首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study presents a continuous-time model for the sylvatic transmission dynamics of two strains of Trypanosoma cruzi enzootic in North America, in order to study the role that adaptations of each strain to distinct modes of transmission (classical stercorarian transmission on the one hand, and vertical and oral transmission on the other) may play in the competition between the two strains. A deterministic model incorporating contact process saturation predicts competitive exclusion, and reproductive numbers for the infection provide a framework for evaluating the competition in terms of adaptive trade-off between distinct transmission modes. Results highlight the importance of oral transmission in mediating the competition between horizontal (stercorarian) and vertical transmission; its presence as a competing contact process advantages vertical transmission even without adaptation to oral transmission, but such adaptation appears necessary to explain the persistence of (vertically-adapted) T. cruzi IV in raccoons and woodrats in the southeastern United States.  相似文献   

2.
This study presents a continuous-time model for the sylvatic transmission dynamics of two strains of Trypanosoma cruzi enzootic in North America, in order to study the role that adaptations of each strain to distinct modes of transmission (classical stercorarian transmission on the one hand, and vertical and oral transmission on the other) may play in the competition between the two strains. A deterministic model incorporating contact process saturation predicts competitive exclusion, and reproductive numbers for the infection provide a framework for evaluating the competition in terms of adaptive trade-off between distinct transmission modes. Results highlight the importance of oral transmission in mediating the competition between horizontal (stercorarian) and vertical transmission; its presence as a competing contact process advantages vertical transmission even without adaptation to oral transmission, but such adaptation appears necessary to explain the persistence of (vertically-adapted) T. cruzi IV in raccoons and woodrats in the southeastern United States.  相似文献   

3.
ABSTRACT

The principle of competitive exclusion is well established for multiple populations competing for the same resource, and simple models for multistrain infection exhibit it as well when cross-immunity precludes coinfections. However, multiple hosts provide niches for different pathogens to occupy simultaneously. This is the case for the vector-borne parasite Trypanosoma cruzi in overlapping sylvatic transmission cycles in the Americas, where it is enzootic. This study uses cycles in the USA involving two different hosts but the same vector species as a context for the study of the mechanisms behind the communication between the two cycles. Vectors dispersing in search of new hosts may be considered to move between the two cycles (host switching) or, more simply, to divide their time between the two host types (host sharing). Analysis considers host switching as an intermediate case between isolated cycles and intermingled cycles (host sharing) in order to examine the role played by the host-switching rate in permitting coexistence of multiple strains in a single-host population. Results show that although the population dynamics (demographic equilibria) in host-switching models align well with those in the limiting models (host sharing or isolated cycles), infection dynamics differ significantly, in ways that sometimes illuminate the underlying epidemiology (such as differing host susceptibilities to infection) and sometimes reveal model limitations (such as host switching dominating the infection dynamics). Numerical work suggests that the model explains the trace presence of TcI in raccoons but not the more significant co-persistence observed in woodrats.  相似文献   

4.
Trypanosoma cruzi is a genetically and biologically diverse species. In the current study we determined T. cruzi infection dynamics in two common North American reservoirs, Virginia opossums (Didelphis virginiana) and raccoons (Procyon lotor). Based on previous molecular and culture data from naturally-exposed animals, we hypothesised that raccoons would have a longer patent period than opossums, and raccoons would be competent reservoirs for both genotypes T. cruzi I (TcI) and TcIIa, while opossums would only serve as hosts for TcI. Individuals (= 2 or 3) of each species were inoculated with 1 × 106 culture-derived T. cruzi trypomastigotes of TcIIa (North American (NA) – raccoon), TcI (NA – opossum), TcIIb (South American – human), or both TcI and TcIIa. Parasitemias in opossums gradually increased and declined rapidly, whereas parasitemias peaked sooner in raccoons and they maintained relatively high parasitemia for 5 weeks. Raccoons became infected with all three T. cruzi strains, while opossums only became infected with TcI and TcIIb. Although opossums were susceptible to TcIIb, infection dynamics were dramatically different compared with TcI. Opossums inoculated with TcIIb seroconverted, but parasitemia duration was short and only detectable by PCR. In addition, raccoons seroconverted sooner (3–7 days post inoculation) than opossums (10 days post inoculation). These data suggest that infection dynamics of various T. cruzi strains can differ considerably in different wildlife hosts.  相似文献   

