首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The enhancement of internodal elongation in floating or deepwater rice (Oryza sativa L. cv. Habiganj Aman II) by treatment with ethylene or gibberellic acid (GA3) at high relative humidity (RH) is inhibited by abscisic acid (ABA). Here, we examined the interactive effects of ethylene, gibberellin (GA) and ABA at low RH on internodal elongation of deepwater rice stem segments. Although ethylene alone hardly promoted internodal elongation of stem sections at 30% RH, it enhanced the internodal elongation induced by GA3. Application of ABA alone to stem segments had no effect on internodal elongation. However, in the presence of ethylene and GA3 at 30% RH, ABA further promoted internodal elongation. This promotive effect of ABA was not found in the internodes of stem segments treated either with ethylene or with GA3 at 30% RH or in the internodes of stem segments treated with ethylene and/or GA3 at 100% RH.  相似文献   

2.
Internodal elongation in floating rice ( Oryza sativa L. cv. Habiganj Aman II) is known to be enhanced by treatment with ethylene or gibberellic acid (GA3) at high relative humidity (RH). However, ethylene-induced internodal elongation is inhibited at low RH. while GA3-induced internodal elongation is hardly affected by humidity. We examined the possible involvement of osmoregulation in the stimulation by GA3 of the elongation of internodes at low RH. Submergence and treatment with ethylene or GA33 at 100% RH increased the osmotic potential in internodes of excised stem segments, while GA3 at 20% RH maintained the osmotic potential at a low level. In internodes of stem segments that had been treated with GA3 at 20% RH, the activity of invertase and the level of soluble sugars were almost 2- and 1.5-fold higher, respectively, than those in internodes that had been treated with GA3 at 100% RH. These results indicate that one of the possible mechanisms by which GA3 promotes elongation of internodes at low RH involves the osmoregulation that is achieved by promotion of the synthesis of invertase.  相似文献   

3.
Submergence induces rapid elongation of internodes in floating rice(Oryza sativa L. cv. Habiganj Aman II). The initial signalfor such internodal elongation has been considered to be the reduced partialpressure of oxygen in submerged internodal cavities, which promotes theelongation of internodes through the enhancement of ethylene synthesis. Weexamined the relationship between low oxygen pressure and ethylene production inthe rapid elongation of floating rice internodes using ethylene biosynthesisinhibitors, aminooxyacetic acid (AOA) and CoCl2. When floating ricestem segments were incubated in an atmosphere of low O2, internodalelongation accelerated and ethylene production increased. However, in stemsegments treated with AOA or CoCl2, low O2 stillstimulated the elongation of internodes although the ethylene production by theinternodes was less than by those in control stem segments where internodalelongation was not promoted. These results indicate that low O2 iscapable of causing rapid elongation of internodes of floating rice independentlyof enhanced production of ethylene. In addition to low O2,submergence, ethylene and gibberellic acid each enhanced the production ofethylene by internodal tissues, suggesting that enhanced ethylene production isa common phenomenon accompanied by the acceleration of internodal elongation infloating rice.  相似文献   

4.
We examined the effect of ethylene on the growth of rice seedlings (Oryza sativa L.) at various degrees of humidity. Ethylene significantly suppressed the growth of shoots when applied to seedlings grown under 30% relative humidity (RH), but promoted the growth of shoots when applied to seedlings grown under 100% RH. The application of gibberellic acid (GA3) promoted the elongation of shoots in seedlings grown under 30% and 100% RH. Ethylene inhibited the shoot elongation induced by GA3 at 30% RH, but enhanced the elongation induced by GA3 at 100% RH. These results indicate that ethylene can either promote or suppress the growth of rice shoots depending on ambient humidity, and that these actions of ethylene may be mediated through modulating the responsiveness of shoots to gibberellin.  相似文献   

5.
Ethylene and submergence enhance stem elongation of deepwater rice, at least in part, by reducing in the internode the endogenous abscisic acid (ABA) content and increasing the level of gibberellin A1 (GA1). We cloned and characterized the CYP707A5 and CYP707A6 genes, which encode putative ABA 8'-hydroxylase, the enzyme that catalyzes the oxidation of ABA. Expression of CYP707A5 was upregulated significantly by ethylene treatment, whereas that of CYP707A6 was not altered. Recombinant proteins from both genes expressed in yeast cells showed activity of ABA 8'-hydroxylase. This finding indicates that CYP707A5 may play a role in ABA catabolism during submergence- or ethylene-induced stem elongation in deepwater rice. Taken together, these results provide links between the molecular mechanisms and physiological phenomena of submergence- and ethylene-induced stem elongation in deepwater rice.  相似文献   

