首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human alpha(2B)-adrenoceptor (alpha(2B)-AR) was mutated by substituting the D(3.49) aspartate in position 109 with an alanine (alpha(2B)-D109A) in the conserved DRY sequence at the cytoplasmic face of TM3. We studied the effects of the mutation on agonist binding and on receptor activation in CHO cells, including possible inverse agonism monitored by measuring intracellular Ca(2+) concentrations ([Ca(2+)](i)). The mutated receptor had increased binding affinity for agonists, especially dexmedetomidine (3.8-fold). The increased affinity was abolished by pretreatment of the cells with pertussis toxin. The mutation produced constitutive receptor activity evidenced as increased basal [Ca(2+)](i) and increased potency and efficacy of agonists to elicit Ca(2+) responses. The imidazoline derivative RX821002 functioned as an inverse agonist only through the alpha(2B)-D109A, reducing [Ca(2+)](i). The results thus indicate that this mutation causes constitutive receptor-G(i)-protein precoupling, and that the D(3.49) aspartate residue of the DRY motif is involved in controlling coupled and uncoupled conformations of alpha(2B)-AR.  相似文献   

2.
Zhou JG  Qiu QY  Zhang Z  Liu YJ  Guan YY 《Life sciences》2006,78(14):1558-1563
It is generally thought that receptor-operated Ca2+ entry is related to store-operated or capacitative Ca2+ entry mechanism. Recent evidence suggests that non-capacitative Ca2+ entry pathways are also involved in receptor activated Ca2+ influx in many different kinds of cells. In this study, we studied whether alpha1-adrenoreceptor (alpha1-AR)-activated Ca2+ entry is coupled to both capacitative and non-capacitative pathways in A10 vascular smooth muscle cells by fura-2 fluorescence probe and conventional whole-cell patch clamp techniques. We found that both thapsigargin (TG) and phenylephrine (Phe) induced transient increase in cytoplasmic Ca2+ concentration ([Ca2+]i) in Ca2+-free medium, and subsequent addition of Ca2+ evoked a sustained [Ca2+]i rise. When the membrane potential was held at -60 mV, both TG and Phe activated inward currents, which were inhibited by GdCl3(Gd3+), 0Na+/0Ca2+ solution and 1-{beta[3-(4-mehtoxyphenyl)propoxy]-4-methoxypheneth-yl}-1H- imidazole hydro-chloride (SK&F96365), but not by nifedipine. When Ca2+ store was depleted by TG in Ca2+-free solution, Phe failed to further evoke [Ca2+]i rise. However, when capacitative Ca2+ entry was activated by TG in the medium containing Ca2+, 10 microM Phe further increased [Ca2+]i. At the same concentration, TG activated an inward cation current, subsequent addition of Phe also further induced an inward cation current. Furthermore, the amplitudes of [Ca2+]i increase and current density induced by Phe in the presence of TG were less than that induced by Phe alone. Our results suggest that both capacitative and non-capacitative Ca2+ entry pathways are involved in Ca2+ influx induced by activation of alpha1-AR in A10 vascular smooth muscle cells.  相似文献   

3.
Application of protein kinases A and C inhibitors to the prothoracic glands cells of the silkworm, Bombyx mori, resulted in slow and gradual increases in intracellular Ca(2+) ([Ca(2+)](i)). Pharmacological manipulation of the Ca(2+) signalling cascades in the prothoracic gland cells of B. mori suggests that these increases of [Ca(2+)](i) are mediated neither by voltage-gated Ca(2+) channels nor by intracellular Ca(2+) stores. Rather they result from slow Ca(2+) leak from plasma membrane Ca(2+) channels that are sensitive to agents that inhibit capacitative Ca(2+) entry and are abolished in the absence of extracellular Ca(2+). Okadaic acid, an inhibitor of PP1 and PP2A phosphatases, blocked the increase in [Ca(2+)](i) produced by the inhibitors of protein kinase A and C. The combined results indicate that the capacitative Ca(2+) entry channels in prothoracic gland cells of B. mori are probably modulated by protein kinases A and C.  相似文献   

