首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tat gene of HIV-1 is a potent trans-activator of gene expression from the HIV long terminal repeat (LTR). To define the functionally important regions of the product of the tat gene (Tat) of HIV-1, deletion, linker insertion and single amino acid substitution mutants within the Tat coding region of strain SF2 were constructed. The effect of these mutations on trans-activation was assessed by measuring the expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene linked to the HIV-LTR. These studies have revealed that four different domains of the protein that map within the N-terminal 56 amino acid region are essential for Tat function. In addition to the essential domains, an auxiliary domain that enhances the activity of the essential region has also been mapped between amino acid residues 58 and 66. One of the essential domains maps in the N-terminal 20 amino acid region. The other three essential domains are highly conserved among the various strains of HIV-1 and HIV-2 as well as simian immunodeficiency virus (SIV). Of the conserved domains, one contains seven Cys residues and single amino acid substitutions for several Cys residues indicate that they are essential for Tat function. The second conserved domain contains a Lys X Leu Gly Ile X Tyr motif in which the Lys residue is essential for trans-activation and the other residues are partially essential. The third conserved domain is strongly basic and appears to play a dual role. Mutants lacking this domain are deficient in trans-activation and in efficient targeting of Tat to the nucleus and nucleolus. The combination of the four essential domains and the auxiliary domain contribute to the near full activity observed with the 101 amino acid Tat protein.  相似文献   

2.
The Tat protein of the human immunodeficiency virus type 1 (HIV-1) is required for efficient viral gene expression. By means of mutational analyses, several domains of the Tat protein that are required for complete activation of HIV-1 gene expression have been defined. These include an amino-terminal activating domain, a cysteine-rich dimerization domain, and a basic domain important in the binding of Tat to the trans-activation response element (TAR) and in Tat nuclear localization. Recently, we described a mutation, known as delta tat, which resulted in a protein with a truncated basic domain. This protein had a "trans-dominant" phenotype in that it inhibited wild-type Tat activation of the HIV-1 LTR. To further characterize the requirements for generating a Tat trans-dominant phenotype, we constructed a variety of Tat proteins with truncations or substitutions in the basic domain. A number of these proteins showed a trans-dominant phenotype. These Tat mutants also inhibited activation of the HIV-1 LTR by a protein composed of Tat fused to the prokaryotic R17 (phage MS2) RNA-binding protein in which the R17 recognition element was inserted in the HIV-1 LTR in place of TAR. Thus, an intact TAR element was not required for this inhibition. We also studied the cellular localization of Tat and a trans-dominant Tat mutant by means of immunofluorescence staining with the use of antibodies reactive to different domains of the Tat protein. The results indicated that Tat becomes localized predominantly in the nucleus both in the presence and absence of the trans-dominant Tat construct, suggesting that the trans-dominant mutant does not inhibit Tat nuclear localization. These studies further define the requirements for the creation of trans-dominant Tat mutants, and suggest that the mechanism of trans-dominant Tat inhibition may be either the formation of an inactive complex between wild-type and mutant Tat or sequestration of cellular factors involved in regulating HIV-1 gene expression.  相似文献   

3.
4.
5.
6.
HIV-1 Tat protein trans-activates transcription in vitro   总被引:55,自引:0,他引:55  
  相似文献   

7.
Trans-activation by HIV-1 Tat via a heterologous RNA binding protein   总被引:57,自引:0,他引:57  
M J Selby  B M Peterlin 《Cell》1990,62(4):769-776
  相似文献   

8.
9.
10.
11.
The Escherichia coli Tat apparatus is a membrane-bound protein translocase that serves to export folded proteins synthesized with N-terminal twin-arginine signal peptides. The essential TatC component of the Tat translocase is an integral membrane protein probably containing six transmembrane helices. Sequence analysis identified conserved TatC amino acid residues, and the role of these side-chains was assessed by single alanine substitution. This approach identified three classes of TatC mutants. Class I mutants included F94A, E103A and D211A, which were completely devoid of Tat-dependent protein export activity and thus represented residues essential for TatC function. Cross-complementation experiments with class I mutants showed that co-expression of D211A with either F94A or E103A regenerated an active Tat apparatus. These data suggest that different class I mutants may be blocked at different steps in protein transport and point to the co-existence of at least two TatC molecules within each Tat translocon. Class II mutations identified residues important, but not essential, for Tat activity, the most severely affected being L99A and Y126A. Class III mutants showed no significant defects in protein export. All but three of the essential and important residues are predicted to cluster around the cytoplasmic N-tail and first cytoplasmic loop regions of the TatC protein.  相似文献   

