首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A spontaneous adhesion-defective mutant (mutant D5) of Ruminococcus albus strain 20 was isolated and compared to the parent to investigate the impact of the mutation on cellulolysis and to identify the adhesion mechanism of R. albus. The comparison of kinetics of cellulose degradation by strain 20 and mutant D5 showed that the mutation delayed and reduced bacterial growth on cellulose and cellulose degradation. These results were partly explained by a twofold lower cellulase activity in the mutant than in the parent. The glycocalyx of strain 20, observed by transmission electron microscopy, was large and homogeneous, and linked cells to cellulose. The mutant glycocalyx was aggregated at its periphery and cells attached loosely to cellulose. A glycoprotein of 25 kDa (GP25), present in the membrane fraction and the extracellular medium of strain 20, was not detected in the same fractions of mutant D5. Though glycoprotein GP25 did not bind to cellulose, it may be involved in adhesion as an intermediate component. Different cell-surface features of mutant D5 (cellulases, glycoprotein GP25, glycocalyx) were thus affected, any or all of which may be involved in its adhesion-defective phenotype. These results suggest that adhesion and cellulolysis are linked and that adhesion is a multifactorial phenomenon that involves at least the extracellular glycocalyx.  相似文献   

2.
An adhesion-defective mutant of Ruminococcus albus SY3 was isolated by a subtractive enrichment procedure, which involved repetitive adsorption of cellobiose-grown cells to cellulose. The growth characteristics of the mutant were compared with those of the wild type. Like the wild-type cells, the mutant was capable of growing on soluble substrates, i.e. cellobiose and xylan. However, in contrast to the wild type strain, the mutant was impaired in its capacity to utilize insoluble substrates, e.g. crystalline cellulose, acid-swollen cellulose or alfalfa cell walls. Scanning electron microscopy revealed protuberance-like surface structures on the wild-type strain which were absent on the mutant. The levels of endoglucanase and xylanase enzymatic activities released into the extracellular culture fluid were higher in the wild type compared to the mutant. However, Avicelase activity was not detected in the extracellular culture fluid of either strains when grown on cellobiose.  相似文献   

3.
Artificial cellulase complexes active on crystalline cellulose were reconstituted in vitro from a native mix of cellulosomal enzymes and CipA scaffoldin. Enzymes containing dockerin modules for binding to the corresponding cohesin modules were prepared from culture supernatants of a C. thermocellum cipA mutant. They were reassociated to cellulosomes via dockerin-cohesin interaction. Recombinantly produced mini-CipA proteins with one to three cohesins either with or without the carbohydrate-binding module (CBM) and the complete CipA protein were used as the cellulosomal backbone. The binding between cohesins and dockerins occurred spontaneously. The hydrolytic activity against soluble and crystalline cellulosic compounds showed that the composition of the complex does not seem to be dependent on which CipA-derived cohesin was used for reconstitution. Binding did not seem to have an obvious local preference (equal binding to Coh1 and Coh6). The synergism on crystalline cellulose increased with an increasing number of cohesins in the scaffoldin. The in vitro-formed complex showed a 12-fold synergism on the crystalline substrate (compared to the uncomplexed components). The activity of reconstituted cellulosomes with full-size CipA reached 80% of that of native cellulosomes. Complexation on the surface of nanoparticles retained the activity of protein complexes and enhanced their stability. Partial supplementation of the native cellulosome components with three selected recombinant cellulases enhanced the activity on crystalline cellulose and reached that of the native cellulosome. This opens possibilities for in vitro complex reconstitution, which is an important step toward the creation of highly efficient engineered cellulases.  相似文献   

4.
A mixed inoculum of cellulolytic rumen bacteria depressed straw degradation by a mixed culture of cellulolytic fungi grown in the presence of Methanobrevibacter smithii. The inhibitory effect appeared to be caused by Ruminococcus albus strain JI and R. flavefaciens strain 007. Ruminococcus albus strain J1 also depressed straw degradation by the fungi, but R. albus strain SY3 and three strains of Bacteroides (Fibrobacter) succinogenes tested showed little or no inhibitory activity. It seems that some ruminococci show competitive or antagonistic activity towards certain rumen fungi.  相似文献   