5.
Numbers of the endangered Key Largo woodrat (KLWR; Neotoma floridana smalli) have been declining for at least 25 yr. The raccoon (Procyon lotor) roundworm, Baylisascaris procyonis, has been found to have an adverse effect on the survival of Alleghany woodrats (N. magister). High densities of raccoons can exacerbate this problem by increasing the amount of feces containing viable eggs of B. procyonis available to woodrats. In 2002, 64 fecal samples were collected and examined for eggs of B. procyonis from >32 raccoons within the KLWR's known range on Key Largo, Florida, USA. All samples were negative for eggs of B. procyonis. Raccoon density in this area was approximately 0.62 raccoons/ha. Despite this high density of raccoons, B. procyonis does not appear to be a threat to the KLWR population.  相似文献   

6.
The ability of raccoons (Procyon lotor), striped skunks (Mephitis mephitis) and opossums (Didelphis virginiana) to serve as reservoirs of Borrelia burgdorferi, the spirochetal agent of Lyme disease, was compared with that of white-footed mice (Peromyscus leucopus). Twenty-eight (28) medium-sized mammals and 34 white-footed mice were captured in Westchester County, New York (USA) in summer 1986. Animals were caged over pans of water for 1 to 2 days to recover engorged tick larvae (Ixodes dammini) that detached from the hosts after feeding. With the exception of mice, numbers of engorged tick larvae recovered exceeded those counted during initial examinations of the hosts by 30% (opossums) to nearly 90% (raccoons). Newly-molted nymphal ticks derived from the engorged larvae were examined for the presence of spirochetes by darkfield microscopy. Percentage infection was 5% (n = 22) for ticks from skunks and 14% (n = 191) for ticks from raccoons. None of 24 nymphs from larvae that fed on opossums survived long enough for spirochete examination. By comparison, 40% (n = 72) of nymphs from larvae which fed on white-footed mice were infected. Of the individual hosts from which molted nymphs had fed as larvae, 67% of mice, 33% of skunks, and 55% of raccoons produced spirochete-positive ticks.  相似文献   

7.
Despite the widespread use of aerial baiting to manage epizootics among free-ranging populations, particularly in rabies management, bait acceptance and seroconversion rates often are lower than required to eliminate spread of disease. Our objectives in this study, therefore, were to evaluate the performance of stratified bait distribution models derived from resource selection functions (RSF) on uptake of placebo rabies baits by raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana), as well as the probability of bait uptake as a function of proximity to bait distribution areas in fragmented agricultural ecosystems. Among 478 raccoons and 108 opossums evaluated for presence of Rhodamine B (RB) across 8 sites, only 26% of raccoons and 20% of opossums exhibited marking consistent with bait consumption 14–24 days post-baiting. The effective area treated, based on 90% kernel density estimators of marked individuals, ranged from 99–240 ha larger than bait distribution zones, with RB marked individuals captured up to 753m beyond the bait zone. Despite incorporation of RSF data into bait distribution models, no differences in uptake rates were observed between treatment and control sites. These data likely reflect the underlying constraints imposed by the loss and fragmentation of habitat on animal movement in heterogeneous landscapes, forcing individuals to optimize movements at coarse (i.e., patch-level) rather than fine spatial scales in highly fragmented environments. Our data also confirm that the probability of bait acceptance decreases with increasing distance from bait zone interiors, even within the zone itself. Thus, although bait acceptance was confirmed beyond bait zone boundaries, the proportion of vaccinated individuals may comprise a small minority of the population at increasing distances from baiting interiors. These data suggest focal baiting creates a buffered area of treated individuals around bait zones or bait stations, but repeated treatments may be needed to achieve sufficient uptake to eradicate disease.  相似文献   

