首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid-state NMR spectroscopy is being developed at a fast pace for the structural investigation of immobilized and non-crystalline biomolecules. These include proteins and peptides associated with phospholipid bilayers. In contrast to solution NMR spectroscopy, where complete or almost complete averaging leads to isotropic values, the anisotropic character of nuclear interactions is apparent in solid-state NMR spectra. In static samples the orientation dependence of chemical shift, dipolar or quadrupolar interactions, therefore, provides angular constraints when the polypeptides have been reconstituted into oriented membranes. Furthermore, solid-state NMR spectroscopy of aligned samples offers distinct advantages in allowing access to dynamic processes such as topological equilibria or rotational diffusion in membrane environments. Alternatively, magic angle sample spinning (MAS) results in highly resolved NMR spectra, provided that the sample is sufficiently homogenous. MAS spinning solid-state NMR spectra allow to measure distances and dihedral angles with high accuracy. The technique has recently been developed to selectively establish through-space and through-bond correlations between nuclei, similar to the approaches well-established in solution-NMR spectroscopy.  相似文献   

2.
Structural models of membrane proteins can be refined with sets of multiple orientation constraints derived from structural NMR studies of specifically labeled amino acids. The magic angle oriented sample spinning (MAOSS) NMR approach was used to determine a set of orientational constraints in bacteriorhodopsin (bR) in the purple membrane (PM). This method combines the benefits of magic angle spinning (MAS), i.e., improved sensitivity and resolution, with the ability to measure the orientation of anisotropic interactions, which provide important structural information. The nine methionine residues in bacteriorhodopsin were isotopically (15)N labeled and spectra simplified by deuterium exchange before cross-polarization magic angle spinning (CPMAS) experiments. The orientation of the principal axes of the (15)N chemical shift anisotropy (CSA) tensors was determined with respect to the membrane normal for five of six residual resonances by analysis of relative spinning sideband intensities. The applicability of this approach to large proteins embedded in a membrane environment is discussed in light of these results.  相似文献   

3.
We present a new solid-state NMR proton-detected three-dimensional experiment dedicated to the observation of protein proton side chain resonances in nano-liter volumes. The experiment takes advantage of very fast magic angle spinning and double quantum 13C–13C transfer to establish efficient (H)CCH correlations detected on side chain protons. Our approach is demonstrated on the HET-s prion domain in its functional amyloid fibrillar form, fully protonated, with a sample amount of less than 500 µg using a MAS frequency of 70 kHz. The majority of aliphatic and aromatic side chain protons (70%) are observable, in addition to Hα resonances, in a single experiment providing a complementary approach to the established proton-detected amide-based multidimensional solid-state NMR experiments for the study and resonance assignment of biosolid samples, in particular for aromatic side chain resonances.  相似文献   

4.
Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the study of membrane proteins in membrane mimetic and native membrane environments. These experiments often suffer from low sensitivity, due in part to the long recycle delays required for magnetization and probe recovery, as well as detection of low gamma nuclei. In ultrafast MAS experiments sensitivity can be enhanced through the use of low power sequences combined with paramagnetically enhanced relaxation times to reduce recycle delays, as well as proton detected experiments. In this work we investigate the sensitivity of 13C and 1H detected experiments applied to 27 kDa membrane proteins reconstituted in lipids and packed in small 1.3 mm MAS NMR rotors. We demonstrate that spin diffusion is sufficient to uniformly distribute paramagnetic relaxation enhancement provided by either covalently bound or dissolved CuEDTA over 7TM alpha helical membrane proteins. Using paramagnetic enhancement and low power decoupling in carbon detected experiments we can recycle experiments ~13 times faster than under traditional conditions. However, due to the small sample volume the overall sensitivity per unit time is still lower than that seen in the 3.2 mm probe. Proton detected experiments, however, showed increased efficiency and it was found that the 1.3 mm probe could achieve sensitivity comparable to that of the 3.2 mm in a given amount of time. This is an attractive prospect for samples of limited quantity, as this allows for a reduction in the amount of protein that needs to be produced without the necessity for increased experimental time.  相似文献   

