首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: The Src-homology 2 domain-containing adaptor protein Shb was recently cloned as a serum-inducible gene in the insulin-producing beta-TC1 cell line. Subsequent studies have revealed an involvement of Shb for apoptosis in NIH3T3 fibroblasts and differentiation in the neuronal PC12 cells. To assess a role of Shb for beta-cell function, transgenic mice utilizing the rat insulin promoter to drive expression of Shb were generated. MATERIALS AND METHODS: A gene construct allowing the Shb cDNA to be expressed from the rat insulin 2 promoter was microinjected into fertilized mouse oocytes and implanted into pseudopregnant mice. Mice containing a low copy number of this transgene were bred and used for further experimentation. Shb expression was determined by Western blot analysis. The insulin-positive area of whole pancreas, insulin secretion of isolated islets and islet cell apoptosis, glucose tolerance tests, and in vivo sensitivity to multiple injections of the beta-cell toxin streptozotocin were determined in control CBA and Shb-transgenic mice. RESULTS: Western blot analysis revealed elevated islet content of the Shb protein. Shb-transgenic mice displayed enhanced glucose-disappearance rates in response to an intravenous glucose injection. The relative pancreatic beta-cell area neonatally and at 6 months of age were increased in the Shb-transgenic mice. Islets isolated from Shb-transgenic mice showed enhanced insulin secretion in response to glucose and increased insulin and DNA content. Apoptosis was increased in islets isolated from Shb-transgenic mice compared with control islets both under basal conditions and after incubation with IL-1 beta + IFN-gamma. Rat insulinoma RINm5F cells overexpressing Shb displayed decreased viability during culture in 0.1% serum and after exposure to a cytotoxic dose of nicotinamide. Shb-transgenic mice injected with multiple doses of streptozotocin showed increased blood glucose values compared with the corresponding controls, suggesting increased in vivo susceptibility to this toxin. CONCLUSION: The results suggest that Shb has dual effects on beta-cell growth: whereas Shb increases beta-cell formation during late embryonal stages, Shb also enhances beta-cell death under certain stressful conditions and may thus contribute to beta-cell destruction in type 1 diabetes.  相似文献   

2.
BACKGROUND: The loss of beta cells in type 1 diabetes may involve protein kinases because they control cell growth, differentiation, and survival. Previous studies have revealed that GTK, a Src-like protein tyrosine kinase expressed in beta cells (also named Bsk/Iyk), regulates multiple responses including growth and survival of rat insulinoma cells (RINm5F) and differentiation of neuronal PC12 cells. In the present study, we have generated a transgenic mouse expressing a kinase active GTK mutant (GTK-Y504F) under the control of the rat insulin I promoter to establish a role of GTK in beta cells. MATERIALS AND METHODS: Control and GTK-transgenic CBA mice were used for determination of in vivo glucose tolerance and the relative insulin-positive area. Isolated islets from both groups were cultured in the absence and presence of cytokines and insulin secretion, viability and protein expression were assessed. RESULTS: The beta-cell mass of GTK-transgenic mice was increased as a consequence of a larger pancreas and an increased relative beta-cell area. Islets isolated from the transgenic animals exhibited an enhanced glucose-induced insulin release and reduced viability in response to cytokines that could not be explained by higher levels of nitric oxide (NO) compared with control islets. Extracellular signal-regulated kinase (ERK) 1/2, p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), and Akt were all activated by cytokines, but GTK-transgenic islets contained higher basal levels of phosphorylated ERK1/2 and lower basal levels of phosphorylated p38 compared with the control islets. The total amount of activated MAPKs was, however, higher in the cytokine-stimulated transgenic islets compared with the control islets due to increased levels of phospho-ERK1/2. Moreover, the proline-rich tyrosine kinase (PYK) 2 (also named RAFTK/CAK beta/CADTK) levels were elevated in response to a 24-hr exposure to cytokines in control islets but not in the GTK-transgenic islets. CONCLUSIONS: These results suggest that although GTK increases the beta-cell mass, it also enhances islet cell death in response to cytokines and may thus be involved in the beta-cell damage in type 1 diabetes.  相似文献   