8.
Equine protozoal myeloencephalitis is the most important protozoan disease of horses in North America and is usually caused by Sarcocystis neurona. Natural cases of encephalitis caused by S. neurona have been reported in skunks (Mephitis mephitis) and raccoons (Procyon lotor). Opossums (Didelphis spp.) are the only known definitive host. Sera from 24 striped skunks, 12 raccoons, and 7 opossums (D. virginiana) from Connecticut were examined for agglutinating antibodies to S. neurona using the S. neurona agglutination test (SAT) employing formalin-fixed merozoites as antigen. The SAT was validated for skunk sera using pre- and postinfection serum samples from 2 experimentally infected skunks. Of the 24 (46%) skunks 11 were positive, and all 12 raccoons were positive for S. neurona antibodies. None of the 7 opossums was positive for antibodies to S. neurona. These results suggest that exposure to sporocysts of S. neurona by intermediate hosts is high in Connecticut. The absence of antibodies in opossums collected from the same areas is most likely because of the absence of systemic infection in the definitive host.  相似文献   

9.
Clément Lagrue  Robert Poulin 《Oikos》2015,124(12):1639-1647
Theory predicts the bottom–up coupling of resource and consumer densities, and epidemiological models make the same prediction for host–parasite interactions. Empirical evidence that spatial variation in local host density drives parasite population density remains scarce, however. We test the coupling of consumer (parasite) and resource (host) populations using data from 310 populations of metazoan parasites infecting invertebrates and fish in New Zealand lakes, spanning a range of transmission modes. Both parasite density (no. parasites per m2) and intensity of infection (no. parasites per infected hosts) were quantified for each parasite population, and related to host density, spatial variability in host density and transmission mode (egg ingestion, contact transmission or trophic transmission). The results show that dense and temporally stable host populations are exploited by denser and more stable parasite populations. For parasites with multi‐host cycles, density of the ‘source’ host did not matter: only density of the current host affected parasite density at a given life stage. For contact‐transmitted parasites, intensity of infection decreased with increasing host density. Our results support the strong bottom–up coupling of consumer and resource densities, but also suggest that intraspecific competition among parasites may be weaker when hosts are abundant: high host density promotes greater parasite population density, but also reduces the number of conspecific parasites per individual host.  相似文献   

10.
In this paper we study the dynamical properties of models for botanical epidemics, especially for soil-borne fungal infection. The models develop several new concepts, involving dual sources of infection, host and inoculum dynamics. Epidemics are modelled with respect to the infection status of whole plants and plant organs (the G model) or to lesion density and size (the SW model). The infection can originate in two sources, either from the initial inoculum (primary infection) or by a direct transmission between plant tissue (secondary infection). The first term corresponds to the transmission through the free-living stages of macroparasites or an external source of infection in certain medical models, whereas the second term is equivalent to direct transmission between the hosts in microparasitic infections. The models allow for dynamics of host growth and inoculum decay. We show that the two models for root and lesion dynamics can be derived as special cases of a single generic model. Analytical and numerical methods are used to analyse the behaviour of the models for static, unlimited (exponential) and asymptotically limited host growth with and without secondary infection, and with and without decay of initial inoculum. The models are shown to exhibit a range of epidemic behaviour within single seasons that extends from simple monotonic increase with saturation of the host population, through temporary plateaux as the system switches from primary to secondary infection, to effective elimination of the pathogen by the host outgrowing the fungal infection. For certain conditions, the equilibrium values are shown to depend on initial conditions. These results have important consequences for the control of plant disease. They can be applied beyond soil-borne plant pathogens to mycorrhizal fungi and aerial pathogens while the principles of primary and secondary infection with host and inoculum dynamics may be used to link classical models for both microparasitic and macroparasitic infections.  相似文献   

11.
This review deals with transmission of Trypanosoma cruzi by the most important domestic vectors, blood transfusion and oral intake. Among the vectors, Triatoma infestans, Panstrongylus megistus, Rhodnius prolixus, Triatoma dimidiata, Triatoma brasiliensis, Triatoma pseudomaculata, Triatoma sordida, Triatoma maculata, Panstrongylus geniculatus, Rhodnius ecuadoriensis and Rhodnius pallescens can be highlighted. Transmission of Chagas infection, which has been brought under control in some countries in South and Central America, remains a great challenge, particularly considering that many endemic countries do not have control over blood donors. Even more concerning is the case of non-endemic countries that receive thousands of migrants from endemic areas that carry Chagas disease, such as the United States of America, in North America, Spain, in Europe, Japan, in Asia, and Australia, in Oceania. In the Brazilian Amazon Region, since Shaw et al. (1969) described the first acute cases of the disease caused by oral transmission, hundreds of acute cases of the disease due to oral transmission have been described in that region, which is today considered to be endemic for oral transmission. Several other outbreaks of acute Chagas disease by oral transmission have been described in different states of Brazil and in other South American countries.  相似文献   