4.
Activation of G(q)-protein-coupled receptors, including the alpha(1A)-adrenoceptor (alpha(1A)-AR), causes a sustained Ca(2+) influx via receptor-operated Ca(2+) (ROC) channels, following the transient release of intracellular Ca(2+). Transient receptor potential canonical (TRPC) channel is one of the candidate proteins constituting the ROC channels, but the precise mechanism linking receptor activation to increased influx of Ca(2+) via TRPCs is not yet fully understood. We identified Snapin as a protein interacting with the C terminus of the alpha(1A)-AR. In receptor-expressing PC12 cells, co-transfection of Snapin augmented alpha(1A)-AR-stimulated sustained increases in intracellular Ca(2+) ([Ca(2+)](i)) via ROC channels. By altering the Snapin binding C-terminal domain of the alpha(1A)-AR or by reducing cellular Snapin with short interfering RNA, the sustained increase in [Ca(2+)](i) in Snapin-alpha(1A)-AR co-expressing PC12 cells was attenuated. Snapin co-immunoprecipitated with TRPC6 and alpha(1A)-AR, and these interactions were augmented upon alpha(1A)-AR activation, increasing the recruitment of TRPC6 to the cell surface. Our data suggest a new receptor-operated signaling mechanism where Snapin links the alpha(1A)-AR to TRPC6, augmenting Ca(2+) influx via ROC channels.  相似文献   

5.
Ju YJ  Wang CM  Hung AC  Lo JC  Lin HJ  Sun SH 《Cellular signalling》2003,15(2):197-207
The present study demonstrated that endotheline-1 (ET-1) stimulated a biphasic (transient and sustained) increase in [Ca(2+)](i) and signaling was blocked by BQ123 and inhibited by BQ788. RT-PCR analysis revealed that ET(A) was expressed more than ET(B) mRNA-suggesting that ET(A) is the major receptor. Simply reintroducing Ca(2+) in the buffer stimulated a sustained increase in [Ca(2+)](i) and the effect was inhibited by U73122, thapsigargin (TG), miconazole and SKF96365. When measured in Ca(2+)-free buffer, the ET-1-stimulated Ca(2+) transient decreased by 73% and the reintroduction of Ca(2+) induced a large sustained increase in [Ca(2+)](i). These effects were not affected by nifedipine, but were inhibited by miconazole and SKF96365-indicating that the sustained increase in [Ca(2+)](i) mediated by ET-1 was mostly due to capacitative Ca(2+) entry (CCE). The ET-1-induced CCE was inhibited by phorbol ester (PMA) but was enhanced by GF109203X; it was also enhanced by 8-bromo-cyclic AMP (8-Br-cAMP) but was inhibited by H89. Thus, protein kinase C (PKC) negatively regulated and cAMP-dependent protein kinase (PKA) positively regulated the ET-1-mediated CCE in these cells.  相似文献   

6.
Sympathetic adrenergic nerves maintain the flaccid state of the penis through the tonic release of norepinephrine that contracts trabecular and arterial smooth muscle. Simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and tension and experiments with alpha-toxin-permeabilized arteries were performed in branches of the rat dorsal penile artery to investigate the intracellular Ca(2+) signaling pathways underlying alpha(1)-adrenergic vasoconstriction. Phenylephrine increased both [Ca(2+)](i) and tension, these increases being abolished by extracellular Ca(2+) removal and reduced by about 50% by the L-type Ca(2+) channel blocker nifedipine (0.3 microM). Non-L-type Ca(2+) entry through store-operated channels was studied by inhibiting the sarcoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid (CPA). CPA (30 microM) induced variable phasic contractions that were abolished by extracellular Ca(2+) removal and by the store-operated channels antagonist 2-aminoethoxydiphenyl borate (2-APB, 50 microM) and largely inhibited by nifedipine (0.3 microM). CPA induced a sustained increase in [Ca(2+)](i) that was reduced in a Ca(2+)-free medium. Under conditions of L-type channels blockade, Ca(2+) readmission after store depletion with CPA evoked a sustained and marked elevation in [Ca(2+)](i) not coupled to contraction. 2-APB (50 microM) inhibited the rise in [Ca(2+)](i) evoked by CPA and the nifedipine-insensitive increases in both [Ca(2+)](i) and contraction elicited by phenylephrine. In alpha-toxin-permeabilized penile arteries, activation of G proteins with guanosine 5'-O-(3-thiotriphosphate) and of the alpha(1)-adrenoceptor with phenylephrine both enhanced the myofilament sensitivity to Ca(2+). This Ca(2+) sensitization was reduced by selective inhibitors of PKC, tyrosine kinase (TK), and Rho kinase (RhoK) by 43%, 67%, and 82%, respectively. As a whole, the present data suggest the alpha(1)-adrenergic vasoconstriction in penile small arteries involves Ca(2+) entry through both L-type and 2-APB-sensitive receptor-operated channels, as well as Ca(2+) sensitization mechanisms mediated by PKC, TK, and RhoK. A capacitative Ca(2+) entry coupled to noncontractile functions of the smooth muscle cell is also demonstrated.  相似文献   

