and closed conformations of the PIC during scanning and AUG recognition.  相似文献   

18.
The dicistrovirus is a positive-strand single-stranded RNA virus that possesses two internal ribosome entry sites (IRES) that direct translation of distinct open reading frames encoding the viral structural and nonstructural proteins. Through an unusual mechanism, the intergenic region (IGR) IRES responsible for viral structural protein expression mimics a tRNA to directly recruit the ribosome and set the ribosome into translational elongation. In this study, we explored the mechanism of host translational shutoff in Drosophila S2 cells infected by the dicistrovirus, cricket paralysis virus (CrPV). CrPV infection of S2 cells results in host translational shutoff concomitant with an increase in viral protein synthesis. CrPV infection resulted in the dissociation of eukaryotic translation initiation factor 4G (eIF4G) and eIF4E early in infection and the induction of deIF2α phosphorylation at 3 h postinfection, which lags after the initial inhibition of host translation. Forced dephosphorylation of deIF2α by overexpression of dGADD34, which activates protein phosphatase I, did not prevent translational shutoff nor alter virus production, demonstrating that deIF2α phosphorylation is dispensable for host translational shutoff. However, premature induction of deIF2α phosphorylation by thapsigargin treatment early in infection reduced viral protein synthesis and replication. Finally, translation mediated by the 5′ untranslated region (5′UTR) and the IGR IRES were resistant to impairment of eIF4F or eIF2 in translation extracts. These results support a model by which the alteration of the deIF4F complex contribute to the shutoff of host translation during CrPV infection, thereby promoting viral protein synthesis via the CrPV 5′UTR and IGR IRES.For productive viral protein expression, viruses have to compete for and hijack the host translational machinery (45). Some viruses such as poliovirus, vesicular stomatitis virus (VSV), and influenza virus selectively antagonize the translation apparatus to shut off host translation, resulting in the release of ribosomes from host mRNAs and the inhibition of antiviral responses. On the other hand, the host cell can counteract through antiviral mechanisms to shutdown viral translation. For instance, viral RNA replication intermediates can trigger PKR, leading to an inhibition of overall translation. To bypass the block in translation, viruses have evolved unique mechanisms to preferentially recruit the ribosome for viral protein synthesis. Thus, the control of the translational machinery during infection is a major focal point in the battle between the host and the virus and often, elucidation of these viral translational shutoff strategies reveals key targets of translational regulation.The majority of cellular mRNAs initiate translation through the recruitment of the cap-binding complex, eukaryotic translation initiation factor 4F (eIF4F), to the 5′ cap of the mRNA (56). eIF4F consists of the cap-binding protein eIF4E, the RNA helicase, eIF4A, and the adaptor protein eIF4G. eIF4G acts as a bridge to join eIF4E and the 40S subunit via eIF3. With the ternary eIF2-Met-tRNAi-GTP complex bound, the 40S subunit scans in a 5′-to-3′ direction until an AUG start codon is encountered. Here, eIF5 mediates GTP hydrolysis on the ternary complex, releasing the eIFs and subsequently leading to 60S subunit joining to assemble an elongation-competent 80S ribosome. The ternary eIF2-Met-tRNAi-GTP complex is reactivated for another round of translation by exchange of GDP for GTP, which is mediated by the guanine nucleotide exchange factor, eIF2B. The 3′ poly(A) tail of the mRNA also stimulates translational initiation by binding to the poly(A) binding protein (PABP), which in turn interacts with eIF4G at the 5′end, resulting in a circularized mRNA. PABP has been proposed to enhance eIF4E affinity for the 5′cap and promote 60S joining, indicating that PABP functions at multiple steps of translational initiation (33).A common tactic viruses use to inhibit host translation is to selectively target eIFs. One of the best studied is the cleavage of eIF4G by viral proteases during picornavirus infection. In humans, two isoforms, eIF4GI and eIF4GII, are cleaved early in poliovirus infection by the viral protease 2A, where cleavage of eIFGII correlates more precisely with host translation shutoff (20). Cleavage of eIF4G produces an amino-terminal fragment that binds to eIF4E and a C-terminal fragment that binds to eIF4A and eIF3 (26, 39, 42). PABP is also cleaved by the viral protease 3C during poliovirus infection, thus contributing to shutoff of both host and viral translation and thereby enabling the switch from viral translation to replication (3, 31, 38). Another major target is the availability of the cap-binding protein eIF4E, which is regulated by binding to the repressor protein 4E-BP (21, 41). 