首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Bacteria exposed to transient host environments can elicit adaptive responses by triggering the differential expression of genes via two-component signal transduction systems. This study describes the vicRK signal transduction system in Streptococcus mutans. A vicK (putative histidine kinase) deletion mutant (SmuvicK) was isolated. However, a vicR (putative response regulator) null mutation was apparently lethal, since the only transformants isolated after attempted mutagenesis overexpressed all three genes in the vicRKX operon (Smuvic+). Compared with the wild-type UA159 strain, both mutants formed aberrant biofilms. Moreover, the vicK mutant biofilm formed in sucrose-supplemented medium was easily detachable relative to that of the parent. The rate of total dextran formation by this mutant was remarkably reduced compared to the wild type, whereas it was increased in Smuvic+. Based on real-time PCR, Smuvic+ showed increased gtfBCD, gbpB, and ftf expression, while a recombinant VicR fusion protein was shown to bind the promoter regions of the gtfB, gtfC, and ftf genes. Also, transformation efficiency in the presence or absence of the S. mutans competence-stimulating peptide was altered for the vic mutants. In vivo studies conducted using SmuvicK in a specific-pathogen-free rat model resulted in significantly increased smooth-surface dental plaque (Pearson-Filon statistic [PF], <0.001). While the absence of vicK did not alter the incidence of caries, a significant reduction in SmuvicK CFU counts was observed in plaque samples relative to that of the parent (PF, <0.001). Taken together, these findings support involvement of the vicRK signal transduction system in regulating several important physiological processes in S. mutans.  相似文献   

4.
5.
Goodman SD  Gao Q 《Plasmid》2000,43(1):85-98
We have characterized the promoter regions of the gtfB and gtfC genes from Streptococcus mutans GS-5. Using a plasmid-based reporter system, we discovered that the gtfC promoter is an order of magnitude stronger than the gtfB promoter. In addition, we found that a variety of growth conditions failed to affect or discriminate between the expression of the two promoters. Only during the various phases of growth could we demonstrate significant changes in expression. We conclude that gtfB and gtfC promoters are coordinately expressed.  相似文献   

6.
In Streptococcus mutans, both competence and bacteriocin production are controlled by ComC and the ComED two-component signal transduction system. Recent studies of S. mutans suggested that purified ComE binds to two 11-bp direct repeats in the nlmC-comC promoter region, where ComE activates nlmC and represses comC. In this work, quantitative binding studies and DNase I footprinting analysis were performed to calculate the equilibrium dissociation constant and further characterize the binding site of ComE. We found that ComE protects sequences inclusive of both direct repeats, has an equilibrium dissociation constant in the nanomolar range, and binds to these two direct repeats cooperatively. Furthermore, similar direct repeats were found upstream of cslAB, comED, comX, ftf, vicRKX, gtfD, gtfB, gtfC, and gbpB. Quantitative binding studies were performed on each of these sequences and showed that only cslAB has a similar specificity and high affinity for ComE as that seen with the upstream region of comC. A mutational analysis of the binding sequences showed that ComE does not require both repeats to bind DNA with high affinity, suggesting that single site sequences in the genome may be targets for ComE-mediated regulation. Based on the mutational analysis and DNase I footprinting analysis, we propose a consensus ComE binding site, TCBTAAAYSGT.  相似文献   

7.
LuxS-based signaling affects Streptococcus mutans biofilm formation   总被引:4,自引:0,他引:4  
Streptococcus mutans is implicated as a major etiological agent in human dental caries, and one of the important virulence properties of this organism is its ability to form biofilms (dental plaque) on tooth surfaces. We examined the role of autoinducer-2 (AI-2) on S. mutans biofilm formation by constructing a GS-5 luxS-null mutant. Biofilm formation by the luxS mutant in 0.5% sucrose defined medium was found to be markedly attenuated compared to the wild type. Scanning electron microscopy also revealed that biofilms of the luxS mutant formed larger clumps in sucrose medium compared to the parental strain. Therefore, the expression of glucosyltransferase genes was examined and the gtfB and gtfC genes, but not the gtfD gene, in the luxS mutant were upregulated in the mid-log growth phase. Furthermore, we developed a novel two-compartment system to monitor AI-2 production by oral streptococci and periodontopathic bacteria. The biofilm defect of the luxS mutant was complemented by strains of S. gordonii, S. sobrinus, and S. anginosus; however, it was not complemented by S. oralis, S. salivarius, or S. sanguinis. Biofilm formation by the luxS mutant was also complemented by Porphyromonas gingivalis 381 and Actinobacillus actinomycetemcomitans Y4 but not by a P. gingivalis luxS mutant. These results suggest that the regulation of the glucosyltransferase genes required for sucrose-dependent biofilm formation is regulated by AI-2. Furthermore, these results provide further confirmation of previous proposals that quorum sensing via AI-2 may play a significant role in oral biofilm formation.  相似文献   

