首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complete serial sectioning of the medulla oblongata in monkey, cat, guinea pig, and japanese dancing mouse and incubation for somatostatin-immunoreaction was carried out. Numerous regions of the medulla oblongata such as the nucleus reticularis gigantocellularis, nucleus cuneatus et gracillis, nucleus raphe magnus, nucleus tractus solitarius, nucleus vestibularis, and parts of the oliva contain dense networks of somatostatin-immunoreactive nerve fibers. Cell bodies were seen in the nucleus reticularis medullae oblongatae. In the spinal cord the sections from each segment were analyzed, showing the highest concentrations of somatostatinergic fibers in the substantia gelantinosa of the columna dorsalis. Cell bodies were seen in the zona intermedia centralis, especially in the upper cervical segments. Many positive fibers were also seen in the entire zona intermedia and the columna ventralis. Especially prominent was the immunoreactivity in the zona intermediolateralis of the thoracic segments and the columna ventralis of the lower lumbar and sacral segments.  相似文献   

2.
Triepel  J.  Mader  J.  Weindl  A.  Heinrich  D.  Forssmann  W. G.  Metz  J. 《Histochemistry and cell biology》1984,81(6):509-516
Summary The occurrence and distribution of neurotensin-immunoreactive (NT-IR) perikarya was studied in the central nervous system of the guinea pig using a newly raised antibody (KN 1). Numerous NT-IR perikarya were found in the nuclei amygdaloidei, nuclei septi interventriculare, hypothalamus, nucleus parafascicularis thalami, substantia grisea centralis mesencephali, ventral medulla oblongata, nucleus solitarius and spinal cord. The distribution of NT-IR perikarya was similar to that previously described in the rat and monkey. In the gyrus cinguli, hippocampus and nucleus olfactorius, though, no NT-IR neurons were detected in this investigation. Additional immunoreactive perikarya, however, were observed in areas of the ventral medulla oblongata, namely in the nucleus paragigantocellularis, nucleus retrofacialis and nucleus raphe obscurus.The relevance of the NT-IR perikarya within the ventral medulla oblongata is discussed with respect to other neuropeptides, which are found in this area, and to cardiovascular regulation.Abbreviations abl nucleus amygdaloideus basalis lateralis - abm nucleus amygdaloideus basalis medialis - acc nucleus amygdaloideus centralis - aco nucleus amygdaloideus corticalis - ahp area posterior hypothalami - ala nucleus amygdaloideus lateralis anterior - alp nucleus amygdaloideus lateralis posterior - ame nucleus amygdaloideus medialis - atv area tegmentalis ventralis - bst nucleus proprius striae terminalis - CA commissura anterior - CC corpus callosum - cgld corpus geniculatum laterale dorsale - cglv corpus geniculatum laterale ventrale - cgm corpus geniculatum mediale - CHO chiasma opticum - CI capsula interna - co nucleus commissuralis - cod nucleus cochlearis dorsalis - cp nucleus caudatus/Putamen - cs colliculus superior - cu nucleus cuneatus - dmh nucleus dorsomedialis hypothalami - DP decussatio pyramidum - em eminentia mediana - ent cortex entorhinalis - epi epiphysis - FLM fasciculus longitudinalis medialis - fm nucleus paraventricularis hypothalami pars filiformis - FX fornix - gd gyrus dentatus - gp globus pallidus - gr nucleus gracilis - hl nucleus habenulae lateralis - hm nucleus habenulae medialis - hpe hippocampus - ift nucleus infratrigeminalis - io oliva inferior - ip nucleus interpeduncularis - LM lemniscus medialis - MT tractus mamillo-thalamicus - na nucleus arcuatus - nls nucleus lateralis septi - nms nucleus medialis septi - npca nucleus proprius commissurae anterioris - ns nucleus solitarius - n III nucleus nervi oculomotorii - nt V nucleus tractus spinalis nervi trigemini - ntm nucleus mesencephalicus nervi trigemini - osc organum subcommissurale - P tractus cortico-spinalis - PC pedunculus cerebri - PCI pedunculus cerebellaris inferior - pir cortex piriformis - pol area praeoptica lateralis - pom area praeoptica medialis - prt area praetectalis - pt nucleus parataenialis - pvh nucleus paraventricularis hypothalami - pvt nucleus paraventricularis thalami - r nucleus ruber - re nucleus reuniens - rgi nucleus reticularis gigantocellularis - rl nucleus reticularis lateralis - rm nucleus raphe magnus - ro nucleus raphe obscurus - rp nucleus raphe pallidus - rpc nucleus reticularis parvocellularis - rpgc nucleus reticularis paragigantocellularis - sch nucleus suprachiasmaticus - SM stria medullaris thalami - snc substantia nigra compacta - snl substantia nigra lateralis - snr substantia nigra reticularis - ST stria terminalis - tad nucleus anterior dorsalis thalami - tam nucleus anterior medialis thalami - tav nucleus anterior ventralis thalami - tbl nucleus tuberolateralis - tc nucleus centralis thalami - tl nucleus lateralis thalami - tmd nucleus medialis dorsalis thalami - TO tractus opticus - TOL tractus olfactorium lateralis - tpo nucleus posterior thalami - tr nucleus reticularis thalami - trs nucleus triangularis septi - TS tractus solitarius - TS V tractus spinalis nervi trigemini - tvl nucleus ventrolateralis thalami - vmh nucleus ventromedialis hypothalami - vh ventral horn, Columna anterior - zi zona incerta Supported by the Deutsche Forschungsgesellschaft (DFG) SFB 90, Carvas  相似文献   

