共查询到20条相似文献,搜索用时 8 毫秒
1.
N A Petrov S V Netesov V M Blinov S K Vasilenko 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1986,(11):7-14
An evolutional tree of human influenza viruses of the H3N2-subtype is suggested on the basis of combined published primary structures of the hemagglutinin HA1-subunit. Possible differences between natural and sequenced structures are discussed. A tendency to reversions in the course of antigenic draft within the subtype has been revealed to support the hypothesis of limited antigenic evolution within a single subtype. 相似文献
2.
The hemagglutinin (HA) gene of influenza viruses encodes the major surface antigen against which neutralizing antibodies are produced during infection or vaccination. We examined temporal variation in the HA1 domain of HA genes of human influenza A (H3N2) viruses in order to identify positively selected codons. Positive selection is defined for our purposes as a significant excess of nonsilent over silent nucleotide substitutions. If past mutations at positively selected codons conferred a selective advantage on the virus, then additional changes at these positions may predict which emerging strains will predominate and cause epidemics. We previously reported that a 38% excess of mutations occurred on the tip or terminal branches of the phylogenetic tree of 254 HA genes of influenza A (H3N2) viruses. Possible explanations for this excess include processes other than viral evolution during replication in human hosts. Of particular concern are mutations that occur during adaptation of viruses for growth in embryonated chicken eggs in the laboratory. Because the present study includes 357 HA sequences (a 40% increase), we were able to separately analyze those mutations assigned to internal branches. This allowed us to determine whether mutations on terminal and internal branches exhibit different patterns of selection at the level of individual codons. Additional improvements over our previous analysis include correction for a skew in the distribution of amino acid replacements across codons and analysis of a population of phylogenetic trees rather than a single tree. The latter improvement allowed us to ascertain whether minor variation in tree structure had a significant effect on our estimate of the codons under positive selection. This method also estimates that 75.6% of the nonsilent mutations are deleterious and have been removed by selection prior to sampling. Using the larger data set and the modified methods, we confirmed a large (40%) excess of changes on the terminal branches. We also found an excess of changes on branches leading to egg-grown isolates. Furthermore, 9 of the 18 amino acid codons, identified as being under positive selection to change when we used only mutations assigned to internal branches, were not under positive selection on the terminal branches. Thus, although there is overlap between the selected codons on terminal and internal branches, the codons under positive selection on the terminal branches differ from those on the internal branches. We also observed that there is an excess of positively selected codons associated with the receptor-binding site and with the antibody-combining sites. This association may explain why the positively selected codons are restricted in their distribution along the sequence. Our results suggest that future studies of positive selection should focus on changes assigned to the internal branches, as certain of these changes may have predictive value for identifying future successful epidemic variants. 相似文献
3.
Functional chimeras of human immunodeficiency virus type 1 Gp120 and influenza A virus (H3) hemagglutinin 下载免费PDF全文
In an attempt to produce a protein that will allow determination of the native human immunodeficiency virus type 1 (HIV-1) gp120 (Env) structure in its trimeric state, we fused the globular head of gp120 to the stalk region of influenza virus A (X31) hemagglutinin (HA). The chimeric protein (EnvHA) has been expressed by using a recombinant vaccinia virus system, and its functional characteristics were determined. EnvHA is expressed as a 120- to 150-kDa protein that can oligomerize to form dimers and trimers. It retains the low-pH (5.2 to 5.4) requirement of X31-HA to trigger membrane fusion but, unlike X31-HA, it is not absolutely dependent on exogenously added trypsin for protein processing to release the HA2 fusion peptide. In terms of receptor binding the chimeric protein retains specificity for human CD4 but, in relation to the membrane fusion event, it appears to lose the Env coreceptor specificity of the parental HIV-1 strains: NL43 for CXCR4 and JRFL for CCR5. These properties suggest that stable, functional EnvHAs are being produced and that they may be exploited in terms of structural studies. Further, the potential of introducing the envHA genes into influenza viruses, by use of reverse genetics, and their use as a therapeutic vaccine for HIV are discussed. 相似文献
4.
