首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
3.
4.
5.
In Schizosaccharomyces pombe , the Ataxia Telangiectasia-mutated (Atm)/Atm and Rad 3 Related (Atr) homologue Rad3 is an essential regulator of the response to DNA damage and stalled replication forks. Rad3 activates the downstream kinases Chk1 and Cds1. These kinases in turn inhibit cell cycle progression by mediating Cdc2 phosphorylation. Studies in both yeast and mammalian cells suggest additional roles for Rad3 in regulating cellular responses to environmental stress. In S. pombe , cellular responses to various environmental stresses are regulated primarily through the stress-activated MAP kinase p38 homologue Sty1. An important function of Sty1 is to drive cells rapidly through mitosis by facilitating the accumulation of Cdc25. Interestingly, Sty1 is activated simultaneously with Rad3 following exposure to UV radiation or ionizing radiation (IR). Similarly, exposure to environmental stresses induces the expression of rad3 +, cds1 + and other checkpoint regulator genes. It is currently unclear how the pathways regulated by Sty1 and Rad3 and their opposing effects on mitosis are integrated. Recent studies suggest that Sty1 and Rad3 function together to regulate the expression of several stress response genes following exposure to IR. In this review, we discuss current knowledge on the interaction of Rad3/Atm and Sty1/p38 in regulating cellular responses to environmental stress and DNA damage.  相似文献   

6.
Checkpoints operate during meiosis to ensure the completion of DNA synthesis and programmed recombination before the initiation of meiotic divisions. Studies in the fission yeast Schizosaccharomyces pombe suggest that the meiotic response to DNA damage due to a failed replication checkpoint response differs substantially from the vegetative response, and may be influenced by the presence of homologous chromosomes. The checkpoint responses to DNA damage during fission yeast meiosis are not well characterized. Here we report that DNA damage induced during meiotic S-phase does not activate checkpoint arrest. We also find that in wild-type cells, markers for DNA breaks can persist at least to the first meiotic division. We also observe increased spontaneous S-phase damage in checkpoint mutants, which is repaired by recombination without activating checkpoint arrest. Our results suggest that fission yeast meiosis is exceptionally tolerant of DNA damage, and that some forms of spontaneous S-phase damage can be repaired by recombination without activating checkpoint arrest.  相似文献   

7.
8.
9.
A checkpoint responding to DNA damage in G2 results in a delay in the onset of mitosis through inhibition of p34cdc2 kinase activity via maintenance of inhibitory tyrosine phosphorylation. Genetic analyses of this checkpoint in fission yeast have identified single alleles of several genes, suggesting these screens are not yet saturating, and hence further genes await identification. To fully understand the complexity of this checkpoint it will be necessary to define all the genes involved. To this end we screened for new mutants defective in the ability to delay mitosis in the presence of DNA-damaging agents. Twenty-four mutants were isolated that were defective in UV-C and MMS-induced checkpoint delay. Amongst these mutants was an allele of cut5 that was also defective in the checkpoint responses. We show here, contrary to previous reports, that the UV-C induced checkpoint response is defective in cut5 mutants. Therefore, like all other checkpoint mutants, cut5 is required for G2 checkpoint arrest following DNA damage, regardless of the nature of the lesions involved. Received: 24 July 1998 / Accepted: 14 September 1998  相似文献   

10.
11.
Mre11, Rad50, and Nbs1 form a conserved heterotrimeric complex that is involved in recombination and DNA damage checkpoints. Mutations in this complex disrupt the S-phase DNA damage checkpoint, the checkpoint which slows replication in response to DNA damage, and cause chromosome instability and cancer in humans. However, how these proteins function and specifically where they act in the checkpoint signaling pathway remain crucial questions. We identified fission yeast Nbs1 by using a comparative genomic approach and showed that the genes for human Nbs1 and fission yeast Nbs1 and that for their budding yeast counterpart, Xrs2, are members of an evolutionarily related but rapidly diverging gene family. Fission yeast Nbs1, Rad32 (the homolog of Mre11), and Rad50 are involved in DNA damage repair, telomere regulation, and the S-phase DNA damage checkpoint. However, they are not required for G(2) DNA damage checkpoint. Our results suggest that a complex of Rad32, Rad50, and Nbs1 acts specifically in the S-phase branch of the DNA damage checkpoint and is not involved in general DNA damage recognition or signaling.  相似文献   