3.
The occurrence and distribution of neurotensin-immunoreactive (NT-IR) perikarya was studied in the central nervous system of the guinea pig using a newly raised antibody (KN 1). Numerous NT-IR perikarya were found in the nuclei amygdaloidei, nuclei septi interventriculare, hypothalamus, nucleus parafascicularis thalami, substantia grisea centralis mesencephali, ventral medulla oblongata, nucleus solitarius and spinal cord. The distribution of NT-IR perikarya was similar to that previously described in the rat and monkey. In the gyrus cinguli, hippocampus and nucleus olfactorius, though, no NT-IR neurons were detected in this investigation. Additional immunoreactive perikarya, however, were observed in areas of the ventral medulla oblongata, namely in the nucleus paragigantocellularis, nucleus retrofacialis and nucleus raphe obscurus. The relevance of the NT-IR perikarya within the ventral medulla oblongata is discussed with respect to other neuropeptides, which are found in this area, and to cardiovascular regulation.  相似文献   

4.
Summary By use of the PAP-immunohistochemical staining technique with serial sections, somatostatin-immunoreactive fiber projections into the brain stem and the spinal cord are described. These projections originate in the periventricular somatostatin-immunoreactive perikarya of the hypothalamus and form three main pathways: (1) along the stria medullaris thalami and the fasciculus retroflexus into the interpeduncular nucleus; (2) along the medial forebrain bundle into the mammillary body; and (3) via the periventricular gray and the bundle of Schütz into the midbrain tegmentum. Densely arranged immunoreactive fibers and/or basket-like fiber terminals are observed within the following afferent systems: somatic afferent systems (nucleus spinalis nervi trigemini, substantia gelatinosa dorsalis of the entire spinal cord), and visceral afferent systems (nucleus solitarius, regio intermediolateralis and substantia gelatinosa of the sacral spinal cord). These projections form terminals around the perikarya of the second afferent neuron. Perikarya of the third afferent neuron are influenced by somatostatin-immunoreactive projections into the auditory system (nucleus dorsalis lemnisci lateralis, nucleus corporis trapezoidei). Furthermore, a somatostatin-immunoreactive fiber projection is found in the ventral part of the medial accessory olivary nucleus, in nuclei of the limbic system (nucleus habenularis medialis, nuclei supramamillaris and mamillaris lateralis) and in the formatio reticularis (nucleus Darkschewitsch, nuclei tegmenti lateralis and centralis, nucleus parabrachialis lateralis, as well as individual perikarya of the reticular formation). Targets of these projections are interneurons within interlocking neuronal chains.Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr 569/3) and Stiftung Volkswagenwerk  相似文献   