M N Rozinov T A Gol'tsma?er S D Dikarev V N Gershanovich 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1985,(12):12-14
dsDNA of the influenza virus subtype A/Leningrad/385/80/R (H3N2)-recombinant A/Leningrad/385/80 (H3N2) and RR/8/34 (H1N1) has been synthesized using polyadenylated viral RNA as a template. This dsDNA has been cloned on plasmid pUC19. A clone has been selected harbouring the plasmid with included proximal fragment of hemagglutinin gene that contains the main antigenic determinants. The hybrid plasmid is hybridizable with RNA of the hemagglutinin gene and with oligonucleotide CATGCAAAACCTTCCC that is complementing the sequence coding for the proximal fragment of the mature hemagglutinin. 相似文献
5.
Palmitylation of the influenza virus hemagglutinin (H3) is not essential for virus assembly or infectivity. 总被引:4,自引:6,他引:4 下载免费PDF全文
The C terminus of the influenza virus hemagglutinin (HA) contains three cysteine residues that are highly conserved among HA subtypes, two in the cytoplasmic tail and one in the transmembrane domain. All of these C-terminal cysteine residues are modified by the covalent addition of palmitic acid through a thio-ether linkage. To investigate the role of HA palmitylation in virus assembly, we used reverse genetics technique to introduce substitutions and deletions that affected the three conserved cysteine residues into the H3 subtype HA. The rescued viruses contained the HA of subtype H3 (A/Udorn/72) in a subtype H1 helper virus (A/WSN/33) background. Rescued viruses which do not contain a site for palmitylation (by residue substitution or substitution combined with deletion of the cytoplasmic tail) were obtained. Rescued virions had a normal polypeptide composition. Analysis of the kinetics of HA low-pH-induced fusion of the mutants showed no major change from that of virus with wild-type (wt) HA. The PFU/HA ratio of the rescued viruses grown in eggs ranged from that of virus with wt HA to 16-fold lower levels, whereas the PFU/HA ratio of the rescued viruses grown in MDCK cells varied only 2-fold from that of virus with wt HA. However, except for one rescued mutant virus (CAC), the mutant viruses were attenuated in mice, as indicated by a > or = 400-fold increase in the 50% lethal dose. Interestingly, except for one mutant virus (CAC), all of the rescued mutant viruses were restricted for replication in the upper respiratory tract but much less restricted in the lungs. Thus, the HA cytoplasmic tail may play a very important role in the generation of virus that can replicate in multiple cell types. 相似文献
6.
It has been proposed that antigenic evolution of hemagglutinin 1 (HA1) for H3N2 human influenza A virus was punctuated. In the population genetic analysis, however, it was controversial whether positive selection operated on HA1 in a punctuated manner for the branches of the phylogenetic tree where transitions to new antigenic clusters occurred (C branches), or continuously. In the molecular evolutionary analysis, positive selection was detected for the trunk (T) branches but the relationship between antigenic evolution and positive selection was unclear. Here molecular evolutionary analysis was conducted to examine natural selection operating on HA1 of H3N2 human influenza A virus by dividing HA1 into epitopes A-E and other sites, as well as dividing the phylogenetic tree into the C branches overlapping with the T branches (C-T branches), those not overlapping with the T branches (C-NT branches), the T branches not overlapping with the C branches (NC-T branches), and other branches (NC-NT branches). Positive selection was detected for C, T, and NC-T branches, whereas evolution for the NC-NT branches appeared to be mainly neutral. Positive selection appeared to have operated throughout the trunk, which covered the entire time period of the phylogenetic tree, suggesting that positive selection operated continuously on HA1 during evolution of H3N2 human influenza A virus. 相似文献
7.
Mazurkova NA Isaeva EI Podcherniaeva RIa 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》2006,(4):19-23
Interaction of the synthetic peptides corresponding to the regions 122-133, 136-147, 154-164 and 314-328 of the virus A/Aichi/2/68 hemagglutinin heavy chain with monoclonal antibodies specific for this hemagglutinin was assayed in a variety of tests, e.g., ELISA, competition RIA, hemagglutinin-inhibition and virus-neutralization assays. The monoclonal antibody 152 reacted with the area 136-147 (epitope A), three monoclonal antibodies 3, 19 and 63 reacted exclusively with the area (154-164) Glu (epitope B). Mapping of two monoclonal antibodies IV A1 and IV G6 specific for the influenza virus A/Dunedin/ 4/73 hemagglutinin heavy chain and cross-reacting with a number of the H3 subtype viruses was carried out. The specificity of the interaction of the conservative peptide H3(314-328) with monoclonal antibodies IV A1 and IV G6 was confirmed by competition RIA and by competition hemagglutinin inhibition and virus neutralization. 相似文献
8.