3.
We created three lines of transgenic mice with an integrated rat genomic apolipoprotein E gene fused with the mouse metallothionein I promoter. These lines transcribed rat apoE mRNA in the liver and/or in the kidney and expressed significant amounts of rat apoE in plasma. Enhancement of the plasma level by treatment with Zn ion or Bi ion was observed.  相似文献   

4.
Tyramine, one of the various biogenic amines found in plants, is derived from the aromatic L-amino acid tyrosine through the catalytic reaction of tyrosine decarboxylase (TYDC). Tyramine overproduction by constitutive expression of TYDC in rice plants leads to stunted growth, but an increased number of tillers. To regulate tyramine production in rice plants, we expressed TYDC under the control of a methanol-inducible plant tryptophan decarboxylase (TDC) promoter and generated transgenic T(2) homozygous rice plants. The transgenic rice plants showed normal growth phenotypes with slightly increased levels of tyramine in seeds relative to wild type. Upon treatment with 1% methanol, the transgenic rice leaves produced large amounts of tyramine, whereas no increase in tyramine production was observed in wild-type plants. The methanol-induced accumulation of tyramine in the transgenic rice leaves was inversely correlated with the tyrosine level. These data indicate that tyramine production in rice plants can be artificially controlled using the methanol-inducible TDC promoter, suggesting that this promoter could be used to selectively induce the expression of other proteins or metabolites in rice plants.  相似文献   

5.
To study the significance of the increased ratio of the estrogen/androgen concentration for the male reproductive functions, we have generated transgenic mice expressing human P450 aromatase under a promoter providing ubiquitous and permanent transgene expression (AROM+ mice). AROM+ male mice are characterized by elevated serum estradiol and prolactin (Prl) concentrations, combined with markedly reduced testosterone levels. The mice are present with a multitude of structural and functional alterations in the reproductive organs such as cryptorchidism, Leydig cell hyperplasia, disrupted spermatogenesis and infertility. Furthermore, the mice develop infravesical obstruction associated with the rhabdosphincter atrophy and rudimentary accessory sex glands. Interestingly, the mammary gland in AROM+ males undergo a ductal and alveolar development morphologically resembling terminally differentiated female mammary glands, and express several signaling proteins typical for female mammary glands. Some of the abnormalities seen in AROM+ mice are similar to those described in both mice and humans exposed to diethylstilbestrol (DES) in utero. The importance of the AROM+ model may lie in its predictability, i.e. the model suggests which abnormalities of the human reproductive functions may be associated with the increased ratio of estrogen/androgen concentrations in early life and at adult age as well.  相似文献   

6.
7.
Transgenic mice in which the tetracycline transactivator (tTA) is driven by the forebrain-specific calcium–calmodulin-dependent kinase IIα promoter (CaMKIIα-tTA mice) are used to study the molecular genetics of many behaviors. These mice can be crossed with other transgenic mice carrying a transgene of interest coupled to the tetracycline-responsive promoter element to produce mice with forebrain-specific expression of the transgene under investigation. The value of using CaMKIIα-tTA mice to study behavior, however, is dependent on the CaMKIIα-tTA mice themselves lacking a behavioral phenotype with respect to the behaviors being studied. Here we present data that suggest CaMKIIα-tTA mice have a behavioral phenotype distinct from that of their wild-type (WT) littermates. Most strikingly, we find that CaMKIIα-tTA mice, both those with a C57BL/6NTac genetic background (B6-tTA) and those with a 129S6B6F1/Tac hybrid genetic background (F1-tTA), exhibit decreased locomotor activity compared with WT littermates that could be misinterpreted as altered anxiety-like behavior. Despite this impairment, neither B6-tTA nor F1-tTA mice perform differently than their WT littermates in two commonly used learning and memory paradigms – Pavlovian fear conditioning and Morris water maze. Additionally, we find data regarding motor coordination and balance to be mixed: B6-tTA mice, but not F1-tTA mice, exhibit impaired performance on the accelerating rotarod and both perform as well as their WT littermates on the balance beam.  相似文献   