5.
Seven dogs were subjected 30 min to ligation of the thoracic aorta and were then kept alive 6-7 days after the ligature had been removed. Their spinal cord and brain stem were treated by the Nauta-Gygax method and the extent and appearance of preterminal and terminal degeneration of certain ascending spinal systems were analysed. In the medulla oblongata region, marked degenerating fibres from the lower thoracic and lumbosacral cord segments were found in the nucleus tractus spinalis nervi trigemini. Preterminal and terminal degenerating fibres were visualized in the caudal part of the trigeminal nuclear complex. Comparison with the literature showed these to be previously unknown projections with a relationship to the nucleus tractus spinalis nervi trigemini.  相似文献   

6.
Summary The distribution of substance P-immunoreactivity (SP-IR) in the brainstem and spinal cord of normal and colchicine-pretreated cats was analysed using the peroxidase-antiperoxidase (PAP) technique. Numerous SP-IR fibers are present in the nucleus solitarius, nucleus dorsalis nervi vagi and nucleus spinalis nervi trigemini, various parts of the formatio reticularis, substantia grisea centralis mesencephali, locus coeruleus and nucleus parabrachialis. SP-IR perikarya occur in the substantiae gelatinosa and intermedia of the spinal cord, the nucleus spinalis nervi trigemini-pars caudalis, the nucleus dorsalis nervi vagi, and the nucleus solitarius, as well as in the adjacent formatio reticularis and the medullary nuclei of the raphe. In addition, SP-IR cell bodies are located in the nuclei raphe magnus and incertus, ventral and dorsal to the nucleus tegmentalis dorsalis (Gudden), nucleus raphe dorsalis, substantia grisea centralis mensencephali, locus coeruleus, nucleus parabrachialis and colliculus superior.The results indicate that SP-IR neurons may be involved in the regulation of cardiovascular functions both at the central and peripheral level. A peripheral afferent portion seems to terminate in the nucleus solitarius and an efferent part is postulated to originate from the nucleus dorsalis nervi vagi and from the area of the nuclei retroambiguus, ambiguus and retrofacialis.  相似文献   

7.
The regional distribution of neuropeptide Y (NPY) immunoreactivity and receptor binding was studied in the porcine CNS. The highest amounts of immunoreactive NPY were found in the hypothalamus, septum pellucidum, gyrus cinguli, cortex frontalis, parietalis, and piriformis, corpus amygdaloideum, and bulbus olfactorius (200-1,000 pmol/g wet weight). In the cortex temporalis and occipitalis, striatum, hippocampus, tractus olfactorius, corpus mamillare, thalamus, and globus pallidus, the NPY content was 50-200 pmol/g wet weight, whereas the striatum, colliculi, substantia nigra, cerebellum, pons, medulla oblongata, and medulla spinalis contained less than 50 pmol/g wet weight. The receptor binding of NPY was highest in the hippocampus, corpus fornicis, corpus amygdaloideum, nucleus accumbens, and neurohypophysis, with a range of 1.0-5.87 pmol/mg of protein. Intermediate binding (0.5-1.0 pmol/mg of protein) was found in the septum pellucidum, columna fornicis, corpus mamillare, cortex piriformis, gyrus cinguli, striatum, substantia grisea centralis, substantia nigra, and cerebellum. In the corpus callosum, basal ganglia, corpus pineale, colliculi, corpus geniculatum mediale, nucleus ruber, pons, medulla oblongata, and medulla spinalis, receptor binding of NPY was detectable but less than 0.5 pmol/mg of protein. No binding was observed in the bulbus and tractus olfactorius and adenohypophysis. In conclusion, immunoreactive NPY and its receptors are widespread in the porcine CNS, with predominant location in the limbic system, olfactory system, hypothalamoneurohypophysial tract, corpus striatum, and cerebral cortex.  相似文献   