8.
Sequence analysis of the gtfC gene from Streptococcus mutans GS-5   总被引:38,自引:0,他引:38  
S Ueda  T Shiroza  H K Kuramitsu 《Gene》1988,69(1):101-109
The nucleotide sequence of the gtfC gene, which codes for glucosyltransferase synthesizing both water-soluble and water-insoluble glucans, and its flanking regions from Streptococcus mutans GS-5, was determined. Although the gtfC gene (4218 bp) is preceded by a Shine-Dalgarno (SD) sequence, a promoter-like sequence for this gene could not be identified. The gtfC gene product composed of 1375 amino acid residues (approx. 153 kDa) is generally hydrophilic with three small hydrophobic domains. Two direct repeating units were found near the C terminus of the peptide. The gtfC gene has extensive homology with the previously sequenced gtfB gene. The homologous regions correspond to the signal sequence, an internal region, and the direct repeating units of the peptide. An open reading frame preceded by an SD sequence and followed by an inverted repeat sequence was found immediately downstream from the gtfC gene. The combined sequences of the gtfB and gtfC genes as well as flanking regions suggest that the two gtf genes and the small downstream coding region could be coordinately expressed within an operon. The possible evolution of the gtfC gene in S. mutans GS-5 is also discussed.  相似文献   

9.
Spontaneous mutants of Streptococcus mutans GS-5 defective in sucrose-dependent colonization of smooth surfaces are generated at frequencies above the spontaneous mutation rate. Southern blot analysis of such mutants suggested rearrangement of the genes coding for glucosyltransferase (GTF) activity. Two strain GS-5 homologous tandem genes, gtfB and gtfC, coding for GTF-I and GTF-S activities respectively, were demonstrated to undergo recombination when introduced into recombination-proficient Escherichia coli transformants. However, the two genes were quite stable when transformed on a single DNA fragment into a recA mutant of E. coli. The DNA fragment coding for GTF activity from one S. mutans colonization-defective mutant, SP2, was isolated and shown also to have undergone recombination between the gtfB and gtfC genes, resulting in reduced GTF activity. These results are discussed relative to the in vivo generation of colonization-defective mutants in cultures of S. mutans.  相似文献   

10.
Abstract We have constructed a panel of mutants of S. mutans V403 which are defective in one or more of the glucosyltransferase genes ( gtfB,C or D ) or the fructosyltransferase gene ( ftf ). These strains have been tested for virulence in a gnotobiotic rat caries model with reference to both buccal (smooth surface) and sulcal (pit and fissure) carious lesions. Our data suggest differing roles for degradable and non-degradable polymers at buccal and sulcal sites. Non-degradable polymers (made by products of the gtfB and C genes) contributed significantly to the severity of smooth surface lesions. However, our studies suggested their role in pit and fissure lesions was not as important as the role of degradable polymers. Specifically, a mutant deficient in the major insoluble glucan synthesizing activity (product of the gtfB gene) was 25% more cariogenic on sulcal surfaces than was the wild-type V403 strain. We propose that extracellular glucosyltransferases and fructosyltransferase compete for sucrose and that this competition influences pathogenicity at differing tooth sites.  相似文献   

11.
The production of water-insoluble glucan (WIG) enables Streptococcus mutans to survive and persist in the oral niche. WIG is produced from sucrose by glucosyltransferase encoded tandemly by the highly homologous gtfB and gtfC genes. Conversely, a single hybrid gene from the endogenous recombination of gtfB and gtfC is easily generated using RecA, resulting in S. mutans UA159 WIG- (rate of ~1.0×10(-3)). The pneumococcus recA gene is regulated as a late competence gene. comX gene mutations did not lead to the appearance of WIG- cells. The biofilm collected from the flow cell had more WIG- cells than among the planktonic cells. Among the planktonic cells, WIG- cells appeared after 16 h and increased ~10-fold after 32 h of cultivation, suggesting an increase in planktonic WIG- cells after longer culture. The strain may be derived from the biofilm environment. In coculture with donor WIG+ and recipient WIG- cells, the recipient cells reverted to WIG+ and acquired an intact gtfBC region from the environment, indicating that the uptake of extracellular DNA resulted in the phenotypic change. Here we demonstrate that endogenous DNA rearrangement and uptake of extracellular DNA generate WIG- cells and that both are induced by the same signal transducer, the com system. Our findings may help in understanding how S. mutans can adapt to the oral environment and may explain the evolution of S. mutans.  相似文献   

