首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Many synaptotagmins are Ca2+-binding membrane proteins with functions in Ca2+-triggered exocytosis. Synaptotagmin IV (syt IV) has no Ca2+ binding activity, but nevertheless modulates exocytosis. Here, cell-attached capacitance recording was used to study single vesicle fusion and fission in control and syt IV overexpressing PC12 cells. Unitary capacitance steps varied widely in size, indicating that both microvesicles (MVs) and dense-core vesicles (DCVs) undergo fusion. Syt IV overexpression reduced the size of DCVs and endocytotic vesicles but not MVs. Syt IV also reduced the basal rate of Ca2+-induced fusion. During kiss-and-run, syt IV increased the conductance and duration of DCV fusion pores but not MV fusion pores. During full-fusion of DCVs syt IV increased the fusion pore conductance but not the duration. Syt IV overexpression increased the duration but not the conductance of fission pores during endocytosis. The effects of syt IV on fusion pores in PC12 cells resembled the effects on fusion pores in peptidergic nerve terminals. However, differences between these and results obtained with amperometry may indicate that amperometry and capacitance detect the fusion of different populations of vesicles. The effects of syt IV on fusion pores are discussed in terms of structural models and kinetic mechanisms.  相似文献   

2.
Synaptotagmins (Syts) are calcium-binding proteins which are conserved from nematodes to humans. Fifteen Syts have been identified in mammalian species. Syt I is recognized as a Ca2+ sensor for the synchronized release of synaptic vesicles in some types of neurons, but its role in the secretion of dense core vesicles (DCVs) remains unclear. The function of Syt IV is of particular interest because it is rapidly up-regulated by chronic depolarization and seizures. Using RNAi-mediated gene silencing, we have explored the role of Syt I and IV on secretion in a pituitary gonadotrope cell line. Downregulation of Syt IV clearly reduced Ca2+-triggered exocytosis of dense core vesicles (DCVs) in LβT2 cells. Syt I silencing, however, had no effect on vesicular release.  相似文献   

3.
Ca2+ influx into synaptic compartments during activity is a key mediator of neuronal plasticity. Although the role of presynaptic Ca2+ in triggering vesicle fusion though the Ca2+ sensor synaptotagmin 1 (Syt 1) is established, molecular mechanisms that underlie responses to postsynaptic Ca2+ influx remain unclear. In this study, we demonstrate that fusion-competent Syt 4 vesicles localize postsynaptically at both neuromuscular junctions (NMJs) and central nervous system synapses in Drosophila melanogaster. Syt 4 messenger RNA and protein expression are strongly regulated by neuronal activity, whereas altered levels of postsynaptic Syt 4 modify synaptic growth and presynaptic release properties. Syt 4 is required for known forms of activity-dependent structural plasticity at NMJs. Synaptic proliferation and retrograde signaling mediated by Syt 4 requires functional C2A and C2B Ca2+–binding sites, as well as serine 284, an evolutionarily conserved substitution for a key Ca2+-binding aspartic acid found in other synaptotagmins. These data suggest that Syt 4 regulates activity-dependent release of postsynaptic retrograde signals that promote synaptic plasticity, similar to the role of Syt 1 as a Ca2+ sensor for presynaptic vesicle fusion.  相似文献   

4.
Synaptotagmin (syt) serves as a Ca2+ sensor in the release of neurotransmitters and hormones. This function depends on the ability of syt to interact with other molecules. Syt binds to phosphatidylserine (PS)-containing lipid bilayers as well as to soluble N-ethylmaleimide sensitive factor receptors (SNAREs) and promotes SNARE assembly. All these interactions are regulated by Ca2+, but their specific roles in distinct kinetic steps of exocytosis are not well understood. To explore these questions we used amperometry recording from PC12 cells to investigate the kinetics of exocytosis. Syt isoforms and syt I mutants were overexpressed to perturb syt-PS and syt-SNARE interactions to varying degrees and evaluate the effects on fusion event frequency and the rates of fusion pore transitions. Syt I produced more rapid dilation of fusion pores than syt VII or syt IX, consistent with its role in synchronous synaptic release. Stronger syt-PS interactions were accompanied by a higher frequency of fusion events and more stable fusion pores. By contrast, syt-SNARE interactions and syt-induced SNARE assembly were uncorrelated with rates of exocytosis. This associates the syt-PS interaction with two distinct kinetic steps in Ca2+ triggered exocytosis and supports a role for the syt-PS interaction in stabilizing open fusion pores.  相似文献   

