首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Microsurgical toe-to-hand transfers may provide improved hand function in children with absent digits. To date, documentation of the growth potential of these transferred digits has not been performed. This study reviewed the authors' series of pediatric toe-to-hand transfers, with specific attention paid to measuring growth by radiographic analysis. From 1995 to 2000, 23 toe-to-hand transfers were performed in 18 children. Age at time of transfer ranged from 2.8 to 13 years. Indications included constriction band syndrome, transverse deficiency, longitudinal deficiency, traumatic amputation, and vascular malformation. The transfers were successful in 22 of 23 procedures (96 percent success rate). Radiographic analysis of growth was performed using three criteria: (1) appearance of open epiphyseal plates, (2) comparison with preoperative radiographs, and (3) comparison with radiographs of the contralateral control toe. Epiphyseal plates remained open on postoperative radiographs in 27 of 28 phalanges (96 percent) at a mean of 12 months' follow-up (range, 1 to 36 months). The preoperative foot radiographs were compared with serial radiographs of the transferred toe over time. In 10 toe transfers with follow-up greater than 6 months (mean, 21 months), nine patients had increased bony length in the transferred digit. In four patients, radiographs of the toe transfer were compared with radiographs of the corresponding toe on the opposite foot. With a mean follow-up of 29 months, all patients had equal length measurements of the toe transfer with the contralateral toe control. These data provide objective evidence that digital growth potential is preserved in toe-to-hand transfers. Furthermore, this bone growth is comparable with that of the corresponding toe on the contralateral foot. Therefore, microsurgical toe-to-hand transfers may provide children with extra digits that maintain growth and improve hand function.  相似文献   

2.
The results of microvascular transfers of growing ulnas in puppy forelegs have been studied. These transfers were carried out both heterotopically and orthotopically. The growth in the revascularized bone grafts has been compared to that in heterotopic, nonvascularized ulna transfers and to normal ulnar growth. The growth in the vascularized bone grafts was significantly greater than in the nonvascularized grafts, but significantly less than in normal ulnar growth. A metaphyseal contribution to the blood supply of the growing portion of long bones is suggested.  相似文献   

3.
Metacarpophalangeal joints in dogs were transplanted with microvascular anastomoses. Some were transplanted as half-joints, others as whole joints, and these dogs were followed for up to 5 1/2 months. When a half-joint was transplanted within the foot, the joint movement became restricted but the vascularized half-joints were well preserved with only slight damage and well-preserved epiphyseal plates--compared to severe damage of the articular cartilage and destruction of the epiphyseal plates in the non-vascularized joint transplants. Vascularized whole joint transplants within the foot were indistinguishable macroscopically and microscopically from normal joints, and they had only a slight restriction of joint movement. They took up tetracycline from the circulation, demonstrating their viability.  相似文献   

4.
The growth (i.e. increase of external dimensions) of long bones and vertebrae occurs longitudinally by endochondral ossification at the growth plates, and radially by apposition of bone at the periosteum. It is thought that mechanical loading influences the rate of longitudinal growth. The 'Hueter-Volkmann Law' proposes that growth is retarded by increased mechanical compression, and accelerated by reduced loading in comparison with normal values. The present understanding of this mechanism of bone growth modulation comes from a combination of clinical observation (where altered loading and growth is implicated in some skeletal deformities) and animal experiments in which growth plates of growing animals have been loaded. The gross effect of growth modulation has been demonstrated qualitatively and semi-quantitatively. Sustained compression of physiological magnitude inhibits growth by 40% or more. Distraction increases growth rate by a much smaller amount. Experimental studies are underway to determine how data from animal studies can be scaled to other growth plates. Variables include: differing sizes of growth plate, different anatomical locations, different species and variable growth rate at different stages of skeletal maturity. The two major determinants of longitudinal growth are the rate of chondrocytic proliferation and the amount of chondrocytic enlargement (hypertrophy) in the growth direction. It is largely unknown what are the relative changes in these key variables in mechanically modulated growth, and what are the signaling pathways that produce these changes.  相似文献   