8.
Summary The hypothalamo-extrahypophyseal neurophysin pathways (HEH) and the three hypothalamic nuclei secreting neurophysins, the supraoptic (SON), paraventricular (PVN) and suprachiasmatic (SCN) nuclei, of normal and hypophysectomized rats were studied by application of the immunoperoxidase procedure. Eight well-defined HEH pathways were recognized. Their main sites of projection were: lateral septum and subfornical organ (1 and 2); tractus diagonalis (3); medial nucleus of the amygdala and lateral ventricle (4); nucleus periventricularis thalami, nucleus habenulae lateralis and periaqueductal gray (5); periaqueductal gray, pineal organ, collicular recess and subependymal region of the fourth ventricle (6); dorsomedial nucleus and premammillary area (7); perimammillary region, corpus trapezoideum, ventral surface of medulla oblongata, nucleus tractus solitarii, nucleus commissuralis, substantia gelatinosa and formatio reticularis lateralis of the medulla oblongata and spinal cord (8).Neurophysin fibers of unknown origin were found in the frontal cerebral cortex.It was noted that in pathway 5 the amount of immunostainable material undergoes changes with age.The three neurophysin-secreting nuclei reacted differently following hypophysectomy. Among the HEH pathways the only one that seemed to be affected by hypophysectomy was that innervating the lateral septum.It is suggested that the neurons that survive hypophysectomy either do not project to the neural lobe or, alternatively, display axon collaterals projecting outside the neural lobe. Such a neuronal population could be the origin of the HEH pathways.Supported by Grant RSM-80-13 from the Directión de Investigaciones, Universidad Austral de Chile.The authors wish to acknowledge the valuable help of Mrs. Elizabeth Santibá~nez and Mr. Genaro Alvial.  相似文献   

9.
心外膜应用腺苷时c—fos在脊髓延髓和丘脑中的表达   总被引:2,自引:0,他引:2  
马秀英  张连珊 《生理学报》1997,49(4):395-399
在12只切断两侧缓冲神经和迷走神经的麻醉大鼠,观察了心外膜应用腺苷对脊髓,延髓和丘脑c-fos原部基因表达的影响。结果显示:心外膜应用腺苷组大鼠,动脉血压和心率无明显变化;脊髓T3节段背角,延髓巨细胞旁外侧核以及丘脑的腹后外侧核,后核,中央外侧核和束旁核等部位Fos蛋白样免疫阳性反应神经元显著增加;而在溶剂对照组大鼠,仅见少数FLI细胞。  相似文献   

10.
The concentration of peptide YY (PYY)-like immunoreactivity in rat brain and spinal cord was determined by radioimmunoassay. The highest concentrations were found in the cervical spinal cord (18.1 +/- 1.3 ng/g, mean +/- S.E.M.) and in the medulla oblongata (16.3 +/- 1.5 ng/g). Lower amounts were found in the pons and in the hypothalamus. Chromatographic analysis of the PYY-like immunoreactivity from various regions of the brain revealed 95% of the immunoreactive material to be indistinguishable from synthetic porcine PYY. PYY-immunoreactive nerve cell bodies could be demonstrated by immunocytochemistry in the medulla oblongata of colchicine-treated rats, the largest group of cells being found in the midline area between and partly in the raphe pontis and obscurus nuclei. Another large group of immunoreactive cells was detected more laterally in the medial parts of the gigantocellular reticular nucleus. A few cells, finally, were seen in the dorsal parts of the medulla, including the nucleus of the solitary tract. Varicose nerve fibers displaying PYY immunoreactivity were observed in many parts of the hypothalamus, pons, medulla and spinal cord.  相似文献   

