首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We utilized the Cre/lox recombination system to transiently express the catalytic subunit of telomerase (hTERT) in normal diploid foreskin fibroblasts (BJ cells). A retroviral construct containing an hTERT cDNA, flanked by loxP-sites was introduced into near senescent BJ cells (population doubling 85). At population doubling (PD) 92, which exceeds the typical life span of these cells, we excised the gene via Cre-mediated recombination. All clones lost telomerase activity and showed telomere shortening over an additional 50 PDs. Interestingly, the average telomere length in these cells became shorter than in untreated BJ cells at senescence. This may be due to hTERT preferentially elongating the shortest telomeres, leading to greater length uniformity. In summary, transient telomerase expression and only a very small average telomere elongation by hTERT resulted in a 50% increase in life span of human fibroblasts. This suggests a potentially safe use of hTERT in tissue engineering.  相似文献   

2.
Several reports have shown that the ectopic expression of the human telomerase catalytic subunit gene (hTERT) leads to an indefinite extension of the life span of human fibroblasts cultured in vitro without the appearance of cancer-associated changes. We infected two fibroblast strains derived from centenarian individuals with an hTERT containing retrovirus and isolated transduced massive populations (cen2tel and cen3tel). In both populations, hTERT expression reconstituted telomerase activity and extended the life span. In cen2tel, a net telomere lengthening was observed while, in cen3tel, telomeres stabilized at a length lower than that detected in senescent parental cells. Interestingly, both cen2tel and cen3tel cells developed chromosome anomalies, numerical first and structural thereafter. Moreover, cen3tel cells acquired the ability to grow in the absence of solid support, a typical feature of transformed cells. The results we present here highlight an unexpected possible outcome of cellular immortalization driven by telomerase reactivation, and indicate that, in some cases, an artificial extension of cellular replicative capacity can increase the probability of occurrence of genomic alterations, which can lead to cellular transformation.  相似文献   

3.
Telomere shortening and lack of telomerase activity have been implicated in cellular senescence in human fibroblasts. Expression of the human telomerase (hTERT) gene in sheep fibroblasts reconstitutes telomerase activity and extends their lifespan. However, telomere length is not maintained in all cell lines, even though in vitro telomerase activity is restored in all of them. Cell lines expressing higher levels of hTERT mRNA do not exhibit telomere erosion or genomic instability. By contrast, fibroblasts expressing lower levels of hTERT do exhibit telomere shortening, although the telomeres eventually stabilize at a shorter length. The shorter telomere lengths and the extent of karyotypic abnormalities are both functions of hTERT expression level. We conclude that telomerase activity is required to bypass senescence but is not sufficient to prevent telomere erosion and genomic instability at lower levels of expression.  相似文献   

4.
Telomerase catalytic subunit (TERT) seems a key factor controlling telomerase activity, telomere length, and cell growth. To further address this issue, we forced expression of a catalytically inactive mutant human TERT (hTERT) in hTERT-immortalised sheep fibroblasts to examine its effects. Expression of mutant hTERT compromised telomerase activity reconstituted by wild-type hTERT in a manner directly attributable to mutant hTERT expression level. High levels of mutant hTERT expression inhibited cell growth with a subset of cells entering replicative senescence. Furthermore, significant telomere attrition was evident in two of three clones with high levels of mutant hTERT expression. Our findings are consistent with the notion that hTERT homodimers are necessarily required to form a functional telomerase complex at the telomere substrate. We also highlight the requirement of a more thorough understanding of telomerase- and telomere-associated factors to understand fully the interplay that governs telomere homeostasis in vitro and in vivo.  相似文献   

5.
Like most somatic human cells, T lymphocytes have a limited replicative life span. This phenomenon, called senescence, presents a serious barrier to clinical applications that require large numbers of Ag-specific T cells such as adoptive transfer therapy. Ectopic expression of hTERT, the human catalytic subunit of the enzyme telomerase, permits fibroblasts and endothelial cells to avoid senescence and to become immortal. In an attempt to immortalize normal human CD8(+) T lymphocytes, we infected bulk cultures or clones of these cells with a retrovirus transducing an hTERT cDNA clone. More than 90% of transduced cells expressed the transgene, and the cell populations contained high levels of telomerase activity. Measuring the content of total telomere repeats in individual cells (by flowFISH) we found that ectopic hTERT expression reversed the gradual loss of telomeric DNA observed in control populations during long term culture. Telomere length in transduced cells reached the levels observed in freshly isolated normal CD8(+) lymphocytes. Nevertheless, all hTERT-transduced populations stopped to divide at the same time as nontransduced or vector-transduced control cells. When kept in IL-2 the arrested cells remained alive. Our results indicate that hTERT may be required but is not sufficient to immortalize human T lymphocytes.  相似文献   