5.
Synaptotagmin-7 (Syt7) plays direct or redundant Ca2+ sensor roles in multiple forms of vesicle exocytosis in synapses. Here, we show that Syt7 is a redundant Ca2+ sensor with Syt1/Doc2 to drive spontaneous glutamate release, which functions uniquely to activate the postsynaptic GluN2B-containing NMDARs that significantly contribute to mental illness. In mouse hippocampal neurons lacking Syt1/Doc2, Syt7 inactivation largely diminishes spontaneous release. Using 2 approaches, including measuring Ca2+ dose response and substituting extracellular Ca2+ with Sr2+, we detect that Syt7 directly triggers spontaneous release via its Ca2+ binding motif to activate GluN2B-NMDARs. Furthermore, modifying the localization of Syt7 in the active zone still allows Syt7 to drive spontaneous release, but the GluN2B-NMDAR activity is abolished. Finally, Syt7 SNPs identified in bipolar disorder patients destroy the function of Syt7 in spontaneous release in patient iPSC-derived and mouse hippocampal neurons. Therefore, Syt7 could contribute to neuropsychiatric disorders through driving spontaneous glutamate release.

Synaptotagmin-7 (Syt7) variants are associated with susceptibility to bipolar disorder; this study shows that Syt7 acts as a calcium sensor to drive spontaneous glutamate release which uniquely activates postsynaptic GluN2B-containing glutamate receptors. Interestingly, this function of Syt7 is disrupted in bipolar disorder susceptibility variants.  相似文献   

6.
In response to stimuli, secretary cells secrete a variety of signaling molecules packed in vesicles (e.g., neurotransmitters and peptide hormones) into the extracellular space by exocytosis. The vesicle secretion is often triggered by calcium ion (Ca2+) entered into secretary cells and achieved by the fusion of secretory vesicles with the plasma membrane. Recent accumulating evidence has indicated that members of the synaptotagmin (Syt) family play a major role in Ca2+-dependent exocytosis, and Syt I, in particular, is now widely accepted as the major Ca2+-sensor for synchronous neurotransmitter release. Involvement of other Syt isoforms in Ca2+-dependent exocytotic events other than neurotransmitter release has also been reported, and the Syt IV isoform is of particular interest, because Syt IV has several unique features not found in Syt I (e.g., immediate early gene product induced by deporalization and postsynaptic localization). In this article, we summarize the literature on the multi-functional role of Syt IV in Ca2+-dependent exocytosis.  相似文献   

7.
Neuronal dense-core vesicles (DCVs) contain diverse cargo crucial for brain development and function, but the mechanisms that control their release are largely unknown. We quantified activity-dependent DCV release in hippocampal neurons at single vesicle resolution. DCVs fused preferentially at synaptic terminals. DCVs also fused at extrasynaptic sites but only after prolonged stimulation. In munc13-1/2–null mutant neurons, synaptic DCV release was reduced but not abolished, and synaptic preference was lost. The remaining fusion required prolonged stimulation, similar to extrasynaptic fusion in wild-type neurons. Conversely, Munc13-1 overexpression (M13OE) promoted extrasynaptic DCV release, also without prolonged stimulation. Thus, Munc13-1/2 facilitate DCV fusion but, unlike for synaptic vesicles, are not essential for DCV release, and M13OE is sufficient to produce efficient DCV release extrasynaptically.  相似文献   