11.
Using autoradiographic method and 125I-Tyro rat CGRP as a ligand, receptor binding sites were demonstrated in the rat central nervous system. Saturation studies and Scatchard analysis of CGRP-binding to slide mounted tissue sections containing primarily cerebellum showed a single class of receptors with a dissociation constant of 0.96 nM and a Bmax of 76.4 fmol/mg protein. 125I-Tyro rat CGRP binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the telencephalon (medial prefrontal, insular and outer layers of the temporal cortex, nucleus accumbens, fundus striatum, central and inferior lateral amygdaloid nuclei, most caudal caudate putamen, organum vasculosum laminae terminalis, subfornical organ), the diencephalon (anterior hypothalamic, suprachiasmatic, arcuate, paraventricular, dorsomedial, periventricular, reuniens, rhomboid, lateral thalamic pretectalis and habenula nuclei, zona incerta), in the mesencephalon (superficial layers of the superior colliculus, central nucleus of the geniculate body, inferior colliculus, nucleus of the fifth nerve, locus coeruleus, nucleus of the mesencephalic tract, the dorsal tegmental nucleus, superior olive), in the molecular layer of the cerebellum, in the medulla oblongata (inferior olive, nucleus tractus solitarii, nucleus commissuralis, nuclei of the tenth and twelfth nerves, the prepositus hypoglossal and the gracilis nuclei, dorsomedial part of the spinal trigeminal tract), in the dorsal gray matter of the spinal cord (laminae I-VI) and the confines of the central canal. Moderate receptor densities were found in the septal area, the "head" of the anterior caudate nucleus, medial amygdaloid and bed nucleus of the stria terminalis, the pyramidal layers of the hippocampus and dentate gyri, medial preoptic area, ventromedial nucleus, lateral hypothalamic and ventrolateral thalamic area, central gray, reticular part of the substantia nigra, parvocellular reticular nucleus. Purkinje cell layer of the cerebellum, nucleus of the spinal trigeminal tract and gracile fasciculus of the spinal cord. The discrete distribution of CGRP-like binding sites in a variety of sensory systems of the brain and spinal cord as well as in thalamic and hypothalamic areas suggests a widespread involvement of CGRP in a variety of brain functions.  相似文献   

12.
Local injection of substance P (SP) into the ventral portion of the nucleus gigantocellularis, nucleus reticularis lateralis, and nucleus retrofacialis of the ventrolateral medulla oblongata (VLM) or direct application on the ventral surface of the medulla oblongata caused marked stimulation of tidal volume (VT) and/or minute ventilation (VE). The ventilatory response to hypoxia was significantly blunted after SP in the VLM but not in the dorsal medulla oblongata (DM) (nucleus tractus solitarius). The SP antagonist [D-Pro2,D-Trp7,9]SP almost completely inhibited this response when applied locally to a wide area of the superficial layer of the VLM but not of the DM. Unilateral or bilateral application of 0.3-1.5 nmol of the SP antagonist in the VLM (corpus trapezoideum and the caudal region extending from the rootlets of the nucleus hypoglossus to the first cervical segment) markedly attenuated the response to a 5% CO2 inhalation. The inhibition of the CO2 response was seen after [D-Pro2,D-Trp7,9]SP in the rostral areas of the medulla oblongata corresponding to the corpus trapezoideum and the caudal region extending from the rootlets of the nucleus hypoglossus to the first cervical segment of the cervical cord. Electric somatosensory-induced ventilatory stimulation could be depressed by approximately 70% by [D-Pro2,D-Trp7,9]SP locally applied on the surface of the VLM. We conclude that SP is involved in the hypoxic, hypercapnic, and somatosensory ventilatory responses in the rat. However, these respiratory reflexes are mediated via different neuronal pools in the medulla oblongata, mainly the VLM.  相似文献   