12.
Streptococcus mutans is considered one of the primary etiologic agents of dental caries. Previously, we characterized the VicRK two-component signal transduction system, which regulates multiple virulence factors of S. mutans. In this study, we focused on the vicX gene of the vicRKX tricistronic operon. To characterize vicX, we constructed a nonpolar deletion mutation in the vicX coding region in S. mutans UA159. The growth kinetics of the mutant (designated SmuvicX) showed that the doubling time was longer and that there was considerable sensitivity to paraquat-induced oxidative stress. Supplementing a culture of the wild-type UA159 strain with paraquat significantly increased the expression of vicX (P < 0.05, as determined by analysis of variance [ANOVA]), confirming the role of this gene in oxidative stress tolerance in S. mutans. Examination of mutant biofilms revealed architecturally altered cell clusters that were seemingly denser than the wild-type cell clusters. Interestingly, vicX-deficient cells grown in a glucose-supplemented medium exhibited significantly increased glucosyltransferase B/C (gtfB/C) expression compared with the expression in the wild type (P < 0.05, as determined by ANOVA). Moreover, a sucrose-dependent adhesion assay performed using an S. mutans GS5-derived vicX null mutant demonstrated that the adhesiveness of this mutant was enhanced compared with that of the parent strain and isogenic mutants of the parent strain lacking gtfB and/or gtfC. Also, disruption of vicX reduced the genetic transformability of the mutant approximately 10-fold compared with that of the parent strain (P < 0.05, as determined by ANOVA). Collectively, these findings provide insight into important phenotypes controlled by the vicX gene product that can impact S. mutans pathogenicity.  相似文献   

13.
Glucosyltransferases (Gtfs) and fructosyltransferase (Ftf), and the exopolysaccharides they produce, facilitate bacterial adherence and biofilm formation, and enhance the virulence of Streptococcus mutans. In this study, we used continuous chemostat cultures and reporter gene fusions to study the expression of ftf and gtfBC in response to carbohydrate availability and pH, and to asses the role of a protein similar to catabolite control protein A (CcpA), RegM, in regulation of these genes. Expression of ftf was efficient at pH 7.0 and 6.0, but was repressed at pH 5.0 under glucose-excess conditions. At pH 7.0, ftf expression was 5-fold lower under glucose-limiting conditions than in cells growing with an excess of glucose. Expression of gtfBC was also sensitive, albeit to a lesser extent, to pH and glucose availability. Inactivation of regM resulted in decreases of as much as 10-fold in both ftf and gtfBC expression, depending on growth conditions. These findings reinforce the importance of pH and carbohydrate availability for expression of two primary virulence attributes of S. mutans and reveal a critical role for RegM in regulation of expression of both gtfBC and ftf.  相似文献   

14.
15.
In a chemosystematic investigation of Digitalideae (Plantaginaceae), the water-soluble part of extracts of two species of Digitalis, two species of Isoplexis, as well as Erinus alpinus and Lafuentea rotundifolia were studied with regard to their content of main carbohydrates, iridoids and caffeoyl phenylethanoid glycosides (CPGs). Digitalis and Isoplexis contained sorbitol, cornoside and a number of other phenylethanoid glycosides including the new tyrosol beta-D-mannopyranoside, sceptroside but were found to lack iridoid glucosides. Erinus contained mainly glucose, the new 8,9-double bond iridoid, erinoside, and a number of known iridoid glucosides including two esters of 6-rhamnopyranosylcatalpol, as well as the CPG poliumoside. Finally, Lafuentea was characterized by the presence of glucose, aucubin and cryptamygin B but apparently lacked CPGs. The chemosystematic significance of the isolated compounds is discussed.  相似文献   