5.
The influence of age and maturity on longitudinal skeletal growth was studied using heterotopic limb transplantation with microvascular anastomoses between syngeneic male Lewis rats of different ages. Longitudinal growth of the tibia and growth plate morphology were compared after transplantation between isochronografts (juvenile-to-juvenile and adult-to-adult), heterochronografts (juvenile-to-adult), and unoperated limbs. Four animals comprised each experimental group, except for the juvenile-to-adult heterochronograft group, which had six animals. Limbs were measured at 2-week intervals until sacrifice at 7 weeks. All transplanted limbs demonstrated significant longitudinal growth with maintenance of growth plate morphology and columnar organization. Despite being subjected to an adult hormonal environment, the juvenile tibias transplanted into adult hosts grew 12.0 +/- 1 mm--not significantly different from the unoperated juvenile controls, which grew 12.2 +/- 1 mm. Adult isochronografts showed continued growth of 3.1 mm, which was not significantly different from the unoperated control. Juvenile isochronografts demonstrated decreased growth when compared to unoperated limbs. Maintenance of growth in juvenile limbs transplanted to adults suggests a permissive effect of the hormonal milieu and that ultimate skeletal length is primarily determined by factors inherent in each physis. The use of vascularized transplantation of limbs in syngeneic animals of different ages offers a unique method of altering the hormonal and maturational milieu of the growth plate.  相似文献   

6.
Most of our bones form through the process of endochondral ossification, which is tightly regulated by the activity of the cartilage growth plate. Chondrocyte maturation through the various stages of growth plate physiology ultimately results in hypertrophy. Chondrocyte hypertrophy is an essential contributor to longitudinal bone growth, but recent data suggest that these cells also play fundamental roles in signaling to other skeletal cells, thus coordinating endochondral ossification. On the other hand, ectopic hypertrophy of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis. Thus, a better understanding of the processes that control chondrocyte hypertrophy in the growth plate as well as in articular cartilage is required for improved management of both skeletal growth disorders and osteoarthritis. This review summarizes recent findings on the regulation of hypertrophic chondrocyte differentiation, the cellular mechanisms involved in hypertrophy, and the role of chondrocyte hypertrophy in skeletal physiology and pathophysiology. Birth Defects Research (Part C) 102:74–82, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Whole 3 g extensor digitorum longus (EDL) muscles of cats were autotransplanted. The EDL muscles were either transplanted without denervation prior to transplantation (normal transplants) or denervated 3 to 4 weeks prior to transplantation (pre-denervated transplants). A few peripheral skeletal muscle fibers survived transplantation but most fibers degenerated and then regenerated as the transplant became revascularized. Both normal and pre-denervated muscles regenerated successfully and by 50 days after transplantation fibers which had reinnervated showed high and low myofibrillar ATPase activity. Compared to controls, the smaller mean fiber cross-sectional area of the transplants was due to the large number of small fibers, but some fibers in the transplant were larger than any fibers observed in the controls. Transplants regained 57 percent of the muscle mass of the controls. Contraction and half relaxation times of transplanted muscles were slower than controls, but peak isometric tetanus tension per cm2 of muscle was nearly normal. Fifty to 170 days after transplantation, muscles showed low oxidative capacity and fatigued rapidly.  相似文献   

8.
Exquisite control of chondrocyte function in the zone of hypertrophy results in expansive growth of cartilaginous growth plates, and is a prerequisite for normal skeletal lengthening. We hypothesize that hyaluronan-mediated hydrostatic pressure causes lacunae expansion in the zone of hypertrophy; an important mechanism in cartilaginous growth plate and associated skeletal expansion. The role of hyaluronan and CD44 in this mechanism was studied using organ culture of the bipolar cranial base synchondroses. Hyaluronan was present in the hypertrophic zones, pericellular to the hypertrophic chondrocytes, while no hyaluronan was detected in the resting, proliferating and maturing zones. This localization of hyaluronan was associated with increased lacunae size, suggesting that chondrocytes deposit and retain pericellular hyaluronan as they mature. In comparison, Toluidine Blue staining was associated with the territorial matrix. Hyaluronidase, the hyaluronan-degrading enzyme, and CD44, the receptor for hyaluronan which also participates in the uptake and degradation of hyaluronan, were co-localized within the zone of ossification. This pattern of expression suggests that cells in the early zone of ossification internalize and degrade hyaluronan through a CD44-mediated mechanism. Treatment of the cultured segments with either Streptomyces hyaluronidase or hyaluronan hexasaccharides inhibited lacunae expansion. These observations demonstrate that hyaluronan-mediated mechanisms play an important role in controlling normal skeletal lengthening.  相似文献   