13.
Summary Immunoreactive neurons were mapped in the central nervous system of colchicine-treated and untreated guinea pigs with the use of two antisera to the molluscan neuropeptide FMRFamide 1. These antisera were especially selected for their incapability to react with peptides of the pancreatic polypeptide family. Only one group of perikarya was stained by both antisera; this group was mainly located in the nucleus dorsomedialis hypothalami and extended to the nucleus paraventricularis and nucleus periventricularis hypothalami. The perikarya were found to project fibers to all regions of the hypothalamus, to the septum, nucleus proprius striae terminalis, nucleus paraventricularis thalami, nucleus centralis thalami, nucleus reuniens, medial, central and basal amygdala, area praetectalis, area tegmentalis ventralis of Tsai, substantia grisea centralis mesencephali, formatio reticularis mesencephali, nucleus centralis superior, locus coeruleus, nuclei parabrachiales, nucleus raphe magnus, A 5-region, vagus-solitarius complex, ventral medulla, nucleus spinalis nervi trigemini, and substantia gelatinosa of the spinal cord. In many brain regions FMRFamide-immunoreactive processes were found in close contact with blood vessels.Abbreviations of Amino Acids D aspartic acid - F phenylalanine - G glycine - H histidine - L leucine - M methionine - P proline - R arginine - V valine - W tryptophan - Y tyrosine  相似文献   

14.
Somatostatinergic nerves in the spinal cord of the monkey were investigated utilizing immunohistochemistry with various antibodies against synthetic somatostatin. In contrast to earlier investigations, it is shown that somatostatinergic nerve endings occur in most of the areas of the grey matter of the spinal cord. The somatostatinergic axons are, however, characteristically distributed in three main regions: (1) Densely-packed endings are seen in lamina II of the substantia gelatinosa, forming a crescent-shaped pattern in the columna dorsalis. Somatostatin immunoreactivity is also seen in lamina I and in the Lissauer tract. (2) A fine network of fibers is observed around the central canal; the endings are concentrated on special cell bodies. Some single perikarya are also stained in this region. (3) A loose network of single fibers is found ending on perikarya of the columna lateralis or ventralis. The perikarya of the nerve axons, with the exception of those terminating in the columna dorsalis, have as yet not been identified. In order to better understand the somatostatinergic system of the spinal cord, these newly-detected somatostatinergic nerves must be studied and their exact pathways analyzed.  相似文献   

15.
Experiments using the retrograde transport of horseradish peroxidase were performed in order to identify the cells of origin the ascending projections from different brainstem regions to the area hypothalamica dorsalis (aHd) in the cat. The afferent inputs to this area originate mainly from the midbrain and medulla oblongata regions. The main afferent source of the area hypothalamica dorsalis arises from the substantia grisea centralis, where a large number of labeled cells were observed bilaterally, although more abundant on the ipsilateral side. Substantial afferents reach the aHd from the nuclei vestibularis medialis and inferior and the formatio reticularis mesencephali. A modest number of peroxidase-labeled neurons were observed in the nuclei ruber, interpeduncularis, substantia nigra, reticularis gigantocellularis, vestibularis lateralis, cuneatus and gracilis. From the pons, the nucleus raphe magnus sends a weak projection to the aHd. These anatomical data suggest that such area could be involved in visceral, sexual, nociceptive somatosensorial, sleep-waking and motor mechanisms.  相似文献   

16.
M Kihara  T Kubo 《Histochemistry》1989,91(4):309-314
Localization of gamma-aminobutyric acid (GABA) in the ventrolateral medulla oblongata of the rat was studied, using antisera directed against GABA molecule fixed to bovine serum albumin. Within the rostral portion of the ventrolateral medulla, GABA-like immunoreactive neurons were found in the lateral wing of the raphe magnus and in the region of the paragigantocellular reticular nucleus. In the caudal portion of the ventrolateral medulla, a lesser number of GABA-stained neurons were found in the region around the nucleus reticularis lateralis. GABA-like immunoreactive punctate structures were also found throughout the ventrolateral medulla. These results provide further evidence for the existence of GABAergic neurons in the ventrolateral medulla oblongata of the rat.  相似文献   

17.
Connections of the neurons of the spinal cord ventral horn with the structures, situating above have been investigated. After injection of uranyl acetate into the TIII segment of the spinal cord, labelled neurons are found in various reticular nuclei of the medulla oblongata. At the level of the roots of the XII pair of the cranial nerves they are revealed in the reticular paramedian, ventral, parvocellular and lateral nuclei. The formations mentioned participate in regulation of the cardio-vascular system. More rostral (2 and 4 mm relatively to the roots of the XII pair of the cranial nerves) the neurons are observed in the reticular giant cellular nucleus, in nuclei of the raphe and in the group of the P-substance reactive neurons. Besides, labelled neurons are revealed in the posterior, lateral fields and in the dorso- and ventromedial nuclei of the hypothalamus.  相似文献   