6.
7.
8.
9.
Normal cells in culture display a limited capacity to divide and reach a non-proliferative state called cellular senescence. Spontaneous escape from senescence resulting in an indefinite life span is an exceptionally rare event for normal human cells and viral oncoproteins have been shown to extend the replicative life span but not to immortalize them. Telomere shortening has been proposed as a mitotic clock that regulates cellular senescence. Telomerase is capable of synthesizing telomere repeats onto chromosome ends to block telomere shortening and to maintain human fibroblasts in proliferation beyond their usual life span. However, the consequence of telomerase expression on the life span of human myoblasts and on their differentiation is unknown. In this study, the telomerase gene and the puromycin resistance gene were introduced into human satellite cells, which are the natural muscle precursors (myoblasts) in the adult and therefore, a target for cell-mediated gene therapy. Satellite cells expressing telomerase were selected, and the effects of the expression of the telomerase gene on proliferation, telomere length, and differentiation were investigated. Our results show that the telomerase-expressing cells are able to differentiate and to form multinucleated myotubes expressing mature muscle markers and do not form tumors in vivo. We also demonstrated that the expression of hTERT can extend the replicative life of muscle cells although these failed to undergo immortalization.  相似文献   

10.
Most human cells do not express telomerase and irreversibly arrest proliferation after a finite number of divisions (replicative senescence). Several lines of evidence suggest that replicative senescence is caused by short dysfunctional telomeres, which arise when DNA is replicated in the absence of adequate telomerase activity. We describe a method to reversibly bypass replicative senescence and generate mass cultures that have different average telomere lengths. A retrovirus carrying hTERT flanked by excision sites for Cre recombinase rendered normal human fibroblasts telomerase-positive and replicatively immortal. Superinfection with retroviruses carrying wild-type or mutant forms of TIN2, a negative regulator of telomere length, created telomerase-positive, immortal populations with varying average telomere lengths. Subsequent infection with a Cre-expressing retrovirus abolished telomerase activity, creating mortal cells with varying telomere lengths. Using these cell populations, we show that, after hTERT excision, cells senesce with shorter telomeres than parental cells. Moreover, long telomeres, but not telomerase, protected cells from the loss of division potential caused by ionizing radiation. Finally, although telomerase-negative cells with short telomeres senesced after fewer doublings than those with long telomeres, telomere length per se did not correlate with senescence. Our results support a role for telomere structure, rather than length, in replicative senescence.  相似文献   

11.
Human fibroblasts expressing the catalytic component of human telomerase (hTERT) have been followed for 250-400 population doublings. As expected, telomerase activity declined in long term culture of stable transfectants. Surprisingly, however, clones with average telomere lengths several kilobases shorter than those of senescent parental cells continued to proliferate. Although the longest telomeres shortened, the size of the shortest telomeres was maintained. Cells with subsenescent telomere lengths proliferated for an additional 20 doublings after inhibiting telomerase activity with a dominant-negative hTERT mutant. These results indicate that, under conditions of limiting telomerase activity, cis-acting signals may recruit telomerase to act on the shortest telomeres, argue against the hypothesis that the mortality stage 1 mechanism of cellular senescence is regulated by telomere positional effects (in which subtelomeric loci silenced by long telomeres are expressed when telomeres become short), and suggest that catalytically active telomerase is not required to provide a protein-capping role at the end of very short telomeres.  相似文献   