9.
Longitudinal bone growth depends upon the execution of an intricate series of cellular activities by epiphyseal growth plate chondrocytes. In order to better understand these coordinated events, microarray analysis was used to compare gene expression in chondrocytes isolated from the proliferative and hypertrophic zones of the avian growth plate. RT-PCR was used to confirm the identity of a select number of genes. The expression of 745 genes was found to differ 3-fold or greater at the 0.05 level of probability. Transferrin was the most highly up-regulated (321-fold) gene associated with chondrocyte hypertrophy. Immunohistochemistry localized this peptide adjacent to the penetrating blood vessels in the growth plate of 3-week-old chicks. Fibulin, OC-116, DMP-1 and PHEX were among the expanded number of genes associated with extracellular matrix metabolism. The presence of NELL2, ATOH8 and PLEXIN suggests a neuronal involvement in growth plate physiology. In addition, the expression of a large number of genes associated with angiogenesis and cellular stress was up-regulated. These processes are important to the physiology and survival of chondrocytes in the unique and stressful environment of the epiphyseal growth plate.  相似文献   

10.
Fibroblast growth factor receptor 3 (FGFR3) signaling pathways are essential for normal longitudinal bone growth. Mutations in this receptor lead to various human growth disorders, including Achondroplasia, disproportionately short-limbed dwarfism, characterized by narrowing of the hypertrophic region of the epiphyseal growth plates. Here we find that FGF9, a preferred ligand for FGFR3 rapidly induces the upregulation and secretion of the matrix resident phosphoprotein, osteopontin (OPN) in cultured chicken chondrocytes. This effect was observed as early as two hours post stimulation and at FGF9 concentrations as low as 1.25 ng/ml at both mRNA and protein levels. OPN expression is known to be associated with chondrocyte and osteoblast differentiation and osteoclast activation. Unexpectedly, FGF9 induced OPN was accompanied by inhibition of differentiation and increased proliferation of the treated chondrocytes. Moreover, FGF9 stimulated OPN expression irrespective of the differentiation stage of the cells or culture conditions. In situ hybridization analysis of epiphyseal growth plates from chicken or mice homozygous for the Achondroplasia, G369C/mFGFR3 mutation demonstrated co-localization of OPN expression and osteoclast activity, as evidenced by tartarate resistant acid phosphatase positive cells in the osteochondral junction. We propose that FGF signaling directly activates OPN expression independent of chondrocytes differentiation. This may enhance the recruitment and activation of osteoclasts, and increase in cartilage resorption and remodeling in the chondro-osseus border.  相似文献   

11.
《The Journal of cell biology》1994,126(6):1611-1623
To elucidate the role of PTHrP in skeletal development, we examined the proximal tibial epiphysis and metaphysis of wild-type (PTHrP-normal) 18- 19-d-old fetal mice and of chondrodystrophic litter mates homozygous for a disrupted PTHrP allele generated via homologous recombination in embryonic stem cells (PTHrP-depleted). In the PTHrP-normal epiphysis, immunocytochemistry showed PTHrP to be localized in chondrocytes within the resting zone and at the junction between proliferative and hypertrophic zones. In PTHrP-depleted epiphyses, a diminished [3H]thymidine-labeling index was observed in the resting and proliferative zones accounting for reduced numbers of epiphyseal chondrocytes and for a thinner epiphyseal plate. In the mutant hypertrophic zone, enlarged chondrocytes were interspersed with clusters of cells that did not hypertrophy, but resembled resting or proliferative chondrocytes. Although the overall content of type II collagen in the epiphyseal plate was diminished, the lacunae of these non-hypertrophic chondrocytes did react for type II collagen. Moreover, cell membrane-associated chondroitin sulfate immunoreactivity was evident on these cells. Despite the presence of alkaline phosphatase activity on these nonhypertrophic chondrocytes, the adjacent cartilage matrix did not calcify and their persistence accounted for distorted chondrocyte columns and sporadic distribution of calcified cartilage. Consequently, in the metaphysis, bone deposited on the irregular and sparse scaffold of calcified cartilage and resulted in mixed spicules that did not parallel the longitudinal axis of the tibia and were, therefore, inappropriate for bone elongation. Thus, PTHrP appears to modulate both the proliferation and differentiation of chondrocytes and its absence alters the temporal and spatial sequence of epiphyseal cartilage development and of subsequent endochondral bone formation necessary for normal elongation of long bones.  相似文献   