4E-BP and eIF4G compete for an overlapping site on eIF4E (42). In its hypophosphorylated state, 4E-BP binds to and sequesters eIF4E, preventing eIF4G recruitment. Dephosphorylation and activation of 4E-BP has been observed during poliovirus, encephalomyocarditis (EMCV), and VSV infections (7, 18).During virus infection, host antiviral responses are triggered that also inhibit translation to counteract viral protein synthesis. An integral antiviral response is phosphorylation at Ser51 of eIF2α, which reduces the pool of the ternary complex by blocking the eIF2B-dependent exchange of GDP to GTP. In mammals, four known eIF2α kinases exist including the endoplasmic reticulum (ER)-stress-inducible PERK, GCN2, which senses the accumulation of deacylated tRNAs during amino acid starvation conditions; the heme-regulated kinase HRI; and the interferon-inducible double-stranded RNA-binding PKR (64). In mammalian cells, PKR is activated by binding to double-stranded viral RNA replication intermediates, leading to eIF2α phosphorylation and inhibition of overall host and viral translation. PERK and GCN2 have also been shown to be activated during virus infections by VSV and members of the alphavirus family (2, 6, 43, 65, 79). Often, viruses rely on the ER for synthesis and proper folding of viral proteins. The large burden on the ER activates PERK to phosphorylate eIF2α, thereby inhibiting global protein synthesis to reduce the load on the ER (23). Some viruses such as HCV and herpes simplex viruses have adapted to responses that induce eIF2α phosphorylation by producing viral proteins that counteract PKR or modulate the ER stress response (27, 76). Thus, virus infection can trigger several eIF2α kinases that lead to translational shutoff to counteract viral protein synthesis.To circumvent these translation blocks, viruses such as poliovirus and hepatitis C virus utilize internal ribosome entry sites (IRES), which are RNA elements that directly recruit ribosomes in a cap-independent manner and require only a subset of canonical eIFs (15, 25). It is generally thought that IRES-containing viral mRNAs can be translated under conditions when specific eIFs are compromised during infection. Except for a few cases, the specific mechanisms and factors that lead to IRES stimulation is poorly understood. For example, poliovirus and the related EMCV possess an IRES that allows viral translation despite cleavage of eIF4G during infection or inhibiting eIF4E by 4E-BP binding. This type of IRES can still bind to the central domain of eIF4G and mediate 40S subunit recruitment (11, 37, 57).One of the most unique and simplest IRES is found within the intergenic region (IGR) of the Dicistroviridae family (for extensive reviews, see references 28, 36, and 49). Members of this family include the cricket paralysis virus (CrPV), drosophila C virus (DCV), taura syndrome virus, the Plautia stali intestine virus (PSIV), the Rhopalosiphum padi virus (RhPV), and several bee viruses such as the black queen cell virus and the Israeli acute paralysis virus, which has been recently linked to colony collapse disorder (10). The dicistroviruses encode a positive-strand 8- to 10-kb single-stranded RNA genome, which contains two main open reading frames, ORF1 and ORF2, encoding the nonstructural and structural proteins, respectively, separated by an IGR (see Fig. Fig.1A).1A). The 5′ end of the CrPV RNA is linked to the viral protein VpG and the 3′ end contains a poly(A) tail (16). Radiolabeling of intracellular RNA in infected cells reveals no subgenomic RNA species smaller than the full-length genomic RNA, and this has been supported by Northern blot analysis (16, 81). Translation of ORF2 is directed by the IGR IRES, whereas ORF1 expression is mediated by an IRES within the 5′ untranslated region (5′UTR) (35, 67, 81, 82). Remarkably, the IGR IRES element can directly recruit the ribosome independently of eIFs or the initiator Met-tRNAi (29, 30, 54, 80). Furthermore, the IRES occupies the P-site of the ribosome to initiate translation from the ribosomal A-site encoding non-AUG codon (35, 