6.
When sections of floating rice stems were treated with 1-aminocyclopropane-l-carboxylicacid (ACC) at 60% relative humidity, their ethylene contentincreased but internodes hardly elongated. The internodal elongationinduced by ethylene was promoted in sections incubated at 100%relative humidity but not at 20%. Thus, ethylene-induced internodalelongation in floating rice requires moist surroundings. (Received April 25, 1990; Accepted December 22, 1990)  相似文献   

7.
Ethylene decreases the content of endogenous abscisic acid (ABA) and increases the level of bioactive gibberellin A1 (GA1) in the submerged internodes of deepwater rice. During partial submergence, internodes of deepwater rice undergo rapid elongation as a result of ethylene accumulation in the internodal lacunae. In anin vitro experiment using stem sections from deepwater rice, treatment with 5 μL L-1 ethylene promoted stem growth by up to 3.2-foId times over air treatment. Expression patterns were analyzed for genes that encode GA- and ABA-biosynthesis enzymes to determine any possible molecular basis for the changes observed in GA1 and ABA contents as a result of ethylene action. Expression of theOsGA20ox2 andOsGA20ox4 genes, which encode GA 20-oxidase, and of theOsGA3ox2 gene, which encodes the enzyme that converts GA20 to CA1, was up-regulated, whereas that of three ABA-biosynthetic genes —OsNCED1, OsNCED2, andOsNCEDS-was down-regulated in the presence of ethylene. These results indicate that GA and ABA contribute equally to the submergence-or ethylene-induced stem elongation of deepwater rice via the coordinated and opposite regulation of biosynthesis.  相似文献   

8.
Montague MJ 《Plant physiology》1993,101(2):399-405
The elongation response of Avena sativa (oat) stem segments to gibberellic acid (GA3) is of large magnitude, with high hormonal sensitivity and specificity, but without cell division activity. This system is therefore an excellent model for mechanistic studies on higher plant cell elongation and the action of gibberellin. At millimolar concentrations, the calcium antagonists verapamil, D-600, nicardipine, diltiazem, bepridil, 8-(N,N,-diethylamino)-octyl-3,4,5-trimethoxybenzoate HCl, and lanthanum substantially inhibited the growth of GA3-treated segments but had no effect on the elongation of nonhormone-treated segments. Although verapamil reduced the maximum growth rate and caused premature cessation of growth, even preincubation of the segments with the drug prior to treatment with GA3 failed to inhibit the earliest measured stimulation of growth by the hormone. Inhibition by verapamil was not reversed by increased concentrations of GA3 or calcium. Neither the calcium ionophore A23187 nor agonist BAY K 8644 had any effect on growth. Light microscopic examination of epidermal peels from antagonist-treated internodal tissue revealed no obvious differences from the control except that the cells were not as elongated. Although these results may support a role for calcium ion movement in maintaining the GA3-induced growth of Avena stem segments, they do not support the involvement of calcium ion movement in the hormone-mediated initiation of growth.  相似文献   

9.
Plants respond to proximate neighbors with a suite of responses that comprise the shade avoidance syndrome. These phytochrome-mediated responses include hyponasty (i.e. a more vertical orientation of leaves) and enhanced stem and petiole elongation. We showed recently that ethylene-insensitive tobacco (Nicotiana tabacum) plants (Tetr) have reduced responses to neighbors, showing an important role for this gaseous plant hormone in shade avoidance. Here, we investigate interactions between phytochrome signaling and ethylene action in shade avoidance responses. Furthermore, we investigate if ethylene acts in these responses through an interaction with the GA class of hormones. Low red to far-red light ratios (R:FR) enhanced ethylene production in wild-type tobacco, resulting in shade avoidance responses, whereas ethylene-insensitive plants showed reduced shade avoidance responses. Plants with inhibited GA production showed hardly any shade avoidance responses at all to either a low R:FR or increased ethylene concentrations. Furthermore, low R:FR enhanced the responsiveness of hyponasty and stem elongation in both wild-type and Tetr plants to applied GA(3), with the stem elongation process being more responsive to GA(3) in the wild type than in Tetr. We conclude that phytochrome-mediated shade avoidance responses involve ethylene action, at least partly by modulating GA action.  相似文献   