16.
Streptococcus mutans produces a fructosyltransferase (FTF) enzyme, which synthesizes fructan polymers from sucrose. Fructans contribute to the virulence of the biofilm by acting as binding sites for S. mutans adhesion and as extracellular nutrition reservoir for the oral bacteria. Antibodies raised against a recombinant S. mutans FTF were used to test the effect of glucose, fructose, and sucrose on FTF expression in S. mutans GS-5 biofilms. Biofilms formed in the presence of fructose and glucose showed a higher ratio of FTF compared to biofilms formed in the presence of sucrose. Confocal laser scanning microscopy images of S. mutans biofilms indicated a carbohydrate-dependent FTF distribution. The layer adjacent to the surface and those at the liquid interface displayed high amounts cell-free FTF with limited amount of bacteria while the in-between layers demonstrated both cell-free FTF and cells expressing cell-surface FTF. Biofilm of S. mutans grown on hydroxyapatite surfaces expressed several FTF bands with molecular masses of 160, 125, 120, 100, and 50 kDa, as detected by using FTF specific antibodies. The results show that FTF expression and distribution in S. mutans GS-5 biofilms is carbohydrate regulated.  相似文献   

17.
Biofouling in the oral cavity often causes serious problems. The ability of Streptococcus mutans to synthesize extracellular glucans from sucrose using glucosyltransferases (gtfs) is vital for the initiation and progression of dental caries. Recently, it was demonstrated that some biological compounds, such as secondary metabolites of probiotic bacteria, have an anti-biofouling effect. In this study, S. mutans was investigated for the anti-biofouling effect of Lactobacillus fermentum (L.f.)-derived biosurfactant. It was hypothesized that two enzymes produced by S. mutans, glucosyltransferases B and C, would be inhibited by the L.f.-biosurfactant. When these two enzymes were inhibited, fewer biofilms (or none) were formed. RNA was extracted from a 48-h biofilm of S. mutans formed in the presence or absence of L.f. biosurfactant, and the gene expression level of gtfB/C was quantified using the real-time polymerase chain reaction (RT-PCR). L.f. biosurfactant showed substantial anti-biofouling activity because it reduced the process of attachment and biofilm production and also showed a reduction in gtfB/C gene expression (P value?相似文献   

18.
19.
Sugar alcohols find applications in pharmaceuticals, oral and personal care products, and as intermediates in chemical synthesis. While industrial-scale production of these compounds has generally involved catalytic hydrogenation of sugars, microbial-based processes receive increasing attention. The past few years have seen a variety of interesting metabolic engineering efforts to improve the capabilities of bacteria and yeasts to overproduce xylitol, mannitol, and sorbitol. Examples include heterologous expression of yeast xylose reductase in Escherichia coli for the production of xylitol, coexpression of formate dehydrogenase, mannitol dehydrogenase, and a glucose facilitator protein in Corynebacterium glutamicum for mannitol production from fructose and formate, and overexpression of sorbitol-6-phosphate dehydrogenase in lactate dehydrogenase-deficient Lactobacillus plantarum to achieve nearly maximum theoretical yields of sorbitol from glucose.  相似文献   

20.
Wang W  Tao R  Tong Z  Ding Y  Kuang R  Zhai S  Liu J  Ni L 《Peptides》2012,33(2):212-219
Dental caries and pulpal diseases are common oral bacterial infectious diseases. Controlling and reducing the causative pathogens, such as Streptococcus mutans and Enterococcus faecalis, is a key step toward prevention and treatment of the two diseases. Chrysophsin-1 is a cationic antimicrobial peptide having broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. In this study, we investigated the antibacterial activity of chrysophsin-1 against several oral pathogens and S. mutans biofilms and performed a preliminary study of the antimicrobial mechanism. Cytotoxic activity of chrysophsin-1 against human gingival fibroblasts (HGFs) was investigated. Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and time-kill assay were used to evaluate the killing effect of chrysophsin-1. Scanning electron microscopy (SEM) was used to analyze morphological and membrane change in oral pathogens. Live/Dead staining, in conjunction with confocal scanning laser microscopy (CSLM), was used to observe and analyze S. mutans biofilms. MIC and MBC results demonstrated that chrysophsin-1 had different antimicrobial activities against the tested oral microbes. Lysis and pore formation of the cytomembrane were observed following treatment of the bacteria with chrysophsin-1 for 4h or 24h by SEM. Furthermore, CLSM images showed that chrysophsin-1 remarkably reduced the viability of cells within biofilms and had a significantly lethal effect against S. mutans biofilms. Toxicity studies showed that chrysophsin-1 at concentration between 8 μg/ml and 32 μg/ml had little effect on viability of HGFs in 5 min. Our findings suggest that chrysophsin-1 may have potential clinical applications in the prevention and treatment of dental caries and pulpal diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号