12.
The spread of vector-borne diseases are greatly increased by a vector's ability to migrate. Recent studies of sylvatic Trypanosoma cruzi transmission have motivated the study of vector migration across geographic regions. Due to the natural mechanisms in which vector-borne diseases are transmitted between vectors and hosts, vector dispersal among different host populations is a critical factor in the ability of the parasite to be spread across large regions. In this study we develop a general framework for deriving large-scale, discrete-space migration rates from small-scale, continuous-space dispersal data. We identify three defining characteristics of vector migration: distance, preferred direction of dispersal, and strength of preference for a particular direction. We consider several migration scenarios in which vectors may have no preference for dispersal in a particular direction or may disperse with a preferred direction, such as northeast. We examine what effect preferred direction has on the migration rate, as well as use the local to global framework to calculate numerical estimates for vector migration rates for the primary vectors in the southeast U.S. and northern Mexico, Triatoma sanguisuga and Triatoma gerstaeckeri, based on biological and experimental data. Results from this study can be applied to metapopulation models for species that migrate.  相似文献   

13.
Besnoitia darlingi and Besnoitia neotomofelis are cyst-forming tissue apicomplexan parasites that use domestic cats (Felis domesticus) as definitive hosts and opossums (Didelphis virginiana ) and Southern Plains woodrats (Neotoma micropus) as intermediate hosts, respectively. Nothing is known about the prevalence of B. darlingi or B. neotomofelis in cats from the United States. Besnoitia darlingi infections have been reported in naturally infected opossums from many states in the United States, and B. neotomofelis infections have been reported from Southern Plains woodrats from Texas, but naturally infected cats have not been identified. The present study examined the IgG antibody response of cats to experimental infection (B. darlingi n = 1 cat; B. neotomofelis n = 3 cats). Samples from these cats were used to develop an indirect immunofluorescent antibody test (IFAT), which was then used to examine seroprevalence of IgG antibodies to tachyzoites of B. darlingi and B. neotomofelis in a population of domestic cats from Virginia (N = 232 cats) and Pennsylvania (N = 209). The serum from cats inoculated with B. darlingi or B. neotomofelis cross-reacted with each other's tachyzoites. The titers to heterologous tachyzoites were 1 to 3 dilutions lower than to homologous tachyzoites. Sera from B. darlingi- or B. neotomofelis-infected cats did not react with tachyzoites of Toxoplasma gondii or Neospora caninum or merozoites of Sarcocystis neurona using the IFAT. Antibodies to B. darlingi were found in 14% and 2% of cats from Virginia and Pennsylvania, respectively. Antibodies to B. neotomofelis were found in 5% and 4% of cats from Virginia and Pennsylvania, respectively. Nine cats from Virginia and 1 cat from Pennsylvania were positive for both.  相似文献   

14.
The American dog tick (Dermacentor variabilis) is an important vector of numerous pathogens of humans and animals. In this study, we analysed population genetic patterns in D. variabilis at scales of the host individual (infrapopulation) and population (component population) to elucidate fine-scale spatial and temporal factors influencing transmission dynamics. We genotyped D. variabilis collected from raccoons (Procyon lotor) trapped in two habitat patches (located in Indiana, USA) which were spatially proximate (5.9 km) and limited in size (10.48 Ha and 25.47 Ha, respectively). Despite the fine spatial sampling scale, our analyses revealed significant genetic differentiation amongst component populations and infrapopulations (within each component population), indicating a non-random pattern of encountering tick genotypes by raccoons at both scales evaluated. We found evidence for male-biased dispersal in the ticks themselves (in one component population) and an age-bias in spatial scales at which raccoons encountered ticks in the environment. At the scale of the component population, our analyses revealed that raccoons encountered ticks from a limited number of D. variabilis family groups, likely due to high reproductive variance amongst individual ticks. Finally, we found evidence for a temporal effect with raccoons encountering ticks in the environment as “clumps” of related individuals. While the genetic structure of parasite populations are increasingly being investigated at small spatial scales (e.g. the infrapopulation), our data reveal that genetic structuring can originate at scales below that of the infrapopulation, due to the interaction between temporal and biological factors affecting the encounter of parasites by individual hosts. Ultimately, our data indicate that genetic structure in parasites must be viewed as a consequence of both spatial and temporal variance in host-parasite interactions, which in turn are driven by demographic factors related to both the host and parasite.  相似文献   