8.
Synaptotagmin-1 (Syt1) functions as the Ca2+ sensor in neuronal exocytosis, and it is routinely incorporated into lipid bilayers along with other components of the fusion machinery in order to reconstruct the in vivo fusion process. Here, we demonstrate that the detergent used to reconstitute full-length Syt1 has a significant effect on the state of the protein in bilayers. When octyl-β-d -glucopyranoside is used to reconstitute the protein, Syt1 is present in an aggregated state that is mediated by the long juxta-membrane linker. EPR spectra from spin labels in the two C2 domains of Syt1 no longer resemble those obtained from a soluble construct containing these domains, and the C2B domain no longer exhibits a Ca2+-dependent membrane insertion. In contrast, when reconstituted using 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate, Syt1 is largely monomeric and the EPR spectra from C2A and C2B resemble those of the soluble construct. This result demonstrates that the choice of detergent used to reconstitute Syt1 can modulate the state of the neuronal Ca2+-sensor.  相似文献   

9.
The synaptic vesicle protein synaptotagmin I (Syt I) binds phosphatidylserine (PS) in a Ca2+-dependent manner. This interaction is thought to play a role in exocytosis, but its precise functions remain unclear. To determine potential roles for Syt I-PS binding, we varied the PS content in PC12 cells and liposomes and studied the effects on the kinetics of exocytosis and Syt I binding in parallel. Raising PS produced a steeply nonlinear, saturating increase in Ca2+-triggered fusion, and a graded slowing of the rate of fusion pore dilation. Ca2+-Syt I bound liposomes more tightly as PS content was raised, with a steep increase in binding at low PS, and a further gradual increase at higher PS. These two phases in the PS dependence of Ca2+-dependent Syt I binding to lipid may correspond to the two distinct and opposing kinetic effects of PS on exocytosis. PS influences exocytosis in two ways, enhancing an early step leading to fusion pore opening, and slowing a later step when fusion pores dilate. The possible relevance of these results to Ca2+-triggered Syt I binding is discussed along with other possible roles of PS.  相似文献   

10.
Synaptotagmins (Syts) constitute a large family of at least 16 members and individual Syt isoforms exhibit distinct Ca2+-binding properties and subcellular localization. It remains to be demonstrated whether multiple Syt isoforms can function independently or cooperatively on certain type of vesicle. In the current study, we have developed NPY-pHluorin to specifically assess exocytosis of large dense core vesicles (LDCVs) and studied the requirement of Syt I and Syt IX for LDCV exocytosis in PC12 cells. We found that down-regulation of both Syt I and Syt IX resulted in a significant loss of Ca2+-dependent LDCV exocytosis. Moreover, our results suggest Syt I and Syt IX play redundant role in controlling the choice of fusion modes. Down-regulation of both Syt I and Syt IX renders more fusion in the kiss-and-run mode. We conclude that Syt I and Syt IX function redundantly in Ca2+-sensing and fusion pore dilation on LDCVs in PC12 cells.  相似文献   

11.
In neuroexocytosis, SNAREs and Munc18-1 may consist of the minimal membrane fusion machinery. Consistent with this notion, we observed, using single molecule fluorescence assays, that Munc18-1 stimulates SNARE zippering and SNARE-dependent lipid mixing in the absence of a major Ca2+ sensor synaptotagmin-1 (Syt1), providing the structural basis for the conserved function of Sec1/Munc18 proteins in exocytosis. However, when full-length Syt1 is present, no enhancement of SNARE zippering and no acceleration of Ca2+-triggered content mixing by Munc18-1 are observed. Thus, our results show that Syt1 acts as an antagonist for Munc18-1 in SNARE zippering and fusion pore opening. Although the Sec1/Munc18 family may serve as part of the fusion machinery in other exocytotic pathways, Munc18-1 may have evolved to play a different role, such as regulating syntaxin-1a in neuroexocytosis.  相似文献   