Complete structure of A/duck/Ukraine/63 influenza hemagglutinin gene: animal virus as progenitor of human H3 Hong Kong 1968 influenza hemagglutinin 总被引:10,自引:0,他引:10
We have explored the possibility that an animal viral reservoir contained a direct ancestor gene for the H3 hemagglutinin type present in influenza A viruses in humans since 1968. For this purpose, the duck/Ukraine/1/63 hemagglutinin gene was cloned and sequenced. From the comparison of its complete primary structure with that of several human H3 hemagglutinins as well as those of an H2 and an H7 hemagglutinin, we conclude that the duck/Ukraine/63 hemagglutinin sequence fully corroborates its previous identification by immunological and other methods as belonging to the H3 subtype. Moreover, the duck/Ukraine/63 amino acid sequence is more closely related structurally and presumably antigenically to the human Aichi/68 hemagglutinin, which formed the beginning of the H3N2 pandemic in humans, than to that of Victoria/75, which has undergone an additional 7 year drift period in humans. This observation could best be explained by a common ancestor hemagglutinin gene for duck/Ukraine/63 and human Aichi/68. On the basis of silent, accumulated base changes, we estimate that the strain carrying this postulated common progenitor hemagglutinin gene was circulating in the period 1949–1953 in the animal reservoir. This relatively recent divergence, as well as the closer kinship between the duck/Ukraine/63 and the human Aichi/68 hemagglutinin, as compared with the later Victoria/75, strongly suggests that the influenza A virus of the H3N2 subtype circulating in the human population since 1968 has derived its hemagglutinin gene from a strain in the animal reservoir. Undoubtedly, this occurred by reassortment between previously present human H2N2 virus and this animal strain. These results provide support at the molecular level for the general idea that the wide variety of influenza viruses known to be present in animals can serve as a gene reservoir for human influenza A viruses. 相似文献
9.
S V Netesov N A Petrov V M Blinov V A Karginov 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1986,(11):3-7
A scheme for evolutionary interrelations of the H1-subunits of influenza hemagglutinin genes is proposed for the natural variants of influenza A virus of the H1N1-subtype. It is based on experimental data obtained by the authors and those reported in the literature. Differences among these viral isolates in their amino acid sequences and in the reaction of hemagglutinin inhibition obtained with a set of monoclonal antibodies are compared. The distinctions in the ability of the viruses to react with several monoclonal antibodies are attributed to differences in the primary structures of their hemagglutinins. Some aspects of hemagglutinin gene evolution are discussed in relation to vaccination. 相似文献
10.
Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment. 总被引:7,自引:3,他引:7 下载免费PDF全文
Marked differences were observed between the H2 and H3 strains of influenza virus in their sensitivity to pretreatment at low pH. Whereas viral fusion and hemolysis mediated by influenza virus X:31 (H3 subtype) were inactivated by pretreatment of the virus at low pH, influenza virus A/Japan/305/57 (H2 subtype) retained those activities even after a 15-min incubation at pH 5.0 and 37 degrees C. Fusion with erythrocytes was measured by using the octadecylrhodamine-dequenching assay with both intact virions and CV-1 monkey kidney cells expressing hemagglutinin (HA) on the plasma membrane. To study the nature of the differences between the two strains, we examined the effects of low-pH treatment on the conformational change of HA by its susceptibility to protease digestion, exposure of the fusion peptide, and electron microscopy of unstained, frozen, hydrated virus. We found that the respective HA molecules from the two strains assumed different conformational states after exposure to low pH. The relationship between the conformation of HA and its fusogenic activity is discussed in the context of these experiments. 相似文献
11.