81). Extensive biochemical and structural analyses from several groups have revealed that the IGR IRES mimics a tRNA that occupies the mRNA cleft of the ribosome and sets the ribosome into an elongation state (9, 29, 30, 34, 51, 55, 58, 68, 72, 83). Using reporter constructs, it has also been demonstrated that CrPV IGR IRES-mediated translation is active under a number of cellular conditions when the activity of the ternary complex eIF2-Met-tRNAi-GTP is compromised (17, 63, 78, 80). Because IGR IRES-mediated translation does not require initiation factors, the IRES can direct translation under a number of cellular conditions when the activity of multiple eIFs is compromised (12). Although the majority of studies have focused on the IGR IRES of CrPV, PSIV, and TSV, it is predicted that the IGRs within this viral family all function similarly based on the predicted conserved RNA structures (28, 36, 49). In contrast, only the 5′UTR IRES mechanism of RhPV has been studied in detail (77). Despite the wealth of studies on the mechanics of these IRES, the mechanisms that lead to translational shutoff during dicistrovirus infection and the interaction of dicistrovirus with the host machinery to allow virus production have been relatively unexplored.Open in a separate windowFIG. 1.Kinetics of host protein synthesis and viral protein expression in CrPV-infected Drosophila S2 cells. (A) Genomic arrangement of the CrPV RNA. The viral open reading frames, ORF1 and ORF2, that encode nonstructural (NS) and structural (S) proteins, respectively, are shown, which are separated by the intergenic internal ribosome entry site (IGR IRES). Translation of ORF1 and ORF2 is directed by the 5′UTR IRES and the IGR IRES, respectively. The first amino acid of ORF2 directed by the IGR IRES is encoded by a GCU alanine codon. (B) Autoradiography of protein lysates resolved on a SDS-12% PAGE gel. The protein lysates were collected from S2 cells that were untreated (U), mock infected (M), CrPV infected (5 FFU/cell), or thapsigargin treated (Tg; 0.4 μM) for the indicated times (h p.i.) and metabolically labeled with [35S]methionine for 30 min at each time point. The migration of proteins with known molecular masses is shown on the left. The expression of detectable nonstructural (NS) and structural (S) proteins is denoted. (C) Quantitation of host protein synthesis during CrPV infection. To calculate the host translation at each time point, the amount of radioactivity of the bands between 55 and 70 kDa in panel A was quantitated by using ImageQuant, and the percent translation was calculated at each time point of virus infection or thapsigargin treatment compared to the mock infection. Shown are averages (± the standard deviation) from at least three independent experiments. (D) Immunoblots of viral ORF1 and ORF2 during CrPV infection at various times postinfection (h p.i.). Antibodies were raised against peptides within ORF1 and ORF2. The expression of ORF1 and ORF2 was quantitated by a LI-COR Odyssey system, plotted against time of infection, and normalized to the amount of ORF1 or ORF2 expression at 6 h p.i. (100%). As a comparison, viral RNA synthesis as detected by Northern blot analysis (see Fig. Fig.2B)2B) is plotted on the same graph.Previous studies have shown that the CrPV and the related DCV can infect a wide range of insect hosts, including the Drosophila melanogaster S2 cell line (60, 69). In the present study, we have explored how CrPV infection leads to host translational shutoff in S2 cells. Two steps of translational initiation are targeted during CrPV infection. First, the interaction of deIF4G with deIF4E is disrupted early in infection and remains dissociated during the course of infection. Second, deIF2α is phosphorylated at a time that lags after the initial host translational shutoff during infection. Premature phosphorylation of deIF2α early in infection inhibited translation directed by the 5′UTR IRES, but IGR IRES-mediated translation remained relatively resistant. These results support the model that multiple mechanisms, including impairment of deIF4F complex formation and induction of deIF2α phosphorylation, contribute to the host translational shutoff during CrPV infection. The inhibition of host translation and the release of ribosomes from host mRNAs ensures that translation mediated by the 5′UTR and IGR IRES is optimal to produce sufficient viral nonstructural and structural proteins for proper CrPV maturation and assembly.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号