12.
13.
14.
Wang Z  Shah K  Rana TM 《Biochemistry》2001,40(21):6458-6464
Replication of human immunodeficiency virus type 1 (HIV-1) requires specific interactions of Tat protein with the trans-activation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5'-end of all HIV mRNAs. We have used a site-specific cross-linking method based on psoralen photochemistry to determine the effect of core residues from the Tat sequence on the protein orientation in the Tat-TAR complex and on the specificity of Tat-TAR binding. We synthesized two Tat fragments, Tat(42-72) and Tat(37-72), and incorporated a psoralen-modified amino acid at position 41 during solid-phase assembly of the peptides. We used these psoralen-Tat conjugates to form specific complexes with TAR RNA. Upon near-ultraviolet irradiation (360 nm), psoralen-Asp41-Tat(37-72) cross-linked to a single site in the TAR RNA sequence. The RNA-protein complex was purified and the cross-link site on TAR RNA was determined by primer extension analysis, which revealed that Asp41 of Tat is close to U42 of the lower stem region of TAR RNA. Specificity of the RNA-peptide cross-linking reactions was determined by competition experiments. Our results show that the addition of only four residues (Cys37-Thr40) from the Tat core region significantly enhanced the specificity of the Tat peptide-TAR interactions without altering the site or chemical nature of the cross-link. These studies provide new insights into RNA-protein recognition that could be useful in designing peptidomimetics for RNA targeting. Such psoralen-peptide conjugates provide a new class of probes for sequence-specific protein-nucleic acid interactions and could be used to selectively control gene expression or to induce site-directed mutations.  相似文献   

15.
A synthetic rev gene containing substitutions which introduced unique restriction sites but did not alter the deduced amino acid sequence was used as a vehicle to construct mutations in rev. Insertion or substitution mutations within a domain of Rev resulted in proteins able to inhibit the function of Rev protein in trans. Rev function was monitored in a cell line, HLfB, which contained a rev- mutant provirus. HLfB cells require the presence of rev for virus production, which was conveniently monitored by immunoblot detection of p24gag. Trans-dominant mutants were identified after expression in bacteria and delivery into HLfB cells by protoplast fusion. In addition, the trans-dominant phenotype was verified by expression of the mutant proteins in HLfB cells after cotransfection. These studies define a region between amino acid residues 81 and 88 of rev, in which different mutations result in proteins capable of inhibiting Rev function.  相似文献   

16.
AIDS in Africa is characterized by the equal distribution of mortality between the two genders because of highly virulent human immunodeficiency virus type 1 (HIV-1) strains. The viral protein Tat trans-activates viral gene expression and is essential for HIV-1 replication. We chemically synthesized six different Tat proteins, with sizes ranging from 86 to 101 residues, from HIV-1 isolates located in different parts of the world including highly virulent African strains. Protein purification, mass spectroscopy, and amino acid analysis showed that the synthesis was successful in each case but with different yields. We show that all have the ability to bind the HIV long terminal repeat (LTR) RNA trans-activation response element (TAR) region, involved in Tat-mediated trans-activation, but structural heterogeneities are revealed by circular dichroism. These Tat synthetic proteins cross membranes but differ in their ability to trans-activate an HIV LTR-reporter gene in stably transfected HeLa cells. Two Tat proteins from virulent African HIV-1 strains were much more active than those from Europe and the United States. The interferon-induced kinase (PKR), involved in cell antiviral defense, phosphorylates only Tat variants corresponding to less or nonvirulent HIV-1 isolates. Our results indicate that the high virulence of some African HIV-1 strains could be related to Tat activity.  相似文献   

17.
18.
19.
20.
The trans-activator Tat proteins coded by human immunodeficiency virus type 1 (HIV-1) and HIV-2 appear to be similar in structure and function. However, the Tat protein of HIV-2 (Tat2) activates the HIV-1 long terminal repeat (LTR) less efficiently than Tat1 (M. Emerman, M. Guyader, L. Montagnier, D. Baltimore, and M. A. Muesing, EMBO J. 6:3755-3760, 1987). To determine the functional domain of Tat2 which contributes to this incomplete reciprocity, we have carried out domain substitution between Tat1 and Tat2 by exchanging the basic domains involved in Tat interaction with its target trans-activation-response (TAR) RNA structure. Our results indicate that Tat1 proteins containing substitutions of either 8 or 14 amino acids of the basic domain of Tat2 exhibited reduced trans activation of the HIV-1 LTR by about 1/20 or one-fourth the level induced by wt Tat1. In contrast, Tat2 containing a substitution of the 9-amino-acid basic domain of Tat1 trans activated HIV-1 LTR like native Tat1. A substitution of the highly conserved core domain of Tat2 with that of Tat1 did not have any significant effect on trans activation of the HIV-1 LTR. These results indicate that the basic domain of Tat2 contributes to its inefficient trans activation of the HIV-1 LTR. Mutation of an acidic residue (Glu) located between the core domain and the Arg-rich basic domain of Tat2 at position 77 to a Gly residue increased the activity of Tat2 substantially. These results further suggest that the presence of an acidic residue (Glu) adjacent to Arg-rich sequences may at least partially contribute to the reduced activity of the Tat2 basic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号