5.
The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, and dynamics of melittin bound to the membrane were further determined by using this magnetically oriented lipid bilayer system. For this purpose, the (13)C NMR spectra of site-specifically (13)C-labeled melittin bound to the membrane in the static, fast magic angle spinning (MAS) and slow MAS conditions were measured. Subsequently, we analyzed the (13)C chemical shift tensors of carbonyl carbons in the peptide backbone under the conditions where they form an alpha-helix and reorient rapidly about the average helical axis. Finally, it was found that melittin adopts a transmembrane alpha-helix whose average axis is parallel to the bilayer normal. The kink angle between the N- and C-terminal helical rods of melittin in the lipid bilayer is approximately 140 degrees or approximately 160 degrees, which is larger than the value of 120 degrees determined by x-ray diffraction studies. Pore formation was clearly observed below the T(m) in the initial stage of lysis by microscope. This is considered to be caused by the association of melittin molecules in the lipid bilayer.  相似文献   

6.
Myelin basic protein (MBP, 18.5 kDa isoform) is a peripheral membrane protein that is essential for maintaining the structural integrity of the multilamellar myelin sheath of the central nervous system. Reconstitution of the most abundant 18.5 kDa MBP isoform with lipid vesicles yields an aggregated assembly mimicking the protein's natural environment, but which is not amenable to standard solution NMR spectroscopy. On the other hand, the mobility of MBP in such a system is variable, depends on the local strength of the protein-lipid interaction, and in general is of such a time scale that the dipolar interactions are averaged out. Here, we used a combination of solution and solid-state NMR (ssNMR) approaches: J-coupling-driven polarization transfers were combined with magic angle spinning and high-power decoupling to yield high-resolution spectra of the mobile fragments of 18.5 kDa murine MBP in membrane-associated form. To partially circumvent the problem of short transverse relaxation, we implemented three-dimensional constant-time correlation experiments (NCOCX, NCACX, CONCACX, and CAN(CO)CX) that were able to provide interresidue and intraresidue backbone correlations. These experiments resulted in partial spectral assignments for mobile fragments of the protein. Additional nuclear Overhauser effect spectroscopy (NOESY)-based experiments revealed that the mobile fragments were exposed to solvent and were likely located outside the lipid bilayer, or in its hydrophilic portion. Chemical shift index analysis showed that the fragments were largely disordered under these conditions. These combined approaches are applicable to ssNMR investigations of other peripheral membrane proteins reconstituted with lipids.  相似文献   

7.
Myelin basic protein (MBP, 18.5 kDa isoform) is a peripheral membrane protein that is essential for maintaining the structural integrity of the multilamellar myelin sheath of the central nervous system. Reconstitution of the most abundant 18.5 kDa MBP isoform with lipid vesicles yields an aggregated assembly mimicking the protein's natural environment, but which is not amenable to standard solution NMR spectroscopy. On the other hand, the mobility of MBP in such a system is variable, depends on the local strength of the protein-lipid interaction, and in general is of such a time scale that the dipolar interactions are averaged out. Here, we used a combination of solution and solid-state NMR (ssNMR) approaches: J-coupling-driven polarization transfers were combined with magic angle spinning and high-power decoupling to yield high-resolution spectra of the mobile fragments of 18.5 kDa murine MBP in membrane-associated form. To partially circumvent the problem of short transverse relaxation, we implemented three-dimensional constant-time correlation experiments (NCOCX, NCACX, CONCACX, and CAN(CO)CX) that were able to provide interresidue and intraresidue backbone correlations. These experiments resulted in partial spectral assignments for mobile fragments of the protein. Additional nuclear Overhauser effect spectroscopy (NOESY)-based experiments revealed that the mobile fragments were exposed to solvent and were likely located outside the lipid bilayer, or in its hydrophilic portion. Chemical shift index analysis showed that the fragments were largely disordered under these conditions. These combined approaches are applicable to ssNMR investigations of other peripheral membrane proteins reconstituted with lipids.  相似文献   

8.
This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS) NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i) reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii) improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the "magic angle" of 54.74° with respect to the direction of the magnetic field (magic angle spinning - MAS), accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii) given the high spinning rates (tens of kHz) involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz) testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds.  相似文献   