15.
From June 1993 through June 1996, 2,260 adult, 4,426 nymphal, and 2,178 larval lone star ticks Amblyomma americanum (L.) were collected in Missouri from vertebrate hosts and by dragging a cloth over vegetation. Prevalence, mean intensity, and relative abundance of each stage varied among hosts. The relative abundance of adult lone star ticks was highest on white-tailed deer, but this stage was also collected from raccoons, opossum, red fox, coyotes, and wild turkey. Nymphs were collected from gray squirrels, eastern cottontail rabbits, opossums, red fox, Carolina wren, and bobwhite quail, but the highest relative abundance occurred on wild turkey, white-tailed deer, and raccoons. Eastern cottontail rabbits, white-tailed deer, raccoons, and squirrels had the highest relative abundance of larval lone star ticks, but they were also found on opossums and wild turkey. The activity of adult lone star ticks was greatest from May through July. The activity for nymphs was highest from May through August, and for larvae, July through September.  相似文献   

16.
Baylisascaris procyonis is a nematode of significant concern to public and domestic animal health as well as wildlife management. The population genetics of B. procyonis is poorly understood. To gain insights into patterns of genetic diversity within (infrapopulation level) and among (component population level) raccoon (Procyon lotor) hosts, and specifically to assess the relative importance of indirect and direct transmission of the parasite for explaining observed population structure, we collected 69 B. procyonis from 17 wild raccoons inhabiting five counties in Missouri and Arkansas, USA. Informative regions of mitochondrial (CO1, CO2) and nuclear (28S, ITS2) genes were amplified and the distribution and genetic variability of these genes were assessed within and across raccoons. Concatenation of the CO1 and CO2 mtDNA sequences resulted in 5 unique haplotypes, with haplotype diversity 0.456?±?0.068. The most common haplotype occurred in 94% of raccoons and 72.5% of B. procyonis. Sequences for 28S rDNA revealed four unique nuclear genotypes, the most common found in 100% of raccoons and 82.6% of B. procyonis. ITS2 genotypes were assessed using fragment analysis, and there was a 1:1 correspondence between 28S and ITS-2 genotypes. Infrapopulation variation in haplotypes and genotypes was high and virtually all hosts infected with multiple sequenced nematodes also harbored multiple haplotypes and genotypes. There was a positive relationship between the size of the analyzed infrapopulation (i.e., the number of nematodes analyzed) and the number of haplotypes identified in an individual. Collectively this work emphasizes the importance of indirect transmission in the lifecycle to this parasite.  相似文献   

17.
Abstract: Passive treatment of raccoons (Procyon lotor) through distribution of vaccine-laden baits recently has emerged as a potential solution to address health and economic conflicts associated with raccoon rabies and may have applications in the management of other pathogens carried by raccoons if frequent bait deployments are used. Consumption of baits by nontarget species reduces the efficiency in which baits can be used to manage wildlife disease, although no study has explicitly evaluated the influence of bait competitor density on the ability to treat raccoons. Our objectives were to use the biomarker Rhodamine B (RB) to 1) evaluate patterns of raccoon bait acceptance as a function of competition with Virginia opossums (Didelphis virginiana), the dominant bait competitor; 2) characterize attributes of opossum bait acceptance to improve efficiency of raccoon treatment; and 3) evaluate the effect of repeated bait exposure on rates of bait acceptance as may be required in the management of wildlife disease issues beyond rabies. Identifying bait consumption by individuals based on the presence of an RB mark in a sample of whiskers, we used logistic regression to model raccoon and opossum bait acceptance as a function of bait availability, previous exposure to baits, demographic attributes, and an index of time spent in the baited area (residency index). For both raccoons and opossums, the best measure of bait availability was the variable number of baits per opossum. The most parsimonious logistic regression model for raccoon bait acceptance included the variables baits per opossum, exposure history, and residency index. The strength of the variable baits per opossum relative to competing measures of bait availability indicated bait consumption by opossums significantly limited the ability to treat raccoons. The most parsimonious model for opossum acceptance was composed of the variables baits per opossum, sex, weight, residency index, baits per opossum X sex, and weight X sex. Patterns of opossum bait acceptance likely were driven by effects of bait availability and sex-dependent differences in movement. Our results call attention to the importance of bait competition in limiting the ability to effectively treat raccoon populations through distribution of baits and suggest managers incorporate information on density of bait competitors, particularly opossums, in allocation of baits.  相似文献   