12.
Release of neuronal transmitters from nerve terminals is triggered by the molecular Ca2+ sensor synaptotagmin 1 (Syt1). Syt1 is a transmembrane protein attached to the synaptic vesicle (SV), and its cytosolic region comprises two domains, C2A and C2B, which are thought to penetrate into lipid bilayers upon Ca2+ binding. Before fusion, SVs become attached to the presynaptic membrane (PM) by the four-helical SNARE complex, which is thought to bind the C2B domain in vivo. To understand how the interactions of Syt1 with lipid bilayers and the SNARE complex trigger fusion, we performed molecular dynamics (MD) simulations at a microsecond scale. We investigated how the isolated C2 modules and the C2AB tandem of Syt1 interact with membranes mimicking either SV or PM. The simulations showed that the C2AB tandem can either bridge SV and PM or insert into PM with its Ca2+-bound tips and that the latter configuration is more favorable. Surprisingly, C2 domains did not cooperate in penetrating into PM but instead mutually hindered their insertion into the bilayer. To test whether the interaction of Syt1 with lipid bilayers could be affected by the C2B-SNARE attachment, we performed systematic conformational analysis of the C2AB-SNARE complex. Notably, we found that the C2B-SNARE interface precludes the coupling of C2 domains and promotes their insertion into PM. We performed the MD simulations of the prefusion protein complex positioned between the lipid bilayers mimicking PM and SV, and our results demonstrated in silico that the presence of the Ca2+ bound C2AB tandem promotes lipid merging. Altogether, our MD simulations elucidated the role of the Syt1-SNARE interactions in the fusion process and produced the dynamic all-atom model of the prefusion protein-lipid complex.  相似文献   

13.
Synaptotagmin I (Syt I),a low-affinity Ca2+-binding protein, is thought to serve asthe Ca2+ sensor in the release of neurotransmitter.However, functional studies on the calyx of Held synapse revealed thatthe rapid release of neurotransmitter requires only approximatelymicromolar [Ca2+], suggesting that Syt I may play a morecomplex role in determining the high-affinity Ca2+dependence of exocytosis. Here we tested this hypothesis by studying pituitary cells, which possess high- and low-affinityCa2+-dependent exocytic pathways and express Syt I. Usingpatch-clamp capacitance measurements to monitor secretion and the acuteantisense deletion of Syt I from differentiated cells, we have shownthat the rapid and the most Ca2+-sensitive pathway ofexocytosis in rat melanotrophs requires Syt I. Furthermore, stimulationof the Ca2+-dependent exocytosis by cytosol dialysis withsolutions containing 1 µM [Ca2+] was completelyabolished in the absence of Syt I. Similar results were obtained by thepreinjection of antibodies against the CAPS (Ca2+-dependentactivator protein for secretion) protein. These results indicate thatsynaptotagmin I and CAPS proteins increase the probability of vesiclefusion at low cytosolic [Ca2+].

  相似文献   

14.
《Biophysical journal》2020,118(3):643-656
Synaptotagmin-1 (Syt1) is a calcium sensor protein that is critical for neurotransmission and is therefore extensively studied. Here, we use pairs of optically trapped beads coated with SNARE-free synthetic membranes to investigate Syt1-induced membrane remodeling. This activity is compared with that of Doc2b, which contains a conserved C2AB domain and induces membrane tethering and hemifusion in this cell-free model. We find that the soluble C2AB domain of Syt1 strongly affects the probability and strength of membrane-membrane interactions in a strictly Ca2+- and protein-dependent manner. Single-membrane loading of Syt1 yielded the highest probability and force of membrane interactions, whereas in contrast, Doc2b was more effective after loading both membranes. A lipid-mixing assay with confocal imaging reveals that both Syt1 and Doc2b are able to induce hemifusion; however, significantly higher Syt1 concentrations are required. Consistently, both C2AB fragments cause a reduction in the membrane-bending modulus, as measured by a method based on atomic force microscopy. This lowering of the energy required for membrane deformation may contribute to Ca2+-induced fusion.  相似文献   

15.
Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca2+ dependence, but also upstream steps depend on Ca2+. After deletion of the Ca2+ sensor for fast release – synaptotagmin-1 – slower Ca2+-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca2+ sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca2+-dependent action: a Ca2+-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca2+-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca2+-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca2+-dependent fusion from the NRP. We conclude that the elusive ‘alternative Ca2+ sensor’ for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca2+-dependent properties of secretion without assuming parallel pools or sensors.  相似文献   