Overlapping cytotoxic T-lymphocyte and B-cell antigenic sites on the influenza virus H5 hemagglutinin. 下载免费PDF全文
To define the recognition site of cytotoxic T lymphocytes (CTLs) on influenza virus H5 hemagglutinin (HA), an H5 HA-specific CTL clone was examined for the ability to recognize monoclonal antibody-selected HA variants of influenza virus A/Turkey/Ontario/7732/66 (H5N9). On the basis of 51Cr release assays with the variants, a CTL epitope was located near residue 168 of H5 HA. To define the epitope more precisely, a series of overlapping peptides corresponding to this region was synthesized and tested for CTL recognition. The minimum peptide recognized by the CTL clone encompassed residues 158 to 169 of H5 HA. Relative to the H3 HA three-dimensional structure, this CTL epitope is located near the distal tip of the HA molecule, also known as a major B-cell epitope on H3 HA. A single mutation at residue 168 (Lys to Glu) in the H5 HA variants abolished CTL recognition; this same amino acid was shown previously to be critical for B-cell recognition (M. Philpott, C. Hioe, M. Sheerar, and V. S. Hinshaw, J. Virol. 64:2941-2947, 1990). Additionally, mutations within this region of the HA molecule were associated with attenuation of the highly virulent A/Turkey/Ontario/7732/66 (H5N9) (M. Philpott, B. C. Easterday, and V.S. Hinshaw, J. Virol. 63:3453-3458, 1989). When tested for recognition of other H5 viruses, the CTL clone recognized the HA of A/Turkey/Ireland/1378/83 (H5N8) but not that of A/Chicken/Pennsylvania/1370/83 (H5N2), even though these viruses contain identical HA amino acid 158-to-169 sequences. These results suggest that differences outside the CTL epitope affected CTL recognition of the intact HA molecule. The H5 HA site defined in these studies is, therefore, important in both CTL and B-cell recognition, as well as the pathogenesis of the virus. 相似文献
12.
Neutralizing epitopes of the H5 hemagglutinin from a virulent avian influenza virus and their relationship to pathogenicity. 总被引:5,自引:5,他引:5 下载免费PDF全文
To define and characterize the major neutralizing epitopes of the H5 hemagglutinin, a panel of monoclonal antibodies specific for the H5 hemagglutinin of the virulent avian influenza virus A/Turkey/Ontario/7732/66 (H5N9) was prepared. Antibodies which neutralized infectivity of the virus were used to select a panel of escape mutants. Reactivity patterns of the panel of monoclonal antibodies against the panel of mutants by both enzyme-linked immunosorbent assay serology and hemagglutination inhibition operationally defined five distinct epitopes on the H5 molecule. The mutants were analyzed in vivo for virulence in chickens, and the findings indicate that viruses with mutations in four of five epitopes were no less virulent than the wild type, producing a rapidly fatal disease, while all viruses with mutations in the fifth epitope (group 1 mutants) were attenuated. These group 1 mutants were unaltered in the cleavage properties of the hemagglutinin, suggesting that the mechanism of attenuation is unrelated to processing of the hemagglutinin. One of the group 1 mutants, 77B1v, was characterized for its ability to produce necrosis of the spleen and was found to produce none of the lesions in the spleen which are characteristic of the wild-type virus, although virus was present in this organ. The results suggest an altered tissue tropism, perhaps sparing a population of cells critical to an effective immune response. 相似文献
13.
2009年3月以来,甲型H1N1病毒已在全球包括中国造成了巨大的危害,所以利用生物信息技术对其进行研究显得十分必要。从NCBI数据库下载中国大陆境内A/swine/H1N1病毒HA基因核酸序列及其编码蛋白序列,利用MEGA4.0软件对核苷酸编码序列构建系统进化树,利用BioEdit软件对蛋白序列进行比对,分析重要抗原位点变异情况,结果显示2010年在广东流行的病毒,从其他地方传播到广东的,而非早期广东流行的的病毒变异而来。2008年福建,山东,北京等地区的病毒传播比较迅速.这些分析结果阐明了中国大陆境内A/swine/H1N1病毒血凝素(HA)基因的进化关系和变异趋向,对于研究A/swine/H1N1病毒具有重要的参考价值。 相似文献
14.