7.
We investigated the role of capacitative Ca(2+) entry and tyrosine kinase activation in mediating phenylephrine (PE)-induced oscillations in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in canine pulmonary arterial smooth muscle cells (PASMCs). [Ca(2+)](i) was measured as the 340- to 380-nm ratio in individual fura 2-loaded PASMCs. Resting [Ca(2+)](i) was 96 +/- 4 nmol/l. PE (10 micromol/l) stimulated oscillations in [Ca(2+)](i), with a peak amplitude of 437 +/- 22 nmol/l and a frequency of 1.01 +/- 0.12/min. Thapsigargin (1 micromol/l) was used to deplete sarcoplasmic reticulum (SR) Ca(2+) after extracellular Ca(2+) was removed. Under these conditions, a nifedipine-insensitive, sustained increase in [Ca(2+)](i) (140 +/- 7% of control value) was observed when the extracellular Ca(2+) concentration was restored; i.e., capacitative Ca(2+) entry was demonstrated. Capacitative Ca(2+) entry also refilled SR Ca(2+) stores. Capacitative Ca(2+) entry was attenuated (32 +/- 3% of control value) by 50 micromol/l of SKF-96365 (a nonselective Ca(2+)-channel inhibitor). Tyrosine kinase inhibition with tyrphostin 23 (100 micromol/l) and genistein (100 micromol/l) also inhibited capacitative Ca(2+) entry to 63 +/- 12 and 85 +/- 4% of control values, respectively. SKF-96365 (30 micromol/l) attenuated both the amplitude (15 +/- 7% of control value) and frequency (50 +/- 21% of control value) of PE-induced Ca(2+) oscillations. SKF-96365 (50 micromol/l) abolished the oscillations. Tyrphostin 23 (100 micromol/l) also inhibited the amplitude (17 +/- 7% of control value) and frequency (45 +/- 9% of control value) of the oscillations. Genistein (30 micromol/l) had similar effects. Both SKF-96365 and tyrphostin 23 attenuated PE-induced contraction in isolated pulmonary arterial rings. These results demonstrate that capacitative Ca(2+) entry is present and capable of refilling SR Ca(2+) stores in canine PASMCs and may be involved in regulating PE-induced Ca(2+) oscillations. A tyrosine kinase is involved in the signal transduction pathway for alpha(1)-adrenoreceptor activation in PASMCs.  相似文献   