10.
深水稻节间伸长生长的机制   总被引:9,自引:1,他引:8  
宋平  周燮 《植物学通报》2000,17(1):46-51
淹水可促进深水稻节间快速伸长生长,其主要受内源赤霉素、乙烯、脱落酸等激素信号分子的调控。淹水能促进深水稻植物株体内乙烯、赤霉素的生物合成、抑制脱落酸的生物合成,外源乙烯、赤霉素会加速深水稻节间伸长,而外源脱落酸抑制淹水节间的伸长,其中赤霉素是直接作用因子,乙烯能降低内源脱落酸水平、增加节地赤霉素的敏感性;还与渗透调节、细胞壁组份如膨胀素等有关,淹水及赤霉素都大大增加了膨胀素基因的表达。并就深水稻的  相似文献   

11.
Excised stem sections of deepwater rice (Oryza sativa L.) containing the highest internode were used to study the induction of rapid internodal elongation by gibberellin (GA). It has been shown before that this growth response is based on enhanced cell division in the intercalary meristem and on increased cell elongation. In both GA-treated and control stem sections, the basal 5-mm region of the highest internode grows at the fastest rate. During 24 h of GA treatment, the internodal elongation zone expands from 15 to 35 mm. Gibberellin does not promote elongation of internodes from which the intercalary meristem has been excised. The orientation of cellulose microfibrils (CMFs) is a determining factor in cell growth. Elongation is favored when CMFs are oriented transversely to the direction of growth while elongation is limited when CMFs are oriented in the oblique or longitudinal direction. The orientation of CMFs in parenchymal cells of GA-treated and control internodes is transverse throughout the internode, indicating that CMFs do not restrict elongation of these cells. Changes in CMF orientation were observed in epidermal cells, however. In the basal 5-mm zone of the internode, which includes the intercalary meristem, CMFs of the epidermal cell walls are transversely oriented in both GA-treated and control stem sections. In slowly growing control internodes, CMF orientation changes to the oblique as cells are displaced from this basal 5-mm zone to the region above it. In GA-treated rapidly growing internodes, the reorientation of CMFs from the transverse to the oblique is more gradual and extends over the 35-mm length of the elongation zone. The CMFs of older epidermal cells are obliquely oriented in control and GA-treated internodes. The orientation of the CMFs parallels that of the cortical microtubules. This is consistent with the hypothesis that cortical microtubules determine the direction of CMF deposition. We conclude that GA acts on cells that have transversely oriented CMFs but does not promote growth of cells whose CMFs are already obliquely oriented at the start of GA treatment.  相似文献   

12.
On ethylene and stem elongation in green pea seedlings   总被引:1,自引:0,他引:1       下载免费PDF全文
Koch BL  Moore TC 《Plant physiology》1990,93(4):1663-1664
Maximum elongation of excised internodal stem sections of light-grown pea (Pisum sativum L.) seedlings occurred at 10−5 molar indoleacetic acid (IAA), with submaximal responses occurring at 10−4 and 10−3 molar. Accompanying elongation at concentrations of IAA of 10−6 to 10−3 molar was production of ethylene, with the amount increasing up to 10−4 molar IAA and then becoming nearly constant. Elongation of light-grown sections was not inhibited by exogenous ethylene up to 10,000 ppm in the presence of 10−5 molar IAA. Marked (up to 50%) inhibition of elongation of internodal segments in situ was observed after treating whole light-grown seedlings with exogenous ethylene for 20 hours. It is concluded that ethylene is not responsible for the submaximal elongation responses of green pea stem sections at high auxin concentrations, but that IAA per se is accountable.  相似文献   