Wang M Tscherne DM McCullough C Caffrey M García-Sastre A Rong L 《Journal of virology》2012,86(8):4455-4462
Influenza A virus glycoprotein hemagglutinin (HA) binds to host cell surface sialic acid (SA)-terminated sugars in glycoproteins to initiate viral entry. It is thought that avian influenza viruses preferentially bind to N-acetylneuraminic acid α3 (NeuAcα3) sugars, while human influenza viruses exhibit a preference for NeuAcα6-containing sugars. Thus, species-specific SA(s) is one of the determinants in viral host tropism. The SA binding pocket of the HA1 subunit has been extensively studied, and a number of residues important for receptor binding have been identified. In this study, we examined the potential roles of seven highly conserved HA surface-located amino acid residues in receptor binding and viral entry using an H5 subtype. Among them, mutant Y161A showed cell-type-dependent viral entry without obvious defects in HA protein expression or viral incorporation. This mutant also displayed dramatically different ability in agglutinating different animal erythrocytes. Oligosaccharide binding analysis showed that substituting alanine at Y161 of HA changed the SA binding preference from NeuAc to N-glycolylneuraminic acid (NeuGc). Rescued mutant Y161A viruses demonstrated a 5- to 10-fold growth defect, but they were robust in viral replication and plaque forming ability. Our results demonstrate that Y161 is a critical residue involved in recognition of different SA species. This residue may play a role in determining influenza virus host tropism. 相似文献
15.
Structural features influencing hemagglutinin cleavability in a human influenza A virus. 总被引:1,自引:0,他引:1 下载免费PDF全文
Y Kawaoka 《Journal of virology》1991,65(3):1195-1201
The cleavability of the hemagglutinin (HA) molecule is related to the virulence of avian influenza A viruses, but its influence on human influenza virus strains is unknown. Two structural features are involved in the cleavage of avian influenza A virus HAs: a series of basic amino acids at the cleavage site and an oligosaccharide side chain in the near vicinity. The importance of these properties in the cleavability of a human influenza A virus (A/Aichi/2/68) HA was investigated by using mutants that contained or lacked an oligosaccharide side chain and had either four or six basic amino acids. All mutants except the one that contains a single mutation at the glycosylation site were cleaved, although not completely, demonstrating that a series of basic amino acids confers susceptibility to cellular cleavage enzymes among human influenza virus HAs. The mutants containing six basic amino acids at the cleavage site showed limited polykaryon formation upon exposure to low pH, indicating that cleavage was adequate to impart fusion activity to the HA. Deletion of the potential glycosylation site had no effect on the cleavability of these mutants; hence, the oligosaccharide side chain appears to have no role in human influenza virus HA cleavage. The inability to induce high cleavability in a human influenza A virus HA by insertion of a series of basic amino acids at the cleavage site indicates that other, as yet unidentified structural features are needed to enhance the susceptibility of these HAs to cellular proteases. 相似文献
16.
The influenza fusion peptide located at the N‐terminus of the hemagglutinin HA2 subunit initiates the fusing process of the viral membrane with the host cell endosomal membrane. It had been reported that the structure of a 20‐residue H3 subtype fusion peptide (H3‐HAfp20) was significantly different with that of a H1 subtype 23‐residue one (H1‐HAfp23). The sequential difference between the 12th and 15th residues of H1 and H3 subtypes could not fully explain the conformational variation. The first and last three amino acids of H3‐HAfp23 involved in formation of hydrogen bonds may play an important role in fusion process. To confirm this hypothesis, we investigate the structures of H3‐HAfp23 peptide and its mutants, G1S and G1V, in dodecylphosphatidyl choline micelles by using heteronuclear NMR technology. The results demonstrate that, similar to H1‐HAfp23 but significantly different with H3‐HAfp20, H3‐HAfp23 also has tight helical hairpin structure with the N‐ and C‐terminuses linked together because of the hydrogen bonds between Gly1 and the last three amino acids, Trp21―Tyr22―Gly23. Although the ‘hemifusion’ G1S and lethal G1V mutants have hairpin‐like helical structures, the distances between the N‐ and C‐terminuses are increased as shortage of the hydrogen bonds and the larger kink angle between the antiparallel helices. The paramagnetic ion titration experiments show that the terminuses are inserted into the dodecylphosphatidyl choline micelles used as solving media. These may imply that the tight helical hairpin structure, especially the closed conformation at terminus, plays an important role in fusion activity. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
17.