12.
The morphologic and histologic examination of over fifty-five foci of metaphyseal/epiphyseal osteomyelitis and eleven septic joints from five cases of neonatal osteomyelitis and joint sepsis are described in detail. The severity of the bone and joint involvement varied considerably, allowing a better understanding of the pathophysiologic sequence of events in the disease in the neonatal time period. Of particular importance were (1) the multifocal nature of the disease, (2) the highly variable destruction of the growth plate (physis) by several discrete mechanisms, and (3) the invasion of the chondroepiphysis through the cartilage canal systems. Two of the cases died from respiratory complications several months following presumed successful treatment of their skeletal infections. S&pecimens showed significant growth plate damage continuing beyond the neonatal period. These findings support the need for rapid diagnosis and drainage, whenever feasible, to prevent long-term skeletal growth damage. The severity of involvement also should emphasize that this disease, especially in the neonate, is not an innocuous condition, as a recent review suggested.  相似文献   

13.
Sotos syndrome (SoS) is characterized by tall stature, characteristic craniofacial features and mental retardation. It is caused by haploinsufficiency of the NSD1 gene. In this study, our objective was to identify downstream effectors of NSD1 and to map these effectors in signaling pathways associated with growth. Genome-wide expression studies were performed on dermal fibroblasts from SoS patients with a confirmed NSD1 abnormality. To substantiate those results, phosphorylation, siRNA and transfection experiments were performed. A significant association was demonstrated with the Mitogen-Activated Protein Kinase (MAPK) pathway. Members of the fibroblast growth factor family such as FGF4 and FGF13 contributed strongly to the differential expression in this pathway. In addition, a diminished activity state of the MAPK/ERK pathway was demonstrated in SoS. The Ras Interacting Protein 1 (RASIP1) was identified to exhibit upregulated expression in SoS. It was shown that RASIP1 dose-dependently potentiated bFGF induced expression of the MAPK responsive SBE reporter providing further support for a link between NSD1 and the MAPK/ERK signaling pathway. Additionally, we demonstrated NSD1 expression in the terminally differentiated hypertrophic chondrocytes of normal human epiphyseal growth plates. In short stature syndromes such as hypochondroplasia and Noonan syndrome, the activation level of the FGF-MAPK/ERK-pathway in epiphyseal growth plates is a determining factor for statural growth. In analogy, we propose that deregulation of the MAPK/ERK pathway in SoS results in altered hypertrophic differentiation of NSD1 expressing chondrocytes and may be a determining factor in statural overgrowth and accelerated skeletal maturation in SoS.  相似文献   

14.
Despite the continued presence of growth plates in aged rats, longitudinal growth no longer occurs. The aims of this study were to understand the reasons for the cessation of growth. We studied the growth plates of femurs and tibiae in Wistar rats aged 62-80 weeks and compared these with the corresponding growth plates from rats aged 2-16 weeks. During skeletal growth, the heights of the plates, especially that of the hypertrophic zone, reflected the rate of bone growth. During the period of decelerating growth, it was the loss of large hydrated chondrocytes that contributed most to the overall decrease in the heights of the growth plates. In the old rats we identified four categories of growth plate morphology that were not present in the growth plates of younger rats: (a). formation of a bone band parallel to the metaphyseal edge of the growth plate, which effectively sealed that edge; (b). extensive areas of acellularity, which were resistant to resorption and/or remodeling; (c). extensive remodeling and bone formation within cellular regions of the growth plate; and (d). direct bone formation by former growth plate chondrocytes. These processes, together with a loss of synchrony across the plate, would prevent further longitudinal expansion of the growth plate despite continued sporadic proliferation of chondrocytes.  相似文献   

15.
Gojo S  Umezawa A 《Human cell》2003,16(1):23-30
The phenomenon of regeneration is of growing interest to medical researchers. Until recently this was an area in which research in flatworms and newts predominated, but there is now a proliferation of research concerning regeneration in virtually all of the organs, not only the heart. One of the object is restoration of function to a failing heart through cell transplantation, and there have been many reports seeking donor sources of somatic stem cells, i.e.: stem cells in marrow or skeletal muscle and ES cells, beginning with those in embryonic myocardial cell transplant experiments. In particular, reports of mesenchymal stem cell differentiation into nerve cell, myocardial cell, skeletal muscle cell, and vascular endothelial cell series have drawn attention to cell plasticity, and clinical applications are awaited.  相似文献   