18.
ABSTRACT The spinal cords of vertebrates are generally divided into the cord proper and the minute filum terminale. While the spinal cord extends the entire length of the vertebral canal in the adult tiger puffer, Takifugu rubripes, the cord proper is greatly reduced in length and almost all of the canal is occupied by the filum terminale, which is tape-like rather than thread-like. The dorsal and ventral roots of the spinal nerves extend, respectively, above and below the filum terminale; as a whole, these form a massive cauda equina. Supramedullary cells are found in the rostral half of the medulla oblongata caudal to the cerebellum. In 4-mm long tiger puffers, the spinal cord is cylindrical and supramedullary cells are found in the rostral half of the cord. In 7-mm puffers, the longitudinally arranged ventral roots appear ventrally in the middle portion of the spinal cord. In 15-mm puffers, the dorsal and ventral roots run longitudinally along the spinal cord and have noticeably increased in number. Supramedullary cells are located in the rostral 15% of the cord. In 21-mm puffers, the spinal cord in large part becomes dorsoventrally flattened. In 30-mm puffers, the spinal cord becomes much flatter, and supramedullary cells now are located mainly in the medulla oblongata. These observations indicate that formation of the shortened spinal cord proper is due to at least two developmental processes. First, the elongation of the spinal cord proper is remarkably less than that of the vertebral canal. Second, the bulk of the spinal cord proper is translocated to the cranial cavity, where it is transformed into part of the medulla oblongata.  相似文献   

19.
Using the indirect immunofluorescent technique, corticotropin releasing factor (CRF)-like immunoreactive nerve fibers and cell bodies were observed to be widely distributed in rat brain. A detailed stereotaxic atlas of CRF-like immunoreactive neurons was prepared. Large numbers of CRF-containing perikarya were observed in the nucleus paraventricularis, with scattered cells in the following nuclei: accumbens, interstitialis stria terminalis, preopticus medialis, supraopticus, periventricularis hypothalami, amygdaloideus centralis, dorsomedialis, substantia grisea centralis, parabrachialis dorsalis and ventralis, tegmenti dorsalis lateralis, vestibularis medialis, tractus solitarius and reticularis lateralis. The most intense staining of CRF-containing fibers was observed in the external lamina of the median eminence. Moderate numbers of CRF-like fibers were observed in the following nuclei: lateralis and medialis septi, tractus diagonalis, interstitialis stria terminalis, preopticus medialis, supraopticus, periventricularis thalami and hypothalami, paraventricularis, anterior ventralis and medialis thalami, rhomboideus, amygdaloideus centralis, habenulae lateralis, dorsomedialis, ventromedialis, substantia grisea centralis, cuneiformis, parabrachialis dorsalis and ventralis, tegmenti dorsalis lateralis, cerebellum, vestibularis medialis, reticularis lateralis, substantia gelatinosa trigemini and lamina I and II of the dorsal horn of the spinal cord. The present findings suggest that a CRF-like peptide may be involved in a neurotransmitter or neuromodulator role, as well as a hypophysiotropic role.  相似文献   

20.
Summary Localization of -aminobutyric acid (GABA) in the ventrolateral medulla oblongata of the rat was studied, using antisera directed against GABA molecule fixed to bovine serum albumin. Within the rostral portion of the ventrolateral medulla, GABA-like immunoreactive neurons were found in the lateral wing of the raphe magnus and in the region of the paragigantocellular reticular nucleus. In the caudal portion of the ventrolateral medulla, a lesser number of GABA-stained neurons were found in the region around the nucleus reticularis lateralis. GABA-like immunoreactive punctate structures were also found throughout the ventrolateral medulla. These results provide further evidence for the existence of GABAergic neurons in the ventrolateral medulla oblongata of the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号