8.
9.
We developed and analyzed two types of transgenic mice: rat insulin II promoter-ghrelin transgenic (RIP-G Tg) and rat glucagon promoter-ghrelin transgenic mice (RGP-G Tg). The pancreatic tissue ghrelin concentration measured by C-terminal radioimmunoassay (RIA) and plasma desacyl ghrelin concentration of RIP-G Tg were about 1000 and 3.4 times higher than those of nontransgenic littermates, respectively. The pancreatic tissue n-octanoylated ghrelin concentration measured by N-terminal RIA and plasma n-octanoylated ghrelin concentration of RIP-G Tg were not distinguishable from those of nontransgenic littermates. RIP-G Tg showed suppression of glucose-stimulated insulin secretion. Arginine-stimulated insulin secretion, pancreatic insulin mRNA and peptide levels, beta cell mass, islet architecture, and GLUT2 and PDX-1 immunoreactivity in RIP-G Tg pancreas were not significantly different from those of nontransgenic littermates. Islet batch incubation study did not show suppression of insulin secretion of RIP-G Tg in vitro. The insulin tolerance test showed lower tendency of blood glucose levels in RIP-G Tg. Taking lower tendency of triglyceride level of RIP-G Tg into consideration, these results may indicate that the suppression of insulin secretion is likely due to the effect of desacyl ghrelin on insulin sensitivity. RGP-G Tg, in which the pancreatic tissue ghrelin concentration measured by C-RIA was about 50 times higher than that of nontransgenic littermates, showed no significant changes in insulin secretion, glucose metabolism, islet mass, and islet architecture. The present study raises the possibility that desacyl ghrelin may have influence on glucose metabolism.  相似文献   

10.
Bruton's tyrosine kinase (Btk) is a nonreceptor protein kinase that is defective in X-linked agammaglobulinemia in humans and in X-linked immunodeficiency in mice. To study the effect of Btk activation in early B cell development in vivo, we have created transgenic mouse strains expressing Btk under the control of the human CD19 promoter region. The transgenic expression of wild-type human Btk corrected all X-linked immunodeficiency features in mice carrying a targeted disruption of the Btk gene. In contrast, expression of an activated form of Btk, the E41K mutant, resulted in an almost complete arrest of B cell development in the immature IgM+IgD- B cell stage in the bone marrow, irrespective of the presence of the endogenous intact Btk gene. Immature B cells were arrested at the progression from IgMlow into IgMhigh cells, which reflects the first immune tolerance checkpoint at which autoreactive B cells become susceptible to apoptosis. As the constitutive activation of Btk is likely to mimic B cell receptor occupancy by autoantigens in the bone marrow, our findings are consistent with a role for Btk as a mediator of B cell receptor-induced apoptotic signals in the immature B cell stage. Whereas the peripheral mature B cell pool was reduced to <1% of the normal size, significant numbers of IgM-secreting plasma cells were present in the spleen. Serum IgM levels were substantial and increased with age, but specific Ab responses in vivo were lacking. We conclude that the residual peripheral B cells were efficiently driven into IgM+ plasma cell differentiation, apparently without functional selection.  相似文献   

