首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spider Mites Avoid Plants with Predators   总被引:1,自引:0,他引:1  
While searching for food, prey can use cues associated with their predators to select patches with a reduced predation risk. In many cases, odours indicate the presence of both food and predators. Spider mites are known to use odours to locate food and mates, but also to avoid interspecific competitors. We studied the response of the two-spotted spider mite, Tetranychus urticae, to cues associated with the presence of their predators, the phytoseiid Phytoseiulus persimilis. We found that the spider mites strongly avoid plants defended by this predator, but do not avoid plants with another predatory mite, Neoseiulus californicus. Since P. persimilis is commonly used in the greenhouse where our strain of T. urticae was collected and strains of this pest are known to adapt to greenhouse environments, we hypothesize that there has been selection on the pest to recognize its enemy. We further hypothesize that there has been no selection to recognize N. californicus, as it has not been used against two-spotted spider mites in the greenhouse where our spider mites were collected. We discuss the implications of avoidance of predation by spider mites and non-lethal effects of predators for biological control of this pest in greenhouses.  相似文献   

2.
We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size.  相似文献   

3.
The efficacy of Neoseiulus californicus (a generalist predatory mite) for the biological control of Tetranychus urticae, was compared to release of Phytoseiulus persimilis (a specialist predatory mite) and an acaricide treatment in sweet pepper plants grown in greenhouse tunnels in a hot and arid climate. To ensure uniform pest populations, spider mites were spread on pepper plants in two seasons; a natural infestation occurred in one season. Predators were released prophylactically and curatively in separate tunnels when plants were artificially infested with spider mites, and at low and moderate spider mite populations when infestations occurred naturally. Although spider mite populations did not establish well the first year, fewer spider mites were recovered with release of N. californicus than with all other treatments. In the second year, spider mites established and the prophylactic release of N. californicus compared favorably with the acaricide-treated plants. In the course of monitoring arthropod populations, we observed a significant reduction in western flower thrips (Frankliniella occidentalis) populations in tunnels treated with N. californicus as compared with non-treated control tunnels. Our field trials validate results obtained from potted-plant experiments and confirm that N. californicus is a superior spider mite predator at high temperatures and low humidities.  相似文献   

4.
Greenhouse and field experiments were conducted from 2003 to 2005 to determine the effectiveness of two predatory mite species, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor), and a reduced-risk miticide, Acramite 50 WP (bifenazate), for control of twospotted spider mite, Tetranychus urticae Koch, in strawberries (Fragaria x ananassa Duchesne). In greenhouse tests, three treatments consisting of releases of P. persimilis, N. californicus, and an untreated control were evaluated. Both species of predatory mites significantly reduced twospotted spider mite numbers below those found in the control during the first 3 wk of evaluation. However, during week 4, twospotted spider mite numbers on the plants treated with P. persimilis increased and did not differ significantly from the control. Field studies used releases of P. persimilis and N. californicus, applications of Acramite, and untreated control plots. Both N. californicus and P. persimilis significantly reduced populations of twospotted spider mite below numbers recorded in the control plots. During the 2003-2004 field season P. persimilis took longer than N. californicus to bring the twospotted spider mite population under control (< 10 mites per leaflet). Acramite was effective in reducing twospotted spider mite populations below 10 mites per leaflet during the 2003-2004 field season but not during the 2004-2005 field season, possibly because of a late application. These findings indicate that N. californicus releases and properly timed Acramite applications are promising options for twospotted spider mite control in strawberries for growers in north Florida and other areas of the southeast.  相似文献   