12.
Telomerase immortalization of human myometrial cells   总被引:6,自引:0,他引:6  
  相似文献   

13.
POT1 is a 3' telomeric single-stranded overhang binding protein that has been implicated in chromosome end protection, the regulation of telomerase function, and defining the 5' chromosome terminus. In human cancer cells that exhibit constitutive hTERT activity, hPOT1 exerts control over telomere length. Primary human fibroblasts express low levels of catalytically active hTERT in an S-phase-restricted manner that fails to counteract telomere attrition with cell division. Here, we show that diploid human fibroblasts in which hPOT1 expression has been suppressed harbor telomeres that are longer than control cells. This difference in telomere length delays the onset of replicative senescence and is dependent on S-phase-restricted hTERT expression. These findings are consistent with the view that hPOT1 promotes a nonextendable telomere state resistant to extension by S-phase-restricted telomerase. Manipulating this function of hPOT1 may thus hasten the cytotoxic effects of telomerase inhibition.  相似文献   

14.
It has been shown previously that some immortalized human cells maintain their telomeres in the absence of significant levels of telomerase activity by a mechanism referred to as alternative lengthening of telomeres (ALT). Cells utilizing ALT have telomeres of very heterogeneous length, ranging from very short to very long. Here we report the effect of telomerase expression in the ALT cell line GM847. Expression of exogenous hTERT in GM847 (GM847/hTERT) cells resulted in lengthening of the shortest telomeres; this is the first evidence that expression of hTERT in ALT cells can induce telomerase that is active at the telomere. However, rapid fluctuation in telomere length still occurred in the GM847/hTERT cells after more than 100 population doublings. Very long telomeres and ALT-associated promyelocytic leukemia (PML) bodies continued to be generated, indicating that telomerase activity induced by exogenous hTERT did not abolish the ALT mechanism. In contrast, when the GM847 cell line was fused with two different telomerase-positive tumor cell lines, the ALT phenotype was repressed in each case. These hybrid cells were telomerase positive, and the telomeres decreased in length, very rapidly at first and then at the rate seen in telomerase-negative normal cells. Additionally, ALT-associated PML bodies disappeared. After the telomeres had shortened sufficiently, they were maintained at a stable length by telomerase. Together these data indicate that the telomerase-positive cells contain a factor that represses the ALT mechanism but that this factor is unlikely to be telomerase. Further, the transfection data indicate that ALT and telomerase can coexist in the same cells.  相似文献   

15.
With increasing frequency during serial passage in culture, primary human keratinocytes express p16(INK4A) (p16) and undergo senescence arrest. Keratinocytes engineered to express hTERT maintain long telomeres but typically are not immortalized unless, by mutation or other heritable event, they avoid or greatly reduce p16 expression. We have confirmed that keratinocytes undergo p16-related senescence during growth in culture, whether in the fibroblast feeder cell system or in the specialized K-sfm medium formulation, and that this mechanism can act as a barrier to immortalization following hTERT expression. We have characterized the p16-related arrest mechanism more precisely by interfering specifically with several regulators of cell cycle control. Epidermal, oral mucosal, corneal limbal, and conjunctival keratinocytes were transduced to express a p16-insensitive mutant cdk4 (cdk4(R24C)), to abolish p16 control, and/or a dominant negative mutant p53 (p53DD), to abolish p53 function. Expression of either cdk4(R24C) or p53DD alone had little effect on life span, but expression of both permitted cells to divide 25 to 43 population doublings (PD) beyond their normal limit. Keratinocytes from a p16(+/-) individual transduced to express p53DD alone displayed a 31-PD life span extension associated with selective growth of variants that had lost the wild-type p16 allele. Cells in which both p53 and p16 were nonfunctional divided rapidly during their extended life span but experienced telomere erosion and ultimately ceased growth with very short telomeres. Expression of hTERT in these cells immortalized them. Keratinocytes engineered to express cdk4(R24C) and hTERT but not p53DD did not exhibit an extended life span. Rare immortal variants exhibiting p53 pathway defects arose from them, however, indicating that the p53-dependent component of keratinocyte senescence is telomere independent. Mutational loss of p16 and p53 has been found to be a frequent early event in the development of squamous cell carcinoma. Our results suggest that such mutations endow keratinocytes with extended replicative potential which may serve to increase the probability of neoplastic progression.  相似文献   

16.
17.
Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16(INK4a) cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16(INK4a)-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT(+) keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16(INK4a) expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16(INK4a)-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems.  相似文献   

