首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
2.
3.
4.
A comparative study was made of the effects of high concentrations of NaCl, KCl and MgCl2 on two electron transport reactions of thylakoids isolated from a mesophyte, Pisum sativum and a halophyte, Aster tripolium . The rate of photosystem I mediated electron transport from reduced N, N, N', N'-tetramethyl- p -phenylenediamine (TMPD) to methyl viologen was determined polarographically, and photosystem II mediated electron flow from water to 2,6-dichlorophenolindophenol (DCPIP) was monitored spectrophotometrically. The response of photosystem II to increasing in vitro salt concentrations was similar for thylakoids isolated from both A. tripolium and P. sativum , but differences in the response of photosystem I to salinity changes were observed for the two species. Increasing NaCl, KCl and MgCl2 concentrations produced similar patterns of response of photosystem I activity in P. sativum thylakoids, whilst for A. tripolium KCl induced a completely different response pattern compared to NaCl and MgCl2. The salinity of the culture medium in which A. tripolium was grown also had an effect on both the absolute in vitro activities of photosystems I and II and their response to changes in salt concentration of the reaction media.  相似文献   

5.
6.
7.
Chloroplast development and chlorophyll biosynthesis are co-regulated. To understand the mechanism of regulation of chloroplast biogenesis by chlorophyll, development of the photosynthetic apparatus was monitored during greening of etiolated barley leaf discs in the presence of levulinic acid, an inhibitor of chlorophyll biosynthesis. Although not a direct inhibitor of carotenoid biosynthesis, treatment by levulinic acid resulted in a linear reduction in both chlorophyll and carotenoid contents. Chlorophyll biosynthesis appeared to control that of carotenes. In the presence of levulinic acid, photosystem II (PSII) activity decreased while photosystem I (PSI) activity increased when expressed on a chlorophyll basis. However, the activities of both photosystem I and II decreased when expressed on a per plastid basis. As expected, in the presence of low amounts of chlorophyll, the light-harvesting chlorophyll-protein complex II (LHCPII) was not visible in Coomassie-stained gels in 20 m M levulinic acidtreated tissues, but was detected as a faint band by immunoblotting. This small amount of the LHCPII induced significant amounts of grana stacking, which was monitored as an increase in the ratio of variable to maximum fluorescence. When levulinic acid was washed from the leaf discs and the latter allowed to green in its absence, the chlorophyll and carotenoid contents and the photosynthetic activities approached the control values. Levulinic acid could be used to arrest the light-induced chloroplast development at a desired phase of greening and removed by washing the leaves to restore the developmental process without any apparent toxic effect. Results demonstrate that biosynthesis of carotenes is regulated by that of chlorophylls and extremely low amounts of the LHCPII can induce grana stacking.  相似文献   

8.
9.
In photosynthesis in chloroplasts, control of thylakoid protein phosphorylation by redox state of inter-photosystem electron carriers makes distribution of absorbed excitation energy between the two photosystems self-regulating. During operation of this regulatory mechanism, reduction of plastoquinone activates a thylakoid protein kinase which phosphorylates the light-harvesting complex LHC II, causing a change in protein recognition that results in redistribution of energy to photosystem I at the expense of photosystem II, thus tending to oxidise the reduced plastoquinone pool. These events correspond to the transition from light-state 1 to light-state 2. The reverse transition (to light-state 1) is initiated by transient oxidation of plastoquinone, inactivation of the LHC II kinase, and return of dephosphorylated LHC II from photosystem I to photosystem II, supplying excitation energy to photosystem II and thereby reducing plastoquinone. State 1-state 2 transitions therefore operate by means of redox control of reversible, post-translational modification of pre-existing proteins. A balance in the rates of light utilization by photosystem I and photosystem II can also be achieved, on longer time-scales and between wider limits, by adjustment of the relative quantities, or stoichiometry, of photosystem I and photosystem II. Recent evidence suggests that adjustment of photosystem stoichiometry is also a response to perturbation of the redox state of inter-photosystem electron carriers, and involves specific redox control of de novo protein synthesis, assembly, and breakdown. It is therefore suggested that the same redox sensor initiates these different adaptations by control of gene expression at different levels, according to the time-scale and amplitude of the response. This integrated feedback control may serve to maintain redox homeostasis, and, as a result, quantum yield. Evidence for the components required by such systems is discussed.  相似文献   