5.
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.  相似文献   

6.
Most bacteria use free enzymes to degrade plant cell walls in nature. However, some bacteria have adopted a different strategy wherein enzymes can either be free or tethered on a protein scaffold forming a complex called a cellulosome. The study of the structure and mechanism of these large macromolecular complexes is an active and ongoing research topic, with the goal of finding ways to improve biomass conversion using cellulosomes. Several mechanisms involved in cellulosome formation remain unknown, including how cellulosomal enzymes assemble on the scaffoldin and what governs the population of cellulosomes created during self-assembly. Here, we present a coarse-grained model to study the self-assembly of cellulosomes. The model captures most of the physical characteristics of three cellulosomal enzymes (Cel5B, CelS, and CbhA) and the scaffoldin (CipA) from Clostridium thermocellum. The protein structures are represented by beads connected by restraints to mimic the flexibility and shapes of these proteins. From a large simulation set, the assembly of cellulosomal enzyme complexes is shown to be dominated by their shape and modularity. The multimodular enzyme, CbhA, binds statistically more frequently to the scaffoldin than CelS or Cel5B. The enhanced binding is attributed to the flexible nature and multimodularity of this enzyme, providing a longer residence time around the scaffoldin. The characterization of the factors influencing the cellulosome assembly process may enable new strategies to create designers cellulosomes.  相似文献   

7.
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.  相似文献   

8.
Clostridium thermocellum produces the prototypical cellulosome, a large multienzyme complex that efficiently hydrolyzes plant cell wall polysaccharides into fermentable sugars. This ability has garnered great interest in its potential application in biofuel production. The core non-catalytic scaffoldin subunit, CipA, bears nine type I cohesin modules that interact with the type I dockerin modules of secreted hydrolytic enzymes and promotes catalytic synergy. Because the large size and flexibility of the cellulosome preclude structural determination by traditional means, the structural basis of this synergy remains unclear. Small angle x-ray scattering has been successfully applied to the study of flexible proteins. Here, we used small angle x-ray scattering to determine the solution structure and to analyze the conformational flexibility of two overlapping N-terminal cellulosomal scaffoldin fragments comprising two type I cohesin modules and the cellulose-specific carbohydrate-binding module from CipA in complex with Cel8A cellulases. The pair distribution functions, ab initio envelopes, and rigid body models generated for these two complexes reveal extended structures. These two N-terminal cellulosomal fragments are highly dynamic and display no preference for extended or compact conformations. Overall, our work reveals structural and dynamic features of the N terminus of the CipA scaffoldin that may aid in cellulosome substrate recognition and binding.  相似文献   

9.
Clostridium cellulovorans produces a cellulase enzyme complex (cellulosome). In this study, we isolated two plant cell wall-degrading cellulosomal fractions from culture supernatant of C. cellulovorans and determined their subunit compositions and enzymatic activities. One of the cellulosomal fractions showed fourfold-higher plant cell wall-degrading activity than the other. Both cellulosomal fractions contained the same nine subunits (the scaffolding protein CbpA, endoglucanases EngE and EngK, cellobiohydrolase ExgS, xylanase XynA, mannanase ManA, and three unknown proteins), although the relative amounts of the subunits differed. Since only cellobiose was released from plant cell walls by the cellulosomal fractions, cellobiohydrolases were considered to be key enzymes for plant cell wall degradation.  相似文献   

10.
In this study, we demonstrate that the cellulosome of Clostridium cellulolyticum grown on xylan is not associated with the bacterial cell. Indeed, the large majority of the activity (about 90%) is localized in the cell-free fraction when the bacterium is grown on xylan. Furthermore, about 70% of the detected xylanase activity is associated with cell-free high-molecular-weight complexes containing avicelase activity and the cellulosomal scaffolding protein CipC. The same repartition is observed with carboxymethyl cellulase activity. The cellulose adhesion of xylan-grown cells is sharply reduced in comparison with cellulose-grown cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that cellulosomes derived from xylan- and cellulose-grown cells have different compositions. In both cases, the scaffolding protein CipC is present, but the relative proportions of the other components is dramatically changed depending on the growth substrate. We propose that, depending on the growth substrate, C. cellulolyticum is able to regulate the cell association and cellulose adhesion of cellulosomes and regulate cellulosomal composition.  相似文献   

11.
E Morag  E A Bayer    R Lamed 《Journal of bacteriology》1990,172(10):6098-6105
Xylanase activity of Clostridium thermocellum, an anaerobic thermophilic cellulolytic bacterium, was characterized. The activity was localized both in the cellulosome (the principal multienzyme, cellulose-solubilizing protein complex) and in noncellulosomal fractions. Each of these fractions contained at least four major polypeptide bands which contributed to the xylanolytic activity. In both cases, pH and temperature optima, product pattern, and other features of the xylanase activity were almost identical. The main difference was in the average molecular weights of the respective polypeptides which appeared responsible for the activity. In the noncellulosomal fraction, xylanases with Mrs ranging from 30,000 to 65,000 were detected. Distinct from these were the cellulosomal xylanases, which exhibited much larger Mrs (up to 170,000). The cellulosome-associated xylanases corresponded to known cellulosomal subunits, some of which also exhibited endoglucanase activity, and others which coincided with subunits which appeared to express exoglucanaselike activity. In contrast, the noncellulosomal xylanases hydrolyzed xylan exclusively. beta-Glucosidase and beta-xylosidase activities were shown to be the action of different enzymes; both were associated exclusively with the cell and were not components of the cellulosome. Despite the lack of growth on and utilization of xylan or its degradation products, C. thermocellum produces a highly developed xylanolytic apparatus which is interlinked with its cellulase system.  相似文献   