8.
In PC-Cl3 rat thyroid cell line, ATP and UTP provoked a transient increase in [Ca(2+)](i), followed by a lower sustained phase. Removal of extracellular Ca(2+) reduced the initial transient response and completely abolished the plateau phase. Thapsigargin (TG) caused a rapid rise in [Ca(2+)](i) and subsequent addition of ATP was without effect. The transitory activation of [Ca(2+)](i) was dose-dependently attenuated in cells pretreated with the specific inhibitor of phospholipase C (PLC), U73122. These data suggest that the ATP-stimulated increment of [Ca(2+)](i) required InsP(3) formation and binding to its specific receptors in Ca(2+) stores. Desensitisation was demonstrated with respect to the calcium response to ATP and UTP in Fura 2-loaded cells. Further studies were performed to investigate whether the effect of ATP on Ca(2+) entry into PC-Cl3 cells was via L-type voltage-dependent Ca(2+) channels (L-VDCC) and/or by the capacitative pathway. Nifedipine decreased ATP-induced increase on [Ca(2+)](i). Addition of 2 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment of the cells with TG or with 100 microM ATP in Ca(2+)-free medium. These data indicate that Ca(2+) entry into PC-Cl3 stimulated with ATP occurs through both an L-VDCC and through a capacitative pathway. Using buffers with differing Na(+) concentrations, we found that the effects of ATP were dependent of extracellular Na(+), suggesting that a Na(+)/Ca(2+) exchange mechanism is also operative. These data suggest the existence, in PC-Cl3 cell line, of a P2Y purinergic receptor able to increase the [Ca(2+)](i) via PLC activation, Ca(2+) store depletion, capacitative Ca(2+) entry and L-VDCC activation.  相似文献   

9.
We investigated the role of K(+) channels in the regulation of baseline intracellular free Ca(2+) concentration ([Ca(2+)](i)), alpha-adrenoreceptor-mediated Ca(2+) signaling, and capacitative Ca(2+) entry in pulmonary artery smooth muscle cells (PASMCs). Inhibition of voltage-gated K(+) channels with 4-aminopyridine (4-AP) increased the membrane potential and the resting [Ca(2+)](i) but attenuated the amplitude and frequency of the [Ca(2+)](i) oscillations induced by the alpha-agonist phenylephrine (PE). Inhibition of Ca(2+)-activated K(+) channels (with charybdotoxin) and inhibition (with glibenclamide) or activation of ATP-sensitive K(+) channels (with lemakalim) had no effect on resting [Ca(2+)](i) or PE-induced [Ca(2+)](i) oscillations. Thapsigargin was used to deplete sarcoplasmic reticulum Ca(2+) stores in the absence of extracellular Ca(2+). Under these conditions, 4-AP attenuated the peak and sustained components of capacitative Ca(2+) entry, which was observed when extracellular Ca(2+) was restored. Capacitative Ca(2+) entry was unaffected by charybdotoxin, glibenclamide, or lemakalim. In isolated pulmonary arterial rings, 4-AP increased resting tension and caused a leftward shift in the KCl dose-response curve. In contrast, 4-AP decreased PE-induced contraction, causing a rightward shift in the PE dose-response curve. These results indicate that voltage-gated K(+) channel inhibition increases resting [Ca(2+)](i) and tone in PASMCs but attenuates the response to PE, likely via inhibition of capacitative Ca(2+) entry.  相似文献   

10.
Jan CR  Cheng JS  Roan CJ  Lee KC  Chen WC  Chou KJ  Tang KY  Wang JL 《Steroids》2001,66(6):505-510
The effect of the estrogen diethylstilbestrol (DES) on intracellular Ca(2+) concentrations ([Ca(2+)](i)) in Madin Darby canine kidney (MDCK) cells was investigated, using the fluorescent dye fura-2 as a Ca(2+) indicator. DES (10-50 microM) evoked [Ca(2+)](i) increases in a concentration-dependent manner. Extracellular Ca(2+) removal inhibited 45 +/- 5% of the Ca(2+) response. In Ca(2+)-free medium, pretreatment with 50 microM DES abolished the [Ca(2+)](i) increases induced by 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler) and 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor); and pretreatment with CCCP and thapsigargin partly inhibited DES-induced [Ca(2+)](i) signals. Adding 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with 50 microM DES in Ca(2+)-free medium, suggesting that DES may induce capacitative Ca(2+) entry. 17beta-Estradiol (2-20 microM) increased [Ca(2+)](i), but 100 microM diethylstilbestrol dipropionate had no effect. Pretreatment with the phospholipase C inhibitor U73122 (1 microM) to abolish inositol 1,4,5-trisphosphate formation inhibited 30% of DES-induced Ca(2+) release. DES (20 microM) also increased [Ca(2+)](i) in human normal hepatocytes and osteosarcoma cells. Cumulatively, this study shows that DES induced rapid and sustained [Ca(2+)](i) increases by releasing intracellular Ca(2+) and triggering extracellular Ca(2+) entry in renal tubular cells.  相似文献   