5.
The objective of this study was to determine whether differences in hairiness of tomato plants affect the functional and numerical response of the predator Neoseiulus californicus McGregor attacking the two-spotted spider mite, Tetranychus urticae Koch. Two tomato hybrids with different density of glandular hairs were used. The functional response was measured by offering eggs and adults of T urticae at densities ranging from 4 to 64 items per tomato leaflet (surface ca. 6.3 cm2); eggs were offered to predator protonymphs and deutonymphs, adult spider mites to adult predators. The number of spider mites eaten as a function of initial density was fitted to the disc equation. Predator densities were regressed against initial prey densities to analyze the numerical response. The number of eggs and adults of T. urticae eaten by N. californicus was extremely low in both hybrids. The nymphal stage of N. californicus and prey density had a significant effect on the number of T urticae eggs eaten by the predator, while hybrid had no effect. The functional response fitted reasonably well to the Holling model. The handling time (Th) and the attack rate (a) were very similar among the two hybrids. The numerical response indicated that the absolute density of predators increased with changes in spider mite densities but the relative predator/prey density decreased in both hybrids. Tomato hairiness prevented N. californicus from exhibiting a strong numerical response and the predator functional response was much lower than observed in other host plants and other phytoseiids. This result shows the need to consider plant attributes as an essential and interactive component of biological control practices.  相似文献   

6.
The ‘Mikulov’ strain of the predatory mite Typhlodromus pyri Scheuten from south Moravian vineyards was released on cultivated strawberries infested with the two-spotted spider mite, Tetranychus urticae Koch. The strawberries were grown in field plantations and under glass. Typhlodromus pyri on vine shoots were successfully introduced into the field strawberry plantation but they produced no demonstrable control of the spider mites and they eventually declined in density with their prey. In contrast, T. pyri gave good control of spider mites in the glasshouse despite the occurrence of low humidity and water stress of the plants.  相似文献   

7.
Bifenazate is a novel carbazate acaricide discovered by Uniroyal Chemical (now Chemtura Corporation) for the control of phytophagous mites infesting agricultural and ornamental crops. Its acaricidal activity and that of its principal active metabolite, diazene, were characterized. Bifenazate and diazene had high toxicity and specificity both orally and topically to all life stages of Tetranychus urticae and Panonychus citri. Acute poisoning was observed with no temperature dependency. No cross-resistance was found to mites resistant to several other classes of acaricides, such as tebufenpyrad, etoxazole, fenbutatin oxide and dicofol. Bifenazate remained effective for a long time with only about a 10% loss of efficacy on T. urticae after 1 month of application in the field. All stages of development of the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, survived treatment by both bifenazate and diazene. When adult females of the two predatory mite species were treated with either bifenazate or diazene, they showed a normal level of fecundity and predatory activity in the laboratory, effectively suppressing spider mite population growth. Even when the predators were fed spider mite eggs that had been treated previously with bifenazate, they survived. These findings indicate that bifenazate is a very useful acaricide giving high efficacy, long-lasting activity and excellent selectivity for spider mites. It is, therefore, concluded that bifenazate is an ideal compound for controlling these pest mites.  相似文献   

8.
The theory of intraguild predation (IGP) largely studies effects on equilibrium densities of predators and prey, while experiments mostly concern transient dynamics. We studied the effects of an intraguild (IG) predator, the bug Orius laevigatus, on the population dynamics of IG-prey, the predatory mite Phytoseiulus persimilis, and a shared prey, the phytophagous two-spotted spider mite Tetranychus urticae, as well as on the performance of cucumber plants in a greenhouse. The interaction of the predatory mite and the spider mite is highly unstable, and ends either by herbivores overexploiting the plant or predators exterminating the herbivores. We studied the effect of IGP on the transient dynamics of this system, and compared the dynamics with that predicted by a simple population-dynamical model with IGP added. Behavioural studies showed that the predatory bug and the predatory mite were both attracted to plants infested by spider mites and that the two predators did not avoid plants occupied by the other predator. Observations on foraging behaviour of the predatory bug showed that it attacks and kills large numbers of predatory mites and spider mites. The model predicts strong effects of predation and prey preference by the predatory bugs on the dynamics of predatory mites and spider mites. However, experiments in which the predatory bug was added to populations of predatory mites and spider mites had little or no effect on numbers of both mite species, and cucumber plant and fruit weight.  相似文献   