11.
Insulin production afforded by hepatic gene therapy (HGT) retains promise as a potential treatment for type 1 diabetes, but successful approaches have been limited. We employed a novel and previously untested promoter for this purpose, glucose transporter-2 (GLUT2) to drive insulin production via delivery by recombinant adeno-associated virus (rAAV). In vitro, the GLUT2 promoter was capable of robust glucose-responsive expression in transduced HepG2 human hepatoma cells. Therefore, rAAV constructs were designed to express the furin-cleavable human preproinsulin B10 gene, under the control of the murine GLUT2 promoter and packaged for delivery with rAAV expressing the type 5 capsid. Streptozotocin-induced diabetic mice were subjected to hepatic portal vein injection immediately followed by implantation of a sustained-release insulin pellet to allow time for transgenic expression. All mice injected with the rAAV5-GLUT2-fHPIB10 virus remained euglycemic for up to 35 days post-injection, with 50% euglycemic after 77 days post-injection. In contrast, mock-injected mice became hyperglycemic within 15 days post-injection following dissolution of the insulin pellet. Serum levels of both human insulin and C-peptide further confirmed successful transgenic delivery by the rAAV5-GLUT2-fHPIB10 virus. These findings indicate that the GLUT2 promoter may be a potential candidate for regulating transgenic insulin production for hepatic insulin gene therapy in the treatment of type I diabetes.  相似文献   

12.
We have previously shown that postnatal expression of the viral oncoprotein SV40 T antigen in rod photoreceptors (transgene MOT1), at a time when retinal cells have withdrawn from the mitotic cycle, leads to photoreceptor cell death (Al-Ubaidi et al., 1992. Proc. Natl. Acad. Sci. USA. 89:1194-1198). To study the effect of the specificity of the promoter, we replaced the mouse opsin promoter in MOT1 by a 1.3-kb promoter fragment of the human IRBP gene which is expressed in both rod and cone photoreceptors during embryonic development. The resulting construct, termed HIT1, was injected into mouse embryos and five transgenic mice lines were established. Mice heterozygous for HIT1 exhibited early bilateral retinal and brain tumors with varying degrees of incidence. Histopathological examination of the brain and eyes of three of the families showed typical primitive neuroectodermal tumors. In some of the bilateral retinal tumors, peculiar rosettes were observed, which were different from the Flexner-Wintersteiner rosettes typically associated with human retinoblastomas. The ocular and cerebral tumors, however, contained Homer-Wright rosettes, and showed varying degrees of immunoreactivity to antibodies against the neuronal specific antigens, synaptophysin and Leu7, but not to antibodies against photoreceptor specific proteins. Taken together, the results indicate that the specificity of the promoter used for T antigen and/or the time of onset of transgene expression determines the fate of photoreceptor cells expressing T antigen.  相似文献   

13.
14.
15.
We generated transgenic rice plants that express EXG1 exo-glucanase under the control of a senescence-inducible promoter. When a GUS coding sequence was connected to a promoter region of STAY GREEN (SGR) gene of rice and introduced into rice, GUS activity was specifically observed along with senescence. When an EXG1 cDNA was connected to the SGR promoter and introduced into rice, higher cellulase activities were detected after senescence. The EXG1 transgenic plants showed enhanced enzymatic saccharification efficiencies after senescence, but no significant difference of saccharification efficiencies was observed before senescence. The saccharification efficiencies were correlated with the cellulase activities in the transgenic plants. The EXG1 transgenic plants showed neither morphological abnormality nor sterility, both of which were observed when EXG1 was constitutively overexpressed. These results indicate that expression of cell wall degrading enzymes such as cellulase by a senescence-inducible promoter is one of the ways to enhance the saccharification ability of cellulosic biomass without affecting plant growth for efficient production of biofuels.  相似文献   

16.
17.
Three transgenic Anopheles stephensi lines were established that strongly inhibit transmission of the mouse malaria parasite Plasmodium berghei. Fitness of the transgenic mosquitoes was assessed based on life table analysis and competition experiments between transgenic and wild-type mosquitoes. Life table analysis indicated low fitness load for the 2 single-insertion transgenic mosquito lines VD35 and VD26 and no load for the double-insertion transgenic mosquito line VD9. However, in cage experiments, where each of the 3 homozygous transgenic mosquitoes was mixed with nontransgenic mosquitoes, transgene frequency of all 3 lines decreased with time. Further experiments suggested that reduction of transgene frequency is a consequence of reduced mating success, reduced reproductive capacity, and/or insertional mutagenesis, rather than expression of the transgene itself. Thus, for transgenic mosquitoes released in the field to be effective in reducing malaria transmission, a driving mechanism will be required.  相似文献   