10.
Chloroplasts developed at cold-hardening (5°C) and non-hardening temperatures (20°C) were compared with respect to the stability of photosynthetic electron transport activities, the capacity to produce and maintain a H+ gradient and the capacity fat photophosphorylation as a function of resuspension in the presence or absence of osmoticum. The results for electron transport indicate that whole chain, photosystem I and pfaotosystem II activities in non-hardened chloroplast thyalkoids were unaffected by resuspension in the presence of high or low osmoticum. In contrast, the same electron transport activities in cold-hardened chloroplast thylakoids exhibited a 3- to 4-fold decrease in activity when resuspended in the presence of low osmoticum. Impairment of electron transport through photosystem II of cold-hardened thylakoids resuspended in the presence of low osmoticum was supported by room temperature fluorescence induction kinetics. Since the presence of Mn2+ partially overcame this inhibition, it is concluded that this osmotically-induced inhibition of PSII activity in cold-hardened chloroplast thylakoids may, in part, be due to damage to the H2O-splitting side of photosystem II. Both the initial rate and the maximum capacity for cyclic photophosphorylation were significantly inhibited in cold-hardened as compared to non-hardened thylakoids upon resuspension in the presence of low concentrations of osmoticum. This was correlated with an inability of the cold-hardened chloroplast thylakoids to maintain a significant transrnembrane H+ gradient. The results indicate that cold-hardened thylakoid membranes required an osmotic concentration (0.8 M) twice as high as non-hardened thylakoids (0.4 M) to produce the same initial rate of H+ uptake. In addition, the capacity to produce a proton gradient in cold-hardened thylakoids was less stable than that in non-hardened thylakoids regardless of the osmotic concentration tested. It is concluded that development of rye thylakoid membranes at low temperature results in a differential sensitivity to low osmoticum and thus extreme caution should be exercised when comparing the structure and function of isolated thylakoids developed under contrasting thermal regimes.  相似文献   

11.
12.
Photosystem II in green plant chloroplasts displays heterogeneity both in the composition of its light-harvesting antenna and in the ability to reduce the plastoquinone pool. These two features are discussed in terms of chloroplast development and in view of a proposed photosystem II repair cycle.  相似文献   

13.
In photosynthesis in chloroplasts and cyanobacteria, redox control of thylakoid protein phosphorylation regulates distribution of absorbed excitation energy between the two photosystems. When electron transfer through chloroplast photosystem II (PSII) proceeds at a rate higher than that through photosystem I (PSI), chemical reduction of a redox sensor activates a thylakoid protein kinase that catalyses phosphorylation of light-harvesting complex II (LHCII). Phosphorylation of LHCII increases its affinity for PSI and thus redistributes light-harvesting chlorophyll to PSI at the expense of PSII. This short-term redox signalling pathway acts by means of reversible, post-translational modification of pre-existing proteins. A long-term equalisation of the rates of light utilisation by PSI and PSII also occurs: by means of adjustment of the stoichiometry of PSI and PSII. It is likely that the same redox sensor controls both state transitions and photosystem stoichiometry. A specific mechanism for integration of these short- and long-term adaptations is proposed. Recent evidence shows that phosphorylation of LHCII causes a change in its 3-D structure, which implies that the mechanism of state transitions in chloroplasts involves control of recognition of PSI and PSII by LHCII. The distribution of LHCII between PSII and PSI is therefore determined by the higher relative affinity of phospho-LHCII for PSI, with lateral movement of the two forms of the LHCII being simply a result of their diffusion within the membrane plane. Phosphorylation-induced dissociation of LHCII trimers may induce lateral movement of monomeric phospho-LHCII, which binds preferentially to PSI. After dephosphorylation, monomeric, unphosphorylated LHCII may trimerize at the periphery of PSII.  相似文献   

14.
15.
Chelator-sensitive in chloroplast electron transport   总被引:2,自引:0,他引:2  
The effect of various chelators (orthophenanthroline, bathophen-anthroline, bathophenanthroline sulfonate and bathocuproine) on electron transport of spinach chloroplasts has been studied by means of various photosystem I and II reactions. It was found that photosystem II has at least 3 chelator-sensitive sites, photosystem I from 3–4. An uncoupler-affected site was found in each photosystem. In addition, photosystem I had a stimulator site and a soak site. The soak site was sensitive to chelators only after a period of incubation with the chelator.  相似文献   