13.
Recent studies revealed that some rice varieties adopt opposite strategies to overcome flooding stress. While certain varieties hold metabolism and stay stunted until floodwater recedes, deepwater rice varieties undergo rapid stem elongation and do not suffer drowning problems. Both varieties use the same signaling agents, the ethylene response factors, as key factors even though they display opposite submergence responses. In deepwater rice, ethylene response factor genes SNORKEL1 and SNORKEL2 are believed to play a major role in submergence escape by mediating ethylene signaling, which leads to rapid stem elongation. These genes connect hormone signaling cascades from ethylene to ABA and gibberellins (GAs). Submergence increases ethylene levels in the internodal space, ethylene upregulates an ABA inactivating enzyme gene, OsCYP707A5 or OsABA8ox1, and some GA metabolism genes such as OsGA20ox genes and OsGA3ox genes. As a result of gene regulation by ethylene, internodal ABA levels decrease while GA levels increase, finally upregulating growth-related genes like expansin genes (OsEXPs). Along with the ethylene signaling in submergence, it is necessary to consider an alternative signaling pathway induced by hypoxia. Taken together, study on the submergence responses of rice plants will lead to improvement of crop production and contribution to basic research on plant growth.  相似文献   

14.
I. Raskin  H. Kende 《Planta》1984,162(6):556-559
Submergence induces rapid internodal elongation in deep-water rice (Oryza sativa L. cv. Habiganj Aman II). We investigated the metabolic activities which help to support such fast growth. Three days of submergence in water under continuous light led to the mobilization of 65% of the starch from those regions of rice internodes which had been formed prior to submergence. Disappearance of starch was accompanied by a 70-fold enhancement of amylolytic activity. Similar increases in amylolytic activity were detected in response to ethylene and gibberellic acid. Submergence also caused a 26-fold increase in the translocation of newly synthesized photosynthetic assimilates from the leaves to the internodes and younger regions of the culms. These physiological processes are likely to provide the metabolic energy required for internodal elongation in response to submergence.Abbreviation GA3 gibberellic acid  相似文献   

15.
We investigated the involvement of expansin action in determining the growth rate of internodes of floating rice (Oryza sativa L.). Floating rice stem segments in which rapid internodal elongation had been induced by submergence for 2 days were exposed to air or kept in submergence for 2 more days. Both treatments reduced the elongation rate of the internodes, and the degree of reduction was much greater in air-exposed stem segments than in continually submerged segments. These rates of internodal elongation were correlated with acid-induced cell wall extensibility and cell wall susceptibility to expansins in the cell elongation zone of the internodes, but not with extractable expansin activity. These results suggest that the reduced growth rate of internodes must be due, at least in part, to the decrease in acid-induced cell wall extensibility, which can be modulated through changes in the cell wall susceptibility to expansins rather than through expansin activity. Analysis of the cell wall composition of the internodes showed that the cellulosic and noncellulosic polysaccharide contents increased in response to exposure to air, but they remained almost constant under continued submergence although the cell wall susceptibility to expansins gradually declined even under continued submergence. The content of xylose in noncellulosic neutral sugars in the cell walls of internodes was closely and negatively correlated with changes in the susceptibility of the walls to expansins. These results suggest that the deposition of xylose-rich polysaccharides into the cell walls may be related to a decrease in acid-induced cell wall extensibility in floating rice internodes through the modulation of cell wall susceptibility to expansins.  相似文献   