16.
Synaptotagmins (Syt) are a large family of proteins that regulate membrane traffic in neurons and other cell types. One isoform that has received considerable attention is SYT4, with apparently contradictory reports concerning the function of this isoform in fruit flies and mice. SYT4 was reported to function as a negative regulator of neurotrophin secretion in mouse neurons and as a positive regulator of secretion of a yet to be identified growth factor from muscle cells in flies. Here, we have directly compared the biochemical and functional properties of rat and fly SYT4. We report that rat SYT4 inhibited SNARE-catalyzed membrane fusion in both the absence and presence of Ca2+. In marked contrast, fly SYT4 stimulated SNARE-mediated membrane fusion in response to Ca2+. Analysis of chimeric molecules, isolated C2 domains, and point mutants revealed that the C2B domain of the fly protein senses Ca2+ and is sufficient to stimulate fusion. Rat SYT4 was able to stimulate fusion in response to Ca2+ when the conserved Asp-to-Ser Ca2+ ligand substitution in its C2A domain was reversed. In summary, rat SYT4 serves as an inhibitory isoform, whereas fly SYT4 is a bona fide Ca2+ sensor capable of coupling Ca2+ to membrane fusion.  相似文献   

17.
Ca2+-dependent neurotransmitter release requires synaptotagmins as Ca2+ sensors to trigger synaptic vesicle (SV) exocytosis via binding of their tandem C2 domains—C2A and C2B—to Ca2+. We have previously demonstrated that SNT-1, a mouse synaptotagmin-1 (Syt1) homologue, functions as the fast Ca2+ sensor in Caenorhabditis elegans. Here, we report a new Ca2+ sensor, SNT-3, which triggers delayed Ca2+-dependent neurotransmitter release. snt-1;snt-3 double mutants abolish evoked synaptic transmission, demonstrating that C. elegans NMJs use a dual Ca2+ sensor system. SNT-3 possesses canonical aspartate residues in both C2 domains, but lacks an N-terminal transmembrane (TM) domain. Biochemical evidence demonstrates that SNT-3 binds both Ca2+ and the plasma membrane. Functional analysis shows that SNT-3 is activated when SNT-1 function is impaired, triggering SV release that is loosely coupled to Ca2+ entry. Compared with SNT-1, which is tethered to SVs, SNT-3 is not associated with SV. Eliminating the SV tethering of SNT-1 by removing the TM domain or the whole N terminus rescues fast release kinetics, demonstrating that cytoplasmic SNT-1 is still functional and triggers fast neurotransmitter release, but also exhibits decreased evoked amplitude and release probability. These results suggest that the fast and slow properties of SV release are determined by the intrinsically different C2 domains in SNT-1 and SNT-3, rather than their N-termini–mediated membrane tethering. Our findings therefore reveal a novel dual Ca2+ sensor system in C. elegans and provide significant insights into Ca2+-regulated exocytosis.  相似文献   

18.
It is well established that syntaxin 1A (Sx1A), SNAP-25 and synaptotagmin (Syt1) either alone or in combination, modify the kinetic properties of voltage-gated Ca2+ channels (VGCCs). The interaction interface resides mainly at the cytosolic II-III domain of the alpha1 subunit of the channels, while Sx1A interacts with the channel also via two highly conserved cysteine residues at the transmembrane domain. In the present study, we characterized Ca2+-independent coupling of the human neuronal P/Q-type calcium channel (CaV2.1) with Sx1A, SNAP-25, Syt1 and synaptobrevin (VAMP) in BAPTA-injected Xenopus oocytes. The co-expression of CaV2.1 with Sx1A, SNAP-25 and Syt1, produced a multiprotein complex with distinctive kinetic properties analogous to the excitosome complexes generated by CaV1.2, CaV2.2, and CaV2.3. The distinct kinetic properties of CaV2.1 acquired by its close association with Syt1 and t-SNAREs suggest that the vesicle is tethered to the neuronal channel and to the exocytotic machinery independently of intracellular Ca2+. To explore the relevance of these interactions to secretion we exploited a BotC1-and a BotA-sensitive secretion system developed for Xenopus oocytes not buffered by BAPTA, in which depolarization-evoked secretion is monitored by a change in membrane capacitance. The reconstituted CaV2.1 release is consistent with the model in which the VGCC acts from within the exocytotic complex playing a signaling role in triggering release. The relevance of these results to secretion posits the role of possible rearrangements within the excitosome subsequent to Ca2+ entry, setting the stage for the fusion of channel-tethered-vesicles upon the arrival of an action potential.  相似文献   