11.
Bradykinin (1 microM) and histamine (100 microM) evoked an initial transient increase and a subsequent sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura-2-loaded human gingival fibroblasts, which may be attributed to Ca(2+) release from intracellular stores and Ca(2+) entry from extracellular sites, respectively. In fibroblasts pretreated with tyrosine kinase inhibitors such as herbimycin A (1 microM) and tyrphostin 47 (20 microM), the sustained level of [Ca(2+)](i) induced by bradykinin and histamine increased, but not the initial peak level. In the absence of external Ca(2+), bradykinin and histamine induced only the transient increase in [Ca(2+)](i), but a subsequent addition of Ca(2+) to the medium resulted in a sustained increase in [Ca(2+)](i) caused by Ca(2+)entry. Thapsigargin, an inhibitor of Ca(2+)-ATPase in inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores, mimicked the effect of bradykinin and histamine. In the fibroblasts pretreated with tyrosine kinase inhibitors, the bradykinin-, histamine- and thapsigargin-induced Ca(2+) entry was clearly enhanced, but not the transient [Ca(2+)](i) increase. Tyrosine phosphatase inhibitor benzylphosphonic acid (200 microM) had no effect on Ca(2+)entry or transient [Ca(2+)](i) increase. These results suggest that tyrosine phosphorylation is involved in Ca(2+) entry in human gingival fibroblasts.  相似文献   

12.
Hong SJ 《Cellular signalling》2002,14(10):811-817
The effect of endothelin-1 (ET-1) on the intracellular free Ca(2+) ([Ca(2+)](i)) mobility in cultured H9c2 myocardiac ventricular cells was studied after loading with fura-2-AM. In Ca(2+)-containing buffer, ET-1 induced [Ca(2+)](i) rise from 10(-7) to 10(-9) M. ET-1 induced [Ca(2+)](i), which was composed of a first small peak and a secondary persistent plateau. In Ca(2+)-free buffer, pretreatment with 10(-7) M ET-1 inhibited the thapsigargin and carbonylcyanide m-chlorophenylhydrazone (CCCP)-induced [Ca(2+)](i) increase. Meanwhile, pretreatment with thapsigargin and CCCP also inhibited ET-1-induced [Ca(2+)](i) rise. In Ca(2+)-containing buffer, the ET(A) receptor antagonist (BQ123) completely abolished the secondary rising peak and plateau. Conversely, the ET(B) receptor antagonist (BQ788) completely inhibited the first small peak and secondary peak plateau. Nifedipine and La(3+) also abolished the 10(-7) M ET-1-induced [Ca(2+)](i) in the first rising peak. The internal Ca(2+) release induced by ET-1 was inhibited by U73122 (phospholipase C inhibitor), propranolol (phospholipase D inhibitor) and aristolochic acid (phospholipase A2 inhibitor). After incubation of 10(-7) M ET-1 in Ca(2+)-free buffer, the addition of 5 mM CaCl(2) increased Ca(2+) influx, implying that release of Ca(2+) from internal stores further induces capacitative Ca(2+) entry. Taken together, these results suggest that both ET(A) and ET(B) receptors are involved in ET-1-induced [Ca(2+)](i) rise in H9c2 myocardiac ventricular cells. Whereas ET(B) receptor seems to mediate the initial Ca(2+) influx via L-type Ca(2+) channel, ET(A) receptor appears to be involved in the subsequent Ca(2+) release from endoplasmic reticulum and mitochondria Ca(2+) stores.  相似文献   