9.
Polypeptides have been prepared by solid-phase peptide synthesis and labelled with 15N at single sites to be used for static or magic angle spinning solid-state NMR spectroscopy. After reconstitution into oriented membranes, the alignment of polypeptide alpha-helices with respect to the bilayer surface is accessible by proton-decoupled 15N solid-state NMR spectroscopy. In addition, limiting values of rotational diffusion coefficients are obtained. The effects of membrane inserted peptides on the bilayer phospholipids have been investigated by 2H and 31P solid-state NMR spectroscopy. Long hydrophobic peptides such as the channel-forming domains of Vpu of HIV-1 or M2 of influenza A adopt stable alignments approximately parallel to the bilayer normal in agreement with models suggesting transmembrane helical bundle formation. The 15N chemical shift data agree with tilt angles of approximately 20 degrees and 33 degrees, respectively. In contrast, multi-charged amphipathic alpha-helices adopt stable orientations parallel to the bilayer surface. In the presence of these peptides, decreased order parameters of the fatty acyl chains, membrane thinning, and the loss of long-range order are observed. Peptides that change topology in a pH dependent manner are more potent in antibiotic assays under experimental conditions where they show in-plane alignments. This result suggests that their detergent-like properties, rather than the formation of transmembrane helical bundles, are responsible for their cell-killing activities. Topological equilibria are also observed within proteins or for polypeptides that do not match the hydrophobic thickness of the bilayer.  相似文献   

10.
Biological applications of solid-state NMR (SS-NMR) have been predominantly in the area of model membrane systems. Increasingly the focus has been membrane peptides and proteins. SS-NMR is able to provide information about how the peptides or proteins interact with the lipids or other peptides/proteins in the membrane, their effect on the membrane and the location of the peptides or proteins relative to the membrane surface. Recent developments in biological SS-NMR have been made possible by improvements in labelling and NMR techniques. This review discusses aligned systems and magic angle spinning techniques, bilayers and bicelles, and measurement of chemical shift anisotropy and dipolar coupling. A number of specific experiments such as cross polarization, rotational resonance, REDOR, PISEMA, MAOSS and multidimensional experiments are described. In addition to 2H, 13C and 15N, recent solid-sate 1H, 19F and 17O NMR work is discussed. Several examples of the use of SS-NMR to determine the structure of membrane peptides and proteins are given.  相似文献   

11.
Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.  相似文献   

12.
Fast magic angle spinning (MAS) NMR spectroscopy is emerging as an essential analytical and structural biology technique. Large resolution and sensitivity enhancements observed under fast MAS conditions enable structural and dynamics analysis of challenging systems, such as large macromolecular assemblies and isotopically dilute samples, using only a fraction of material required for conventional experiments. Homonuclear dipolar-based correlation spectroscopy constitutes a centerpiece in the MAS NMR methodological toolbox, and is used essentially in every biological and organic system for deriving resonance assignments and distance restraints information necessary for structural analysis. Under fast MAS conditions (rotation frequencies above 35–40 kHz), dipolar-based techniques that yield multi-bond correlations and non-trivial distance information are ineffective and suffer from low polarization transfer efficiency. To overcome this limitation, we have developed a family of experiments, CORD–RFDR. These experiments exploit the advantages of both zero-quantum RFDR and spin-diffusion based CORD methods, and exhibit highly efficient and broadband dipolar recoupling across the entire spectrum, for both short-range and long-range correlations. We have verified the performance of the CORD–RFDR sequences experimentally on a U-13C,15N-MLF tripeptide and by numerical simulations. We demonstrate applications of 2D CORD–RFDR correlation spectroscopy in dynein light chain LC8 and HIV-1 CA tubular assemblies. In the CORD–RFDR spectra of LC8 acquired at the MAS frequency of 40 kHz, many new intra- and inter-residue correlations are detected, which were not observed with conventional dipolar recoupling sequences. At a moderate MAS frequency of 14 kHz, the CORD–RFDR experiment exhibits excellent performance as well, as demonstrated in the HIV-1 CA tubular assemblies. Taken together, the results indicate that CORD–RFDR experiment is beneficial in a broad range of conditions, including both high and moderate MAS frequencies and magnetic fields.  相似文献   