18.
The genetic contribution of antigen-presenting molecules and the environmental ignition of an antigen-specific immune attack to pancreatic β-cells define autoimmune diabetes. We focused here on generating an antigen-specific model of autoimmune diabetes in humanized double-transgenic mice carrying antigen-presenting HLA-DQ8 diabetes-linked haplotype and expressing human autoantigen GAD65 in pancreatic β-cells using a relatively diabetes-susceptible strain of mice. Double transgenic (DQ8-GAD65) mice and controls were immunized with cDNA encoding human GAD65 in adenoviral vectors and monitored for glucose intolerance and diabetes. Human-GAD65 immunization induced insulitis, glucose intolerance and diabetes in double-transgenic mice, while controls were insulitis free and glucose tolerant. Glucose intolerance 10 weeks post-immunization was followed by diabetes later on in most animals. Destructive insulitis characterized by inflammation and apoptosis correlated with the diabetes outcome. Humoral immune responses to hGAD65 were sustained in mice with diabetes while transient in non-responders. Insulitis was massive in mice with diabetes while mild in non-responders by the end of the study. Our results show for the first time the occurrence of antigen-specific induced insulitis, impaired glucose homeostasis and diabetes after immunization with a clinically relevant, human autoantigen in the context of HLA-DQ8 diabetes-susceptibility transgenes and human GAD65 expression in β-cells. This animal model will facilitate studies of mechanisms of disease involved in development of autoimmunity to GAD65 in the context of HLA-DQ8. Furthermore, this model would be ideal for testing therapeutic strategies aimed at preventing human β-cell loss and/or restoring function in the setting of autoimmune diabetes.  相似文献   

19.
Genetically-encoded biosensors based on the principle of F?rster resonance energy transfer (FRET) have been widely used in biology to visualize the spatiotemporal dynamics of signaling molecules. Despite the increasing multitude of these biosensors, their application has been mostly limited to cultured cells with transient biosensor expression, due to particular difficulties in the development of transgenic mice that express FRET biosensors. In this study, we report the efficient generation of transgenic mouse lines expressing heritable and functional biosensors for ERK and PKA. These transgenic mice were created by the cytoplasmic co-injection of Tol2 transposase mRNA and a circular plasmid harbouring Tol2 recombination sites. High expression of the biosensors in a wide range of cell types allowed us to screen newborn mice simply by inspection. Observation of these transgenic mice by two-photon excitation microscopy yielded real-time activity maps of ERK and PKA in various tissues, with greatly improved signal-to-background ratios. Our transgenic mice may be bred into diverse genetic backgrounds; moreover, the protocol we have developed paves the way for the generation of transgenic mice that express other FRET biosensors, with important applications in the characterization of physiological and pathological signal transduction events in addition to drug development and screening.  相似文献   

20.
The pathophysiology of TallyHo mouse, a recently established animal model for type 2 diabetes mellitus, was analyzed at prediabetic state to examine the inherent defects which contribute to the development of diabetes. At 4 weeks of age, the TallyHo mice already revealed glucose intolerance while their peripheral tissues exhibited normal insulin sensitivity. On the other hand, decreased plasma insulin concentration was observed with little differences in pancreatic insulin contents, indicating the impaired insulin secretion. Such defect, however, was not found in the isolated islets, which suggests a role of endocrine factor in impaired insulin secretion of TallyHo mice. Treatment of leptin inhibited the glucose-stimulated insulin secretion from the isolated islets of TallyHo mice, while in vivo administration of anti-leptin antibody lowered plasma glucose concentration with increased insulin level in TallyHo mice. Expression of glucokinase mRNA was decreased both in whole pancreas and leptin treated islets of TallyHo mice compared with whole pancreas in C57BL/6 mice and untreated islets of TallyHo mice, respectively. These results suggest that elevated plasma leptin can, through the inhibition of insulin secretion, induce glucose intolerance in TallyHo mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号