16.
17.
Using Avena sativa L. cv. Victory oat seedlings and excised p-1 stem segments (including the p-1 and p-2 internodes) the effect of exogenously supplied ethylene and the removal of ethylene on internodal extension and gravitropic bending was assessed. Similarly, the ability of the excised system to respond to gravistimulation was assessed in the presence of inhibitors of ethylene action (AgNO3) and ethylene synthesis (3,5-diiodo-4-hydroxybenzoic acid and benzyl isothiocyanate; BITC). The production of ethylene from both intact and excised systems was also measured from 0 to 48 h after gravistimulation, relative to vertical controls. Although gravitropic curvature is initiated, and indeed enters the most rapid phase of upward bending during the first 6 h, there is no difference in ethylene production between vertical and geostimulated plants during this period. The ethylene production of gravistimulated plants rises sharply to a maximum at 24 h, then decreases steeply to almost the control level by 48 h, at which time the rate of upward curvature is diminishing. Neither the addition nor removal of ethylene, nor the addition of inhibitors affecting ethylene-action (AgNO3) or synthesis (DIHB) influence gravitropic bending or internodal extension in excised segments. Although the ethylene synthesis inhibitor BITC showed down the rate of upward bending, this effect could not be reversed by addition of ethylene. We conclude that the burst in ethylene production that develops in leaf-sheath bases (pulvini) after they have started to curve upwards is not primary to the induction of curvature. We further suggest that ethylene has no major effect or role in the induction of upward bending after gravistimulation. The metabolism of high specific activity gibberellin A1 ([3H]-GA1) in the excised system was assessed during 1, 2 and 4 h of gravistimulation. Changes in endogenous GAs and GA metabolism have been shown previously to be correlated (at the later stages) with gravistimulated bending in intact Avena shoots. The excised segments ‘leaked’ free [3H]-GAs and [3H]-GA glucosyl conjugate-like substances into the bathing medium, and this was a confounding factor. Nevertheless, gravistimulated stem segments, and especially the bottom half of the segment, were significantly less leaky then vertical segments. Thus, just 1 h after gravistimulation, bottom segment halves retained 22% more precursor [3H]-GA1, 36% more free [3H]-GA-like metabolites, and 48% more [3H]-GA glucosyl conjugate-like metabolites than vertical segments. In contrast, the 1 h gravistimulated top halves retained slightly less (1–4%) precursor [3H]-GA and free [3H]-GA metabolites, but 21% more [3H]-GA glucosyl conjugate-like radioactivity than vertical segments.  相似文献   

18.
Cell elongation in the rachis of the semiaquatic fern Regnellidium diphyllum is induced by the addition of ethylene or indoleacetic acid (IAA). Experiments with whole plants or rachis segments have shown that ethylene-induced growth requires the presence of auxin. Ethylene does not cause a modification in either endogenous auxin levels or in the extent of auxin metabolism but auxin transport is reduced. Rates of ethylene production in Regnellidium are not altered by either mechanical excitation or by the addition of auxin. A two-hormone control of cell expansion is proposed in which an initial, auxin-dependent growth event pre-conditions the cells to a further subsequent (or synchronous) ethylene-dependent growth event.Abbreviation IAA indole-3yl-acetic acid  相似文献   

19.
We have shown previously that ethylene, which accumulates in the air spaces of submerged stem sections of rice (Oryza sativa L. cv “Habiganj Aman II”), is involved in regulating the growth response caused by submergence. The role of gibberellins in the submergence response was studied using tetcyclacis (TCY), a new plant growth retardant, which inhibits gibberellin biosynthesis. Stem sections excised from plants that had been watered with a solution of 1 micromolar TCY for 7 to 10 days did not elongate when submerged in the same solution or when exposed to 1 microliter per liter ethylene in air. Gibberellic acid (GA3) at 0.3 micromolar overcame the effect of TCY and restored the rapid internodal elongation in submerged and ethylene-treated sections to the levels observed in control sections that had not been treated with TCY. The effect of 0.01 to 0.2 micromolar GA3 on internodal elongation was enhanced two- to eight-fold when 1 microliter per liter ethylene was added to the air passing through the chamber in which the sections were incubated. GA3 and ethylene caused a similar increase in cell division and cell elongation in rice internodes. Thus, ethylene may cause internodal elongation in rice by increasing the activity of endogenous GAs. In internodes from which the leaf sheath had been peeled off, growth in response to submergence, ethylene and GA3 was severely inhibited by light.  相似文献   

20.
D. G. Green 《Plant and Soil》1985,86(2):291-294
Summary The effect of applying (2-chloroethyl)trimethylammonium chloride (CCC) or gibberellic acid (GA) as foliar sprays on internodal development of barley was studied. CCC applied to the whole plant at main tiller leaf stages 1, 2 or 3 decreased shoot elongation, and prevented elongation of internode 6 (internode 5 subtended the head). CCC at all stages delayed senescence of the lower leaves. CCC sprayed at all 6 leaf stages and GA sprayed at main tiller leaf stages 1, 2, 3 or 4 reduced plant height at maturity. GA treatment at leaf stages 2, 3 or 4 initially stimulated internodal elongation; elongation of later developed internodes was inhibited resulting in shorter plants at maturity. Only the treatment with GA at leaf stages 5 and 6 resulted in increased plant height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号