9.
Are Neoseiulus californicus (McGregor) and Neoseiulus fallacis (Garman) both specialized predators of spider mites? As part of a series of studies made to answer this question, responses by larvae were assessed in treatments either with or without prey (Tetranychus urticae Koch) and with either moderate or high relative humidities (a factor that may distinguish between these two morphologically similar species). Neoseiulus fallacis larvae had more feeding, ambulatory activity and jerking (intra– or interspecific communication) in all treatments than N. californicus. The percent egg hatch was less and development took longer for N. fallacis larvae than for N. californicus larvae without prey at moderate humidity levels. The nymphs of both mites showed similar drives to feed 1–2>h after being held 12–48 h without food and then given eggs of T. urticae. Neoseiulus californicus nymphs fed more on the eggs of either phytoseiid and thereafter became adults than did N. fallacis nymphs. These data indicate that N. californicus may be a less specialized predator of spider mites than is N. fallacis.  相似文献   

10.
The goal of this study was to evaluate spider mite control efficacy of two dry-adapted strains of Neoseiulus californicus. Performance of these strains were compared to a commercial strain of Phytoseiulus persimilis on whole cucumber, pepper and strawberry plants infested with Tetranychus urticae at 50 +/- 5% RH. Under these dry conditions predators' performance was very different on each host plant. On cucumber, spider mite suppression was not attained by any of the three predators, plants 'burnt out' within 4 weeks of spider mite infestation. On strawberry, all predators satisfactorily suppressed spider mites yet they differed in short term efficacy and persistence. Phytoseiulus persimilis suppressed the spider mites more rapidly than did the BOKU and SI N. californicus strains. Both N. californicus strains persisted longer than did P. persimilis. The BOKU strain was superior to SI in population density reached, efficacy in spider mite suppression and persistence. On pepper, in the first 2 weeks of the experiment the BOKU strain was similar to P. persimilis and more efficacious in spider mite suppression than strain SI. Four weeks into the experiment the efficacy of P. persimilis dropped dramatically and was inferior to the SI and BOKU strains. Overall, mean predator density was highest on plants harbouring the BOKU strain, lowest on plants with P. persimilis and intermediate on plants with the SI strain. Implications for biocontrol of spider mites using phytoseiid species under dry conditions are discussed.  相似文献   

11.
Naturally occurring beneficials, such as the phytoseiid mite Amblyseius californicus McGregor and the insects Stethorus punctillum Weise, Conwentzia psociformis (Curtis) and others, controlled Tetranychus urticae Koch in 11 strawberry plots near Valencia, Spain, during 1989–1992. The population levels of spider mites in 17 subplots under biological control were low or moderate, usually below 3000 mite days and similar to seven subplots with chemical control. In most of the crops A. californicus was the main predator, acting either alone or together with other beneficials. Predaceous insects colonized the crop when tetranychids reached medium to high levels. For levels above one spider mite per leaflet, a ratio of one A. californicus per five to ten T. urticae resulted in a decline of the prey population in the following sample (1–2 weeks later). These results suggest that naturally occurring predators are able to control spider mites and maintain them below damaging levels in strawberry crops from the Valencia area.  相似文献   

12.
Feltiella acarisuga (Vallot) is a common gall midge that feeds on many species of spider mites. Predation and all major biological and life table parameters of F. acarisuga were determined using eggs of the twospotted spider mite, Tetranychus urticae (Koch), as prey under laboratory conditions (26.7 degrees C, 85% RH, and 14:10 [L:D] h). First-, second-, and third-instar F. acarisuga larvae consumed an average of 37.8, 60.4, and 87.2 T. urticae eggs per day, respectively. Larvae consumed a total of 185.4 eggs each from first to third instars, and female larvae consumed 201.2 spider mite eggs, 18.6% more than male larvae. Developmental time of F. acarisuga was 2.6, 7.8, and 7.0 d for eggs, larvae, and pupae, respectively, with an average of 17.4 d from oviposition to adult emergence. Female immatures developed slightly slower ( approximately 1 d) than males. Adult longevities of F. acarisuga averaged 13.0 d. After an average of 1.1-d preoviposition period, each female laid an average of 33.3 eggs during her lifespan. The intrinsic rate of natural population increase (r), net reproductive rates (R(o)), gross reproductive rate (Sigmam(x)), generation time (T), doubling time (DT), and the finite rate of increase (lambda) of F. acarisuga were estimated by life table analysis at 0.1155/d, 15.25 eggs per female, 21.69 eggs per female, 23.6 d, 6.0 d, and 1.1225/d, respectively. Because the r value of F. acarisuga is relatively lower than that of T. urticae, frequent release of F. acarisuga may be necessary to suppress populations of T. urticae.  相似文献   