16.
Chondrocyte hypertrophy is crucial for endochondral ossification, but the mechanism underlying this process is not fully understood. We report that salt-inducible kinase 3 (SIK3) deficiency causes severe inhibition of chondrocyte hypertrophy in mice. SIK3-deficient mice showed dwarfism as they aged, whereas body size was unaffected during embryogenesis. Anatomical and histological analyses revealed marked expansion of the growth plate and articular cartilage regions in the limbs, accumulation of chondrocytes in the sternum, ribs and spine, and impaired skull bone formation in SIK3-deficient mice. The primary phenotype in the skeletal tissue of SIK3-deficient mice was in the humerus at E14.5, where chondrocyte hypertrophy was markedly delayed. Chondrocyte hypertrophy was severely blocked until E18.5, and the proliferative chondrocytes occupied the inside of the humerus. Consistent with impaired chondrocyte hypertrophy in SIK3-deficient mice, native SIK3 expression was detected in the cytoplasm of prehypertrophic and hypertrophic chondrocytes in developing bones in embryos and in the growth plates in postnatal mice. HDAC4, a crucial repressor of chondrocyte hypertrophy, remained in the nuclei in SIK3-deficient chondrocytes, but was localized in the cytoplasm in wild-type hypertrophic chondrocytes. Molecular and cellular analyses demonstrated that SIK3 was required for anchoring HDAC4 in the cytoplasm, thereby releasing MEF2C, a crucial facilitator of chondrocyte hypertrophy, from suppression by HDAC4 in nuclei. Chondrocyte-specific overexpression of SIK3 induced closure of growth plates in adulthood, and the SIK3-deficient cartilage phenotype was rescued by transgenic SIK3 expression in the humerus. These results demonstrate an essential role for SIK3 in facilitating chondrocyte hypertrophy during skeletogenesis and growth plate maintenance.  相似文献   

17.
The structure of the epiphyseal cartilage of the bullfrog Rana catesbeiana and its role in the growth of long bones were examined. The epiphyseal cartilage was inserted into the end of a tubular bone shaft, defining three regions: articular cartilage, lateral articular cartilage and growth cartilage. Joining the lateral cartilage to the bone was a fibrous layer of periosteum, rich in blood vessels. Osteoblasts with alkaline phosphatase activity were found on the surface of the periosteal bone, which presented a fibrous non-mineralised tip. The growth cartilage was inside the bone. The proliferative chondrocytes presented perpendicular separation of daughter cells and there was no columnar arrangement of the cells. Furthermore, chondrocyte hypertrophy was not associated with either calcification or endochondral ossification, in apparent contrast to the avian and mammalian models. Finally, there was no reinforcement system capable of directing cell volume increase into longitudinal growth. Since bone extension depends on the intramembranous ossification of the periosteum, the growth cartilage is inside and not at the end of the bone and the cells in the growth cartilage show no columnar arrangement and separate in a direction perpendicular to the long bone axis, we conclude that the growth cartilage mainly contributes to the radial expansion of the bone.  相似文献   

18.
Abnormalities of the epiphyseal growth plate that occur in collagen-induced arthritis (CIA) were studied. CIA was induced in 6-week-old Lewis rats by immunization with type II collagen. Radiographic examination revealed the early closure of the epiphyseal growth plate with growth retardation of the femur and tibia. Histological evaluation confirmed the early closure of the epiphyseal growth plate accompanied by decreased intensity of safranin-O staining indicating decreased amounts of proteoglycans in the extracellular matrix (ECM) of the cartilage. Immunohistochemical methods showed that the number of chondrocytes expressing matrix metalloproteinase (MMP)-3 and/or vascular endothelial growth factor (VEGF) increased in the growth plates of CIA rats. This study confirmed that disturbances of long bone growth with early closure of the epiphyseal growth plates occur in CIA. There appeared to be overexpression of MMP-3, which may be involved with proteoglycan degradation. Additionally, VEGF, which is associated with cartilage ossification and angiogenesis, might also play a role in this event. Further clarification of the mechanism of the growth disturbance in CIA may yield clinical benefits, especially in prevention of the premature closure of growth plate that is seen in juvenile rheumatoid arthritis and other diseases.  相似文献   