13.
《Molecular membrane biology》2013,30(5-8):156-178
Abstract

Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.  相似文献   

14.
Solid-state NMR spectroscopy is a powerful technique for the investigation of membrane-associated peptides and proteins as well as their interactions with lipids, and a variety of conceptually different approaches have been developed for their study. The technique is unique in allowing for the high-resolution investigation of liquid disordered lipid bilayers representing well the characteristics of natural membranes. Whereas magic angle solid-state NMR spectroscopy follows approaches that are related to those developed for solution NMR spectroscopy the use of static uniaxially oriented samples results in angular constraints which also provide information for the detailed analysis of polypeptide structures. This review introduces this latter concept theoretically and provides a number of examples. Furthermore, ongoing developments combining solid-state NMR spectroscopy with information from solution NMR spectroscopy and molecular modelling as well as exploratory studies using dynamic nuclear polarization solid-state NMR will be presented.  相似文献   

15.
This work determined that the percentage of suberin in cork may be found by solid-state (13)C cross polarization/magic angle spinning (CP/MAS) NMR spectroscopy and by FTIR with photoacoustic detection (FTIR-PAS) spectroscopy. A linear relationship is found between the suberin content measured through CP/MAS spectral areas and that measured gravimetrically. Furthermore, application of a partial least squares (PLS1) regression model to the NMR and gravimetric data sets clearly correlates the two sets, enabling suberin quantification with 90% precision. Suberin quantitation by FTIR-PAS spectroscopy is also achieved by a PLS1 regression model, giving 90% accurate estimates of the percentage of suberin in cork. Therefore, (13)C-CP/MAS NMR and FTIR-PAS proved to be useful and accurate noninvasive techniques to quantify suberin in cork, thus avoiding the traditional time consuming and destructive chemical methods.  相似文献   

16.
High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from (1)H/(1)H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 A and 1.3 A for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins.  相似文献   

17.
One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly (13C/15N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.  相似文献   

18.
In magic angle spinning solid state NMR experiments the potential of heteronuclear (1)H decoupling employing a continuous train of adiabatic inversion pulses has been assessed via numerical simulations and experimental measurements. It is shown that, with a (1)H RF field strength of approximately 100 kHz that is typically available in MAS NMR probes, it is possible to achieve efficient adiabatic (1)H decoupling at low magic angle spinning frequencies. It is pointed out that in the presence of H (1) inhomogeneities it will be advantageous to employ adiabatic decoupling in MAS solid state NMR experiments.  相似文献   

19.
We have recently presented band-selective homonuclear cross-polarization (BSH-CP) as an efficient method for CO–CA transfer in deuterated as well as protonated solid proteins. Here we show how the BSH-CP CO–CA transfer block can be incorporated in a set of three-dimensional (3D) solid-state NMR (ssNMR) pulse schemes tailored for resonance assignment of proteins at high static magnetic fields and moderate magic-angle spinning rates. Due to the achieved excellent transfer efficiency of 33 % for BSH-CP, a complete set of 3D spectra needed for unambiguous resonance assignment could be rapidly recorded within 1 week for the model protein ubiquitin. Thus we expect that BSH-CP could replace the typically used CO–CA transfer schemes in well-established 3D ssNMR approaches for resonance assignment of solid biomolecules.  相似文献   

20.
The process of resonance assignment represents a time-consuming and potentially error-prone bottleneck in structural studies of proteins by solid-state NMR (ssNMR). Software for the automation of this process is therefore of high interest. Procedures developed through the last decades for solution-state NMR are not directly applicable for ssNMR due to the inherently lower data quality caused by lower sensitivity and broader lines, leading to overlap between peaks. Recently, the first efforts towards procedures specifically aimed for ssNMR have been realized (Schmidt et al. in J Biomol NMR 56(3):243–254, 2013). Here we present a robust automatic method, which can accurately assign protein resonances using peak lists from a small set of simple 2D and 3D ssNMR experiments, applicable in cases with low sensitivity. The method is demonstrated on three uniformly 13C, 15N labeled biomolecules with different challenges on the assignments. In particular, for the immunoglobulin binding domain B1 of streptococcal protein G automatic assignment shows 100 % accuracy for the backbone resonances and 91.8 % when including all side chain carbons. It is demonstrated, by using a procedure for generating artificial spectra with increasing line widths, that our method, GAMES_ASSIGN can handle a significant amount of overlapping peaks in the assignment. The impact of including different ssNMR experiments is evaluated as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号