12.
13.
The hus1+ gene is one of six fission yeast genes, termed the checkpoint rad genes, which are essential for both the S-M and DNA damage checkpoints. Classical genetics suggests that these genes are required for activation of the PI-3 kinase-related (PIK-R) protein, Rad3p. Using a dominant negative allele of hus1+, we have demonstrated a genetic interaction between hus1+ and another checkpoint rad gene, rad1+. Hus1p and Rad1p form a stable complex in wild-type fission yeast, and the formation of this complex is dependent on a third checkpoint rad gene, rad9+, suggesting that these three proteins may exist in a discrete complex in the absence of checkpoint activation. Hus1p is phosphorylated in response to DNA damage, and this requires rad3+ and each of the other checkpoint rad genes. Although there is no gene related to hus1+ in the Saccharomyces cerevisiae genome, we have identified closely related mouse and human genes, suggesting that aspects of the checkpoint control mechanism are conserved between fission yeast and higher eukaryotes.  相似文献   

14.
15.
Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1(-) fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G(2)/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.  相似文献   

16.
When inappropriate DNA structures arise, they are sensed by DNA structure-dependent checkpoint pathways and subsequently repaired. Recruitment of checkpoint proteins to such structures precedes recruitment of proteins involved in DNA metabolism. Thus, checkpoints can regulate DNA metabolism. We show that fission yeast Rad9, a 9-1-1 heterotrimeric checkpoint-clamp component, is phosphorylated by Hsk1(Cdc7), the Schizosaccharomyces pombe?Dbf4-dependent kinase (DDK) homolog, in response to replication-induced DNA damage. Phosphorylation of Rad9 disrupts its interaction with replication protein A (RPA) and is dependent on 9-1-1 chromatin loading, the Rad9-associated protein Rad4/Cut5(TopBP1), and prior phosphorylation by Rad3(ATR). rad9 mutants defective in DDK phosphorylation show wild-type checkpoint responses but abnormal DNA repair protein foci and decreased viability after replication stress. We propose that Rad9 phosphorylation by DDK releases Rad9 from DNA damage sites to facilitate DNA repair.  相似文献   

17.
18.
Haghnazari E  Heyer WD 《DNA Repair》2004,3(7):769-776
The DNA damage checkpoint pathway and the MAP kinase pathway respond to various forms of environmental as well as endogenous stresses through signal transduction mechanisms involving protein kinases. Both pathways are intertwined in mammalian cells, but potential crosstalk between these two pathways in budding yeast has not been examined yet. We show that the Rad53 checkpoint kinase and the Hog1 MAP kinase of Saccharomyces cerevisiae become phosphorylated upon exposure to hydrogen peroxide, indicative of activation of the DNA damage checkpoint and MAP kinase pathways in response to oxidative stress. Rad53 kinase is equally activated in wild type and in hog1-Delta cells. Likewise, the activation of Hog1 MAP kinase is not dependent on Mec1 kinase, the central checkpoint kinase in budding yeast. Mutants in either pathway are sensitive to hydrogen peroxide and the double mutants exhibit a near perfectly additive phenotype. These data demonstrate that the DNA damage checkpoint pathway and the MAP kinase pathway respond to oxidative stress independently of each other and suggest that these two stress signaling pathways are activated by different types of insults induced by hydrogen peroxide.  相似文献   

19.
20.
Nucleoside analogs are frequently used to label newly synthesized DNA. These analogs are toxic in many cells, with the exception of the budding yeast. We show that Schizosaccharomyces pombe behaves similarly to metazoans in response to analogs 5-bromo-2′-deoxyuridine (BrdU) and 5-ethynyl-2′-deoxyuridine (EdU). Incorporation causes DNA damage that activates the damage checkpoint kinase Chk1 and sensitizes cells to UV light and other DNA-damaging drugs. Replication checkpoint mutant cds1Δ shows increased DNA damage response after exposure. Finally, we demonstrate that the response to BrdU is influenced by the ribonucleotide reductase inhibitor, Spd1, suggesting that BrdU causes dNTP pool imbalance in fission yeast, as in metazoans. Consistent with this, we show that excess thymidine induces G1 arrest in wild-type fission yeast expressing thymidine kinase. Thus, fission yeast responds to nucleoside analogs similarly to mammalian cells, which has implications for their use in replication and damage research, as well as for dNTP metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号