18.
The replicative life span of human fibroblasts is heterogeneous, with a fraction of cells senescing at every population doubling. To find out whether this heterogeneity is due to premature senescence, i.e. driven by a nontelomeric mechanism, fibroblasts with a senescent phenotype were isolated from growing cultures and clones by flow cytometry. These senescent cells had shorter telomeres than their cycling counterparts at all population doubling levels and both in mass cultures and in individual subclones, indicating heterogeneity in the rate of telomere shortening. Ectopic expression of telomerase stabilized telomere length in the majority of cells and rescued them from early senescence, suggesting a causal role of telomere shortening. Under standard cell culture conditions, there was a minor fraction of cells that showed a senescent phenotype and short telomeres despite active telomerase. This fraction increased under chronic mild oxidative stress, which is known to accelerate telomere shortening. It is possible that even high telomerase activity cannot fully compensate for telomere shortening in all cells. The data show that heterogeneity of the human fibroblast replicative life span can be caused by significant stochastic cell-to-cell variation in telomere shortening.  相似文献   

19.
The mechanisms of replicative senescence by telomere shortening are not fully understood. The Indian muntjac has the fewest chromosomes of all mammals, greatly simplifying the analysis of each telomere over time. In this study, telomere shortening was observed throughout the life span of cultured normal muntjac cells by quantitative fluorescence in situ hybridization and terminal restriction fragment analysis. Ectopic expression of the human telomerase catalytic subunit in these cells reconstituted telomerase activity, extended telomere lengths, and immortalized the cells, demonstrating that the Indian muntjac cells can serve as a telomere-based replicative senescence model for human cells. In one strain, two chromosome ends had significantly shorter telomeres than the other ends, which led to a variety of chromosome abnormalities. Near senescence, additional ends became telomere signal free, and chromosome aberrancies increased dramatically. Interstitial telomere sequences coincided with fragile sites, suggesting that these remnants of chromosome fusion events might contribute to genome instability. One SV40-immortalized cell line lacked telomerase, and its genetic instability was corrected by the ectopic expression of telomerase, confirming that too-short telomeres were the source of abnormalities. Indian muntjac cells provide an excellent system for understanding the mechanism of replicative senescence and the role of telomerase in the elongation of individual telomeres.  相似文献   

20.
During the process of immortalization, at least two mortality checkpoints, M1 and M2, must be bypassed. Cells that have bypassed M1 (senescence) have an extended life span, but are not necessarily immortal. Recent studies have shown that ectopic expression of the catalytic subunit of telomerase (hTERT) enables normal human cells to bypass senescence (M1) and oncogene transformed cells to avert crisis (M2) and become immortal. However, it is unclear whether hTERT expression is sufficient for normal human fibroblasts to overcome both M1 and M2 and become immortal. We have investigated the role of telomerase in immortalization by maintaining mass cultures of hTERT-transduced primary human fetal lung fibroblasts (MRC-5 cells) for very long periods of time (more than 2 years). In the present studies, up to 70% of MRC-5 cells were transduced with retroviral vectors that express hTERT. hTERT-transduced cells exhibited high levels of telomerase activity, elongation of telomeres, and proliferation beyond senescence. However, after proliferating for more than 36 population doublings (PDLs) beyond senescence, the overall growth rate of hTERT-expressing cells declined. During theses periods of reduced growth, hTERT-transduced MRC-5 cells exhibited features typical of cells in crisis, including an increased rate of cell death and polyploidy. In some instances, very late passage cells acquired a senescence-like phenotype characterized by arrest in the G1 phase of the cell cycle and greatly reduced DNA synthesis. At the onset of crisis, hTERT-transduced cells expressed high levels of telomerase and had very long telomeres, ranging up to 30 kb. Not all cells succumbed to crisis and, consequently, some cultures have proliferated beyond 240 PDLs, while another culture appears to be permanently arrested at 160 PDLs. Late passage MRC-5 cells, including postcrisis cells, displayed no signs of malignant transformation. Our results are consistent with the model in which telomerase and telomere elongation greatly extends cellular life span without inducing malignant changes. However, these investigations also indicate that hTERT-expressing cells may undergo crisis following an extended life span and that immortality is not the universal outcome of hTERT expression in normal diploid fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号