16.
PsbW is a nuclear-encoded protein located in the thylakoid membrane of the chloroplast. Studies in higher plants have provided substantial evidence that PsbW is a core component of photosystem II. However, recent data have been presented to suggest that PsbW is also a subunit of photosystem I. Such a sharing of subunits between the two photosystems would represent a novel phenomenon. To investigate this, we have cloned and characterized the psbW gene from the green alga Chlamydomonas reinhardtii. The gene is split by five introns and encodes a polypeptide of 115 residues comprising the 6.1 kDa mature PsbW protein preceded by a 59 amino acid bipartite transit sequence. Using antibodies raised to PsbW we have examined: (1) C. reinhardtii mutants lacking either photosystem and (2) purified photosystem preparations. We find that PsbW is a subunit of photosystem II, but not photosystem I.  相似文献   

17.
A basic requirement of all photosynthetic organisms is a balance between overall energy supply through temperature-independent photochemical reactions and energy consumption through the temperature-dependent biochemical reactions of photosynthetic electron transport and contiguous metabolic pathways. Since the turnover of photosystem II (PSII) reaction centers is a limiting step in the conversion of light energy into ATP and NADPH, any energy imbalance may be sensed through modulation of the redox state of PSII. This can be estimated in vivo by chlorophyll a fluorescence as changes in the redox state of PSII, or photosystem II excitation pressure, which reflects changes in the redox poise of intersystem electron transport carriers. Through comparisons of photosynthetic adjustment, we show that growth at low temperature mimics growth at high light. We conclude that terrestrial plants, green algae and cyanobacteria do not respond to changes in growth temperature or growth irradiance per se, but rather, respond to changes in the redox state of intersystem electron transport as reflected by changes in PSII excitation pressure, We suggest that this chloroplastic redox sensing mechanism may be an important component for sensing abiotic stresses in general. Thus, in addition to its role in energy transduction, the chloroplast may also be considered a primary sensor of environmental change through a redox sensing/signalling mechanism that acts synergistically with other signal transduction pathways to elicit the appropriate molecular and physiological responses.  相似文献   

18.
光系统II蛋白磷酸化及其生理意义   总被引:4,自引:0,他引:4  
蛋白磷酸化修饰在几乎所有的生命活动中都起重要的调节作用.该文结合作者研究组的研究工作,概述了光系统II(PS II)蛋白磷酸化的调节及其生理功能.PS II复合体中的核心组分D1、D2、CP43和PsbH蛋白以及外周捕光天线(LHC II)蛋白都可以发生磷酸化.PS II蛋白磷酸化受质醌(PQ)的氧化还原状态、细胞色素b6f (Cyt b6f ) 和硫氧还蛋白以及光调节.PS II蛋白磷酸化可以调节激发能在两种光系统(PS I和PS II)之间的分配,减轻光胁迫对PS II的压力,保护核心蛋白免于光破坏,稳定PS II复合体的结构.  相似文献   

19.
Winter rye plants grown under contrasting environmental conditions or just transiently shifted to varying light and temperature conditions, were studied to elucidate the chloroplast signal involved in regulation of photosynthesis genes in the nucleus. Photosystem II excitation pressure, reflecting the plastoquinone redox state, and the phosphorylation level of thylakoid light-harvesting proteins (LHCII and CP29) were monitored together with changes occurring in the accumulation of lhcb, rbcS and psbA mRNAs. Short-term shifts of plants to changed conditions, from 1 h to 2 d, were postulated to reveal signals crucial for the initiation of the acclimation process. Comparison of these results with those obtained from plants acclimated during several weeks' growth at contrasting temperature and in different light regimes, allow us to make the following conclusions: (1) LHCII protein phosphoylation is a sensitive tool to monitor redox changes in chloroplasts; (2) LHCII protein phosphorylation and lhcb mRNA accumulation occur under similar conditions and are possibly coregulated via an activation state of the same kinase (the LHCII kinase); (3) Maximal accumulation of lhcb mRNA during the diurnal light phase seems to require an active LHCII kinase whereas inactivation of the kinase is accompanied by dampening of the circadian oscillation in the amount of lhcb mRNA; (4) Excitation pressure of photosystem II (reduction state of the plastoquinone pool) is not directly involved in the regulation of lhcb mRNA accumulation. Instead (5) the redox status of the electron acceptors of photosystem I in the stromal compartment seems to be highly regulated and crucial for the regulation of lhcb gene expression in the nucleus.  相似文献   

20.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP+, and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号