18.
Male-killing bacteria are bacteria that are transmitted vertically through the females of their insect hosts. They can distort the sex ratio of their hosts by killing infected male offspring. In nature, male-killing endosymbionts (male killers) often have a 100% efficient vertical transmission, and multiple male-killing bacteria infecting a single population are observed. We use different model formalisms to study these observations. In mean-field models a male killer with perfect transmission drives the host population to extinction, and coexistence between multiple male killers within one population is impossible; however, in spatially explicit models, both phenomena are readily observed. We show how the spatial pattern formation underlies these results. In the case of high transmission efficiencies, waves with a high density of male killers alternate with waves of mainly wild-type hosts. The male killers cause local extinction, but this creates an opportunity for uninfected hosts to re-invade these areas. Spatial pattern formation also creates an opportunity for two male killers to coexist within one population: different strains create spatial regions that are qualitatively different; these areas then serve as different niches, making coexistence possible.  相似文献   

19.
North American raccoons (Procyon lotor) have been introduced to several European countries, where they may represent a sanitary threat as hosts of several pathogens such as the zoonotic ascarid Baylisascaris procyonis. We carried out parasitological analysis on raccoons introduced to Italy to verify whether the species had carried along B. procyonis or any other gastro-intestinal helminths that may threaten humans, livestock or native wildlife. We examined 64 raccoons culled in Northern Italy during control activities and 3 roadkills opportunistically sampled from a separate population located in central Italy. Helminths were collected from the gastro-intestinal tract through standard parasitological techniques and identified based on a combination of morphology and molecular methods. Overall, examined raccoons showed a poor parasitic fauna, with almost 30% of individuals free of any helminth infection. The most prevalent species were the nematodes Strongyloides procyonis (26.9%), Aonchotheca putorii (25.4%) and Porrocaecum sp. (19.4%). Plagiorchis sp. trematodes were also common (13.4%), whereas cestodes were scarcely represented. With the exception of S. procyonis introduced from North America, all the other identified taxa have either a Eurasian or a wide Holarctic distribution. Despite not finding any B. procyonis in the examined raccoons, passive surveillance for this parasite should be implemented, especially in Tuscany, since the limited host sample examined in the present survey does not allow to exclude its presence.  相似文献   

20.

Background

An important factor influencing the transmission dynamics of vector-borne diseases is the contribution of hosts with different parasitemia (no. of parasites per ml of blood) to the infected vector population. Today, estimation of this contribution is often impractical since it relies exclusively on limited-scale xenodiagnostic or artificial feeding experiments (i.e., measuring the proportion of vectors that become infected after feeding on infected blood/host).

Methodology

We developed a novel mechanistic model that facilitates the quantification of the contribution of hosts with different parasitemias to the infection of the vectors from data on the distribution of these parasitemias within the host population. We applied the model to an ample data set of Leishmania donovani carriers, the causative agent of visceral leishmaniasis in Ethiopia.

Results

Calculations facilitated by the model quantified the host parasitemias that are mostly responsible for the infection of vector, the sand fly Phlebotomus orientalis. Our findings indicate that a 3.2% of the most infected people were responsible for the infection of between 53% and 79% (mean – 62%) of the infected sand fly vector population.

Significance

Our modeling framework can easily be extended to facilitate the calculation of the contribution of other host groups (such as different host species, hosts with different ages) to the infected vector population. Identifying the hosts that contribute most towards infection of the vectors is crucial for understanding the transmission dynamics, and planning targeted intervention policy of visceral leishmaniasis as well as other vector borne infectious diseases (e.g., West Nile Fever).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号