The genetic basis for virulence and host switching in influenza A viruses (FLUAV) is largely unknown. Because the hemagglutinin (HA) protein is a determinant of these properties, HA evolution was mapped in an experimental model of mouse lung adaptation. Variants of prototype A/Hong Kong/1/68 (H3N2) (wild-type [wt] HK) human virus were selected in both longitudinal and parallel studies of lung adaptation. Mapping of HA mutations found in 11 independently derived mouse-adapted populations of wt HK identified 27 mutations that clustered within two distinct regions in or near the globular frameworks of the HA1 and HA2 subunits. The adaptive mutations demonstrated multiple instances of convergent evolution involving four amino acid positions (162, 210, and 218 in HA1 and 154 in HA2). By use of reverse genetics, convergent HA mutations were shown to affect cell tropism by enhancing infection and replication in primary mouse tracheal epithelial cells in vitro and mouse lung tissue in vivo. Adaptive HA mutations were multifunctional, affecting both median pH of fusion and receptor specificity. Specific mutations within both adaptive regions were shown to increase virulence in a mouse lung model. The occurrence of mutations in the HA1 and HA2 adaptive regions of natural FLUAV host range and virulent variants of avian and mammalian viruses is discussed. This study has identified adaptive sites and regions within the HA1 and HA2 subunits that may guide future studies of viral adaptation and evolution in nature. 相似文献
18.
Cleavage of influenza A virus H1 hemagglutinin by swine respiratory bacterial proteases. 总被引:1,自引:0,他引:1 下载免费PDF全文
Cleavage of influenza A virus hemagglutinin (HA) is required for expression of fusion activity and virus entry into cells. Extracellular proteases are responsible for the proteolytic cleavage activation of avirulent avian and mammalian influenza viruses and contribute to pathogenicity and tissue tropism. The relative contributions of host and microbial proteases to cleavage activation in natural infection remain to be established. We examined 23 respiratory bacterial pathogens and 150 aerobic bacterial isolates cultured from the nasal cavities of pigs for proteolytic activity. No evidence of secreted proteases was found for the bacterial pathogens, including Haemophilus parasuis, Pasteurella multocida, Actinobacillus pleuropneumoniae, Bordetella bronchiseptica, and Streptococcus suis. Proteolytic bacteria were isolated from 7 of 11 swine nasal samples and included Staphylococcus chromogenes, Staphylococcus hyicus, Aeromonas caviae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Enterococcus sp. Only P. aeruginosa secreted a protease, elastase, that cleaved influenza virus HA. However, compared to trypsin, the site of cleavage by elastase was shifted one amino acid in the carboxy-terminal direction and resulted in inactivation of the virus. Under the conditions of this study, we identified several bacterial isolates from the respiratory tracts of pigs that secrete proteases in vitro. However, none of these proteolytic isolates demonstrated direct cleavage activation of influenza virus HA. 相似文献
19.
Immunogenic structure of the influenza virus hemagglutinin 总被引:133,自引:0,他引:133
N Green H Alexander A Olson S Alexander T M Shinnick J G Sutcliffe R A Lerner 《Cell》1982,28(3):477-487
We chemically synthesized 20 peptides corresponding to 75% of the HA1 molecule of the influenza virus. Antibodies to the majority (18) of these peptides were capable of reacting with the hemagglutinin molecule. These 18 peptides are not confined to the known antigenic determinants of the hemagglutinin molecule, but rather are scattered throughout its three-dimensional structure. In contrast, antibody raised to intact hemagglutinin did not react with any of the 20 peptides. Taken together these results suggest that the immunogenicity of an intact protein molecule is not the sum of the immunogenicity of its pieces. 相似文献
20.
Recurrence of highly pathogenic avian influenza (HPAI) virus subtype H7 in poultry continues to be a public health concern. In 2003, an HPAI H7N7 outbreak in The Netherlands infected 89 people in close contact with affected poultry and resulted in one fatal case. In previous studies, the virus isolated from this fatal case, A/Netherlands/219/2003 (NL219) caused a lethal infection in mouse models and had increased replication efficiency and a broader tissue distribution than nonlethal isolates from the same outbreak. A mutation which introduces a potential glycosylation site at Asn123 in the NL219 hemagglutinin was postulated to contribute to the pathogenic properties of this virus. To study this further, we have expressed the NL219 hemagglutinin in a baculovirus expression system and performed a structural analysis of the hemagglutinin in complex with avian and human receptor analogs. Glycan microarray and kinetic analysis were performed to compare the receptor binding profile of the wild-type recombinant NL219 HA to a variant with a threonine-to-alanine mutation at position 125, resulting in loss of the glycosylation site at Asn123. The results suggest that the additional glycosylation sequon increases binding affinity to avian-type α2-3-linked sialosides rather than switching to a human-like receptor specificity and highlight the mechanistic diversity of these pathogens, which calls attention to the need for further studies to fully understand the unique properties of these viruses. 相似文献