19.
Synaptotagmin 1 (Syt1) is the calcium sensor for synchronous neurotransmitter release. The two C2 domains of Syt1, which may mediate fusion by bridging the vesicle and plasma membranes, are connected to the vesicle membrane by a 60-residue linker. Here, we use site-directed spin labeling and a novel total internal reflection fluorescence vesicle binding assay to characterize the juxtamembrane linker and to test the ability of reconstituted full-length Syt1 to interact with opposing membrane surfaces. EPR spectroscopy demonstrates that the majority of the linker interacts with the membrane interface, thereby limiting the extension of the C2A and C2B domains into the cytoplasm. Pulse dipolar EPR spectroscopy provides evidence that purified full-length Syt1 is oligomerized in the membrane, and mutagenesis indicates that a glycine zipper/GXXXG motif within the linker helps mediate oligomerization. The total internal reflection fluorescence-based vesicle binding assay demonstrates that full-length Syt1 that is reconstituted into supported lipid bilayers will capture vesicles containing negatively charged lipid in a Ca2+-dependent manner. Moreover, the rate of vesicle capture increases with Syt1 density, and mutations in the GXXXG motif that inhibit oligomerization of Syt1 reduce the rate of vesicle capture. This work demonstrates that modifications within the 60-residue linker modulate both the oligomerization of Syt1 and its ability to interact with opposing bilayers. In addition to controlling its activity, the oligomerization of Syt1 may play a role in organizing proteins within the active zone of membrane fusion.  相似文献   

20.
Synaptotagmin VII (Syt VII), a proposed regulator for Ca2+-dependent exocytosis, showed a robust Ca2+-dependent oligomerization property via its two C2 domains (Fukuda, M., and Mikoshiba, K. (2001) J. Biol. Chem. 276, 27670-27676), but little is known about its structure or the critical residues directly involved in the oligomerization interface. In this study, site-directed mutagenesis and chimeric analysis between Syt I and Syt VII showed that three Asp residues in Ca2+-binding loop 1 or 3 (Asp-172, Asp-303, and Asp-357) are crucial to robust Ca(2+)-dependent oligomerization. Unlike Syt I, however, the polybasic sequence in the beta4 strands of the C2 structures (so-called "C2 effector domain") is not involved in the Ca2+-dependent oligomerization of Syt VII. The results also showed that the Ca2+-binding loops of the two C2 domains cooperatively mediate Syt VII oligomerization (i.e. the presence of redundant Ca2+-binding site(s)) as well as the importance of Ca2+-dependent oligomerization of Syt VII in Ca2+-regulated secretion. Expression of wild-type tandem C2 domains of Syt VII in PC12 cells inhibited Ca2+-dependent neuropeptide Y release, whereas mutant fragments lacking Ca2+-dependent oligomerization activity had no effect. Finally, rotary-shadowing electron microscopy showed that the Ca2+-dependent oligomer of Syt VII is "a large linear structure," not an irregular aggregate. By contrast, in the absence of Ca2+ Syt VII molecules were observed to form a globular structure. Based on these results, we suggest that the linear Ca2+-dependent oligomer may be aligned at the fusion site between vesicles and plasma membrane and modulate Ca2+-regulated exocytosis by opening or dilating fusion pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号