19.
To evaluate factors intrinsic to the regulation of craniofacial bone growth, we have developed a new experimental model in which the whole head of an infant rat is transplanted to the body of an isohistogenic rat by means of microvascular anastomosis. In our model, the transplanted head has neither scars nor any moving soft tissue that could modify growth around facial bones. Using this model, we evaluated the growth pattern of the craniofacial complex by means of serial roentgenographic cephalometrics. Ten transplantations were performed using 10-day-old rats as donors and 8-week-old rats as recipients. Cephalograms were taken from the lateral direction at 10, 20, 30, and 40 days after transplantation. Several reference points were selected to analyze the growth pattern. In the present study, we conclude that the size and form of the bony complex are mainly determined genetically. There is craniofacial skeletal growth in the absence of muscle function and brain growth. Further, both the nasal cartilage and the sutures appear to be autonomous growth centers having intrinsic growth potential. Genetic or epigenetic information plays an important role at the skeletal level, but it also affects the muscles through the medium of the muscular tonus responsible for posture and other related phenomena.  相似文献   

20.
Radiation therapy plays an important role as part of the multimodality treatment for a number of childhood malignancies. Dose-limiting complications of radiotherapy include skeletal abnormalities and disturbances in skeletal development within the irradiated field. The current study was undertaken to investigate the molecular mechanisms involved in radiation-induced arrest of bone growth. Our hypotheses were: (1) Expression of autocrine growth factors that regulate chondrocyte proliferation is inhibited by radiation in a specific pattern; (2) the disparity in radiosensitivity of growth plate chondrocytes and epiphyseal chondrocytes is due to differential modulation of autocrine growth factor expression by radiation. Given the important role these cells play in skeletal growth and development, we examined the comparative effects of radiation on expression of specific mitogenic growth factors in growth plate chondrocytes. The effect of radiation on the expression of autocrine/paracrine growth factors was examined in an established avian model of epiphyseal growth plate maturation. Exposure of growth plate chondrocytes to radiation resulted in a specific pattern of biochemical and morphological alterations that were dependent on dose and were progressive over time. While radiation did not affect the mRNA expression of some of the autocrine and paracrine factors important in endochondral ossification (such as FGF2 and TGFB isoforms), it did lead to a decrease in the mRNA expression of PTHrP, a critically important mitogen in growth plate chondrocytes, and a dose-dependent decrease in the PTH/PTHrP receptor mRNA. Interestingly, PTHrP mRNA levels were not affected in irradiated epiphyseal chondrocytes, the main source of PTHrP. Given evidence indicating a role for intracellular calcium levels in regulating PTHrP expression, basal calcium levels in irradiated growth plate chondrocytes and epiphyseal chondrocytes were examined 24 h after treatment. While cytosolic calcium levels were significantly higher in irradiated growth plate chondrocytes, they were not significantly affected in irradiated epiphyseal chondrocytes. The importance of calcium in mediating radiation damage to growth plate chondrocytes was further demonstrated by the finding that the addition of 4.0 mM EGTA (a calcium chelator) to the cell cultures before irradiation prevented the decrease in PTHrP mRNA levels. Since PTHrP up-regulates BCL2 levels and prevents growth plate chondrocyte maturation and apoptosis, BCL2 mRNA levels were examined in irradiated growth plate chondrocytes, and a dose-dependent decrease was found. An increase in apoptosis was further confirmed by a fivefold increase in caspase 3 levels in irradiated growth plate chondrocytes. The results of the current study suggest that radiation may interfere with proliferation of growth plate chondrocytes in part by causing an increase in cytosolic calcium levels which in turn leads to a decrease in PTHrP mRNA. Growth plate chondrocyte PTHrP receptor mRNA expression is also inhibited by radiation, further decreasing PTHrP signaling. Despite subtle differences between the chick and mammalian growth plates, further studies should provide an enhanced understanding of the mechanism(s) of radiation injury to the growth plate, as well as possibilities for new therapeutic strategies to protect the growing skeleton from the detrimental effects of radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号