13.
The functional and numerical responses of the predatory mite Neoseiulus californicus to eggs and protonymphs of Tetranychus urticae were studied on excised strawberry leaflet discs under laboratory conditions (25 ± 1°C, 75–85% RH and 16L : 8D). Four strains of the phytoseiid were compared: three originated from a long-term mass-rearing with different food (T. urticae, Dermatophagoides farinae and Quercus spp. pollen) and under controlled conditions, while the fourth was directly collected from a natural environment and therefore considered a wild strain. The different nutritional histories affected the responses of N. californicus on tetranychids. On the whole, the wild strain gave better performance. When egg prey was administered this strain and the one mass-reared on two-spotted spider mites showed similar functional as well as numerical responses; on the contrary, when protonymphs were furnished, the wild strain did not differ from that mass-reared on pollen. The strain previously fed on house dust mites gave the worst performance and also showed the lowest percentages of females in the progeny. The functional responses obtained were predominantly type II curves. In all cases considered, no stored energy was allocated for reproduction and, with the exception of the wild strain on eggs, the prey was exploited less efficiently as the consumption increased. In spite of the differences evidenced in this experiment all strains were characterized by high predation and oviposition rates. Thus the results obtained suggest no drawbacks in the use of mass-reared N. californicus as biocontrol agents. © Rapid Science Ltd. 1998  相似文献   

14.
徐学农 《昆虫知识》2011,48(3):579-587
西花蓟马Frankliniella occidentalis(Pergande)和二斑叶螨Tetranychus urticae Koch是温室花卉与蔬菜上的重要害虫(螨)。植物常被两者同时危害。黄瓜新小绥螨Amblyseius cucumeris(Oudemans)是世界上广泛应用的温室蓟马的生物防治物,有时也被用来防治二斑叶螨。本研究中,在人工气候室盆栽条件下利用黄瓜新小绥螨防治西花蓟马和/或二斑叶螨。结果显示,当每豆株上接入10或20头二斑叶螨时,按照1∶4的益害比释放黄瓜新小绥螨可有效控制二斑叶螨。同样密度比的情况下,5和10头黄瓜新小绥螨的释放量可显著控制西花蓟马的接入量。二斑叶螨密度的增加没有显著影响到黄瓜新小绥螨对西花蓟马的控制作用。西花蓟马可捕食黄瓜新小绥螨的卵,日捕食量达1.2粒。本文对利用黄瓜新小绥螨防治温室中西花蓟马进行了讨论。  相似文献   

15.
Chemical, biological and integrated programmes for the control of two-spotted spider mite, Tetranychus urticae, were compared on dwarf hops in 1997 and 1998. In both years integrated control, which consisted of an application of the ovicidal acaricide clofentezine followed by a release of the predatory mite Phytoseiulus persimilis at 10 individuals per plant, was the most effective treatment. Similar numbers of spider mites were recorded on plots that were treated with P. persimilis only or with a single application of the acaricide tebufenpyrad, and plots with either of these treatments had higher levels of infestation than the plots under integrated control. The highest numbers of spider mites were found on the untreated plots. This study indicates that integrated control of T. urticae using clofentezine in conjunction with P. persimilis is likely to be more effective than an approach based on chemical or biological measures only. It is suggested that an integrated system would have the added benefit over a pesticide-only programme of reducing pressure on the pest for the selection of strains resistant to acaricides.  相似文献   