12.
13.
The recently isolated ruminal sporeforming cellulolytic anaerobe Clostridium longisporum B6405 was examined for its ability to degrade barley straw, nonlignified cell walls (mesophyll and epidermis) and lignified cell walls (fiber) of ryegrass, and alfalfa cell walls in comparison with strains of Ruminococcus albus. R. albus strains degraded 20 to 28% of the dry matter in barley straw in 10 days, while the clostridium degraded less than 2%. A combined inoculum of R. albus SY3 and strain B6405 was no more efficient than SY3 alone, and the presence of Methanobacterium smithii PS did not increase the amount of dry matter degraded. In contrast, with alfalfa cell walls as the substrate, the clostridium was twice as active (28% weight loss) as R. albus SY3 (15%). The percentages of dry matter degraded from ryegrass cell walls of mesophyll, epidermis, and fiber for the clostridium were 50, 47, and 32%, respectively, and for R. albus SY3 they were 77, 73, and 63%, respectively. Analyses of the predominant neutral sugars (arabinose, xylose, and glucose) in the plant residues after bacterial attack were consistent with the values for dry matter weight loss. Measurements of the amount of carbon appearing in the fermentation products indicated that R. albus SY3 degraded ryegrass mesophyll cell walls most rapidly, with epidermis and fiber cell walls being degraded at similar rates. Strain B6405 attacked alfalfa cell walls at a rate greater than that of any of the ryegrass substrates. These results indicate an unexpected degree of substrate specificity in the ability of C. longisporum to degrade plant cell wall material.  相似文献   

14.
The recently isolated ruminal sporeforming cellulolytic anaerobe Clostridium longisporum B6405 was examined for its ability to degrade barley straw, nonlignified cell walls (mesophyll and epidermis) and lignified cell walls (fiber) of ryegrass, and alfalfa cell walls in comparison with strains of Ruminococcus albus. R. albus strains degraded 20 to 28% of the dry matter in barley straw in 10 days, while the clostridium degraded less than 2%. A combined inoculum of R. albus SY3 and strain B6405 was no more efficient than SY3 alone, and the presence of Methanobacterium smithii PS did not increase the amount of dry matter degraded. In contrast, with alfalfa cell walls as the substrate, the clostridium was twice as active (28% weight loss) as R. albus SY3 (15%). The percentages of dry matter degraded from ryegrass cell walls of mesophyll, epidermis, and fiber for the clostridium were 50, 47, and 32%, respectively, and for R. albus SY3 they were 77, 73, and 63%, respectively. Analyses of the predominant neutral sugars (arabinose, xylose, and glucose) in the plant residues after bacterial attack were consistent with the values for dry matter weight loss. Measurements of the amount of carbon appearing in the fermentation products indicated that R. albus SY3 degraded ryegrass mesophyll cell walls most rapidly, with epidermis and fiber cell walls being degraded at similar rates. Strain B6405 attacked alfalfa cell walls at a rate greater than that of any of the ryegrass substrates. These results indicate an unexpected degree of substrate specificity in the ability of C. longisporum to degrade plant cell wall material.  相似文献   

15.
Clostridium cellulovorans produces a cellulase enzyme complex (cellulosome). In this study, we isolated two plant cell wall-degrading cellulosomal fractions from culture supernatant of C. cellulovorans and determined their subunit compositions and enzymatic activities. One of the cellulosomal fractions showed fourfold-higher plant cell wall-degrading activity than the other. Both cellulosomal fractions contained the same nine subunits (the scaffolding protein CbpA, endoglucanases EngE and EngK, cellobiohydrolase ExgS, xylanase XynA, mannanase ManA, and three unknown proteins), although the relative amounts of the subunits differed. Since only cellobiose was released from plant cell walls by the cellulosomal fractions, cellobiohydrolases were considered to be key enzymes for plant cell wall degradation.  相似文献   

16.
Cellulosomes are efficient cellulose-degradation systems produced by selected anaerobic bacteria. This multi-enzyme complex is assembled from a group of cellulases attached to a protein scaffold termed scaffoldin, mediated by a high-affinity protein–protein interaction between the enzyme-borne dockerin module and the cohesin module of the scaffoldin. The enzymatic complex is attached as a whole to the cellulosic substrate via a cellulose-binding module (CBM) on the scaffoldin subunit. In previous works, we have employed a synthetic biology approach to convert several of the free cellulases of the aerobic bacterium, Thermobifida fusca, into the cellulosomal mode by replacing each of the enzymes’ CBM with a dockerin. Here we show that although family six enzymes are not a part of any known cellulosomal system, the two family six enzymes of the T. fusca system (endoglucanase Cel6A and exoglucanase Cel6B) can be converted to work as cellulosomal enzymes. Indeed, the chimaeric dockerin-containing family six endoglucanase worked well as a cellulosomal enzyme, and proved to be more efficient than the parent enzyme when present in designer cellulosomes. In stark contrast, the chimaeric family six exoglucanase was markedly less efficient than the wild-type enzyme when mixed with other T. fusca cellulases, thus indicating its incompatibility with the cellulosomal mode of action.  相似文献   

17.

Background

The cellulosome is a multi-enzyme machine, which plays a key role in the breakdown of plant cell walls in many anaerobic cellulose-degrading microorganisms. Ruminococcus flavefaciens FD-1, a major fiber-degrading bacterium present in the gut of herbivores, has the most intricate cellulosomal organization thus far described. Cellulosome complexes are assembled through high-affinity cohesin-dockerin interactions. More than two-hundred dockerin-containing proteins have been identified in the R. flavefaciens genome, yet the reason for the expansion of these crucial cellulosomal components is yet unknown.

Methodology/Principal Findings

We have explored the full spectrum of 222 dockerin-containing proteins potentially involved in the assembly of cellulosome-like complexes of R. flavefaciens. Bioinformatic analysis of the various dockerin modules showed distinctive conservation patterns within their two Ca2+-binding repeats and their flanking regions. Thus, we established the conceptual framework for six major groups of dockerin types, according to their unique sequence features. Within this framework, the modular architecture of the parent proteins, some of which are multi-functional proteins, was evaluated together with their gene expression levels. Specific dockerin types were found to be associated with selected groups of functional components, such as carbohydrate-binding modules, numerous peptidases, and/or carbohydrate-active enzymes. In addition, members of other dockerin groups were linked to structural proteins, e.g., cohesin-containing proteins, belonging to the scaffoldins.

Conclusions/Significance

This report profiles the abundance and sequence diversity of the R. flavefaciens FD-1 dockerins, and provides the molecular basis for future understanding of the potential for a wide array of cohesin-dockerin specificities. Conserved differences between dockerins may be reflected in their stability, function or expression within the context of the parent protein, in response to their role in the rumen environment.  相似文献   

18.
Clostridium cellulovorans, an anaerobic bacterium, produces a small nonenzymatic protein called HbpA, which has a surface layer homology domain and a type I cohesin domain similar to those found in the cellulosomal scaffolding protein CbpA. In this study, we demonstrated that HbpA could bind to cell wall fragments from C. cellulovorans and insoluble polysaccharides and form a complex with cellulosomal cellulases endoglucanase B (EngB) and endoglucanase L (EngL). Synergistic degradative action of the cellulosomal cellulase and HbpA complexes was demonstrated on acid-swollen cellulose, Avicel, and corn fiber. We propose that HbpA functions to bind dockerin-containing cellulosomal enzymes to the cell surface and complements the activity of cellulosomes.  相似文献   

19.
The 6.3 kb plasmid pCRB1 containing the eglS gene from Streptomyces rochei, coding for a -1,4 glucanase, was constructed in Bacillus subtilis by using the plasmid vector pIL253 with subsequent activity of the cellulase activity. Strictly anaerobic cellulolytic and xylanolytic strains of Ruminococcus albus, isolated from the rumen of cows and water buffaloes, were used for transformation experiments. The plasmid pCRB1 was introduced by means of electroporation into five freshly isolated strains of R. albus, with frequencies ranging from 10 to 10 /mg of plasmid DNA. Northern analysis demonstrated the expression of the eglS gene in R. albus. All the strains harbouring the heterologous cellulase gene showed an increase of the secreted cellulase activity.  相似文献   

20.
Surface proteins of the gliding bacterium Cytophaga sp. strain U67 that make contact with glass substrata were radioiodinated, using a substratum-immobilized catalyst (Iodo-Gen). At least 15 polypeptides were iodinated, fewer than the number labeled by surface biotinylation of whole cells; these polypeptides define the set of possible candidates for the surface protein(s) that mediates gliding-associated substratum adhesion. The labeling of three adhesion-defective mutants exhibited two characteristic patterns of surface iodination which involved addition, loss, or alteration of several polypeptides of high molecular weight. An adhesion-competent revertant of mutant Adh3 and one of Adh2 exhibited the wild-type labeling pattern. Two other Adh2 revertants resembled their adhesion-defective parent. The labeling pattern of surface polypeptides of a nongliding but adhesive cell strain was similar to that of the wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号