16.
Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.  相似文献   

17.
Life history and reproductive parameters of the generalist predatory mite Euseius (Amblyseius) finlandicus (Oudemans) were studied in the laboratory at 25 +/- 1 degrees C, with a 16L:8D photoperiod and 60 +/- 15% RH, to investigate its response to different food sources: an eriophyid mite Aceria sp., tulip pollen Tulipa gesnerana L., and two-spotted spider mite Tetranychus urticae Koch. Total developmental time of the immature stages was the shortest on eriophyid mites, followed by pollen, and then spider mites. Fecundity was highest on pollen (43.69 eggs; 1.63 eggs/female/day), then eriophyid mites (39.73 eggs; 1.37 eggs/female/day) and lowest on spider mites (18.16 eggs; 0.80 eggs/female/day). Intrinsic rate of increase (Rm), net reproductive rate (Ro) and finite rate of increase (lambda) followed the same pattern [pollen (0.168, 27.96 and 1.183, respectively), eriophyid mites (0.153, 20.81 and 1.167), spider mites (0.110, 9.44 and 1.119)]. Mean generation time (days) was the shortest on pollen (19.90), followed by eriophyid mites (20.02), and then spider mites (20.59). Average spider mite larvae consumed by E. finlandicus during immature stages were 9.18 for males and 11.85 for females. Adult E. finlandicus females consumed an average of 166.38 spider mite protonymphs during adult stage compared to an average of 66.55 by males. The number of prey protonymphs consumed per day by females was highest in the oviposition period, lower in the pre-oviposition period and the lowest in the post-oviposition period. The eriophyid mite as a prey recorded the shortest developmental time, while pollen as food recorded the highest oviposition rate in E. finlandicus. The potential of this predator as a biocontrol agent against T. urticae is discussed.  相似文献   

18.
Arthropods use odours associated with the presence of their food, enemies and competitors when searching for patches. Responses to these odours therefore determine the spatial distribution of animals, and are decisive for the occurrence and strength of interactions among species. Therefore, a logical first step in studying food web interactions is the analysis of behaviour of individuals that are searching for patches of food. We followed this approach when studying interactions in an artificial food web occurring on greenhouse cucumber in the Netherlands. In an earlier paper we found that one of the predators of the food web, the predatory mite Phytoseiulus persimilis Athias-Henriot, used to control spider mites, discriminates between odours from plants with spider mites, Tetranychus urticae Koch, and plants with spider mites plus conspecific predators. The odours used for discrimination are produced by adult prey in response to the presence of predators, and probably serve as an alarm pheromone to warn related spider mites. Other predator species may also trigger production of this alarm pheromone, which P. persimilis could use in turn to avoid plants with heterospecific predators. We therefore studied the response of the latter to odours from plants with spider mites and 3 other predator species, i.e. the generalist predatory bug Orius laevigatus (Fieber), the polyphagous thrips Frankliniella occidentalis and the spider-mite predator Neoseiulus californicus (McGregor). Both olfactometer and greenhouse release experiments yielded no evidence that P. persimilis avoids plants with any of the 3 heterospecific predators. This suggests that these predators do not elicit production of alarm pheromones in spider mites, and we argue that this is caused by a lack of coevolutionary history. The consequences of the lack of avoidance of heterospecific predators for interactions in food webs and biological control are discussed.  相似文献   

19.
Single inoculative releases of the phytoseiid mite Phytoseiulus persimilis were made against the two-spotted spider mite, Tetranychus urticae, on two varieties of dwarf hops in 1996 and 1997 at means of 20, 10, 5, 2.5 and nil per plant, and at up to three timings. The numbers of spider mites recorded on leaves after the predators were released were related inversely to the rates of release. The earliest releases of the predator maintained spider mites at lower population densities than did those made later in the year. In all treatments the numbers of spider mites decreased when the prey:predator ratio reached approximately 10:1.  相似文献   

20.
Journal of Insect Behavior - Tetranychus urticae (the two-spotted spider mite) is a phytophagous agricultural pest that affects many economically important crops. Two-spotted spider mites are...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号