13.
Transient receptor potential protein 1 (Trp1) has been proposed as a component of the store-operated Ca(2+) entry (SOCE) channel. However, the exact mechanism by which Trp1 is regulated by store depletion is not known. Here, we examined the role of the Trp1 C-terminal domain in SOCE by expressing hTrp1alpha lacking amino acids 664-793 (DeltaTrp1alpha) or full-length hTrp1alpha in the HSG (human submandibular gland) cell line. Both carbachol (CCh) and thapsigargin (Tg) activated sustained Ca(2+) influx in control (nontransfected), DeltaTrp1alpha-, and Trp1alpha-expressing cells. Sustained [Ca(2+)](i), following stimulation with either Tg or CCh in DeltaTrp1alpha-expressing cells, was about 1.5-2-fold higher than in Trp1alpha-expressing cells and 4-fold higher than in control cells. Importantly, (i) basal Ca(2+) influx and (ii) Tg- or CCh-stimulated internal Ca(2+) release were similar in all the cells. A similar increase in Tg-stimulated Ca(2+) influx was seen in cells expressing Delta2Trp1alpha, lacking the C-terminal domain amino acid 649-793, which includes the EWKFAR sequence. Further, both inositol 1,4,5-trisphosphate receptor-3 and caveolin-1 were immunoprecipitated with DeltaTrp1alpha and Trp1alpha. In aggregate, these data suggest that (i) the EWKFAR sequence does not contribute significantly to the Trp1-associated increase in SOCE, and (ii) the Trp1 C-terminal region, amino acids 664-793, is involved in the modulation of SOCE.  相似文献   

14.
Amperometry and microfluorimetry were employed to investigate the Ca(2+)-dependence of catecholamine release induced from PC12 cells by cholinergic agonists. Nicotine-evoked exocytosis was entirely dependent on extracellular Ca(2+) but was only partly blocked by Cd(2+), a nonselective blocker of voltage-gated Ca(2+) channels. Secretion and rises of [Ca(2+)](i) observed in response to nicotine could be almost completely blocked by methyllycaconitine and alpha-bungarotoxin, indicating that such release was mediated by receptors composed of alpha7 nicotinic acetylcholine receptor subunits. Secretion and [Ca(2+)](i) rises could also be fully blocked by co-application of Cd(2+) and Zn(2+). Release evoked by muscarine was also fully dependent on extracellular Ca(2+). Muscarinic receptor activation stimulated release of Ca(2+) from a caffeine-sensitive intracellular store, and release from this store induced capacitative Ca(2+) entry that could be blocked by La(3+) and Zn(2+). This Ca(2+) entry pathway mediated all secretion evoked by muscarine. Thus, activation of acetylcholine receptors stimulated rises of [Ca(2+)](i) and exocytosis via Ca(2+) influx through voltage-gated Ca(2+) channels, alpha7 subunit-containing nicotinic acetylcholine receptors, and channels underlying capacitative Ca(2+) entry.  相似文献   

15.
Microfluorimetric measurements of intracellular calcium ion concentration [Ca(2+)](i) were employed to examine the effects of chronic hypoxia (2.5% O(2), 24 h) on Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells. Activation of muscarinic receptors evoked rises in [Ca(2+)](i) which were enhanced in chronically hypoxic cells. Transient rises of [Ca(2+)](i) evoked in Ca(2+)-free solutions were greater and decayed more slowly following exposure to chronic hypoxia. In control cells, these transient rises of [Ca(2+)](i) were also enhanced and slowed by removal of external Na(+), whereas the same manoeuvre did not affect responses in chronically hypoxic cells. Capacitative Ca(2+) entry, observed when re-applying Ca(2+) following depletion of intracellular stores, was suppressed in chronically hypoxic cells. Western blots revealed that presenilin-1 levels were unaffected by chronic hypoxia. Exposure of cells to amyloid beta peptide (1-40) also increased transient [Ca(2+)](i) rises, but did not mimic any other effects of chronic hypoxia. Our results indicate that chronic hypoxia causes increased filling of intracellular Ca(2+) stores, suppressed expression or activity of Na(+)/Ca(2+) exchange and reduced capacitative Ca(2+) entry. These effects are not attributable to increased amyloid beta peptide or presenilin-1 levels, but are likely to be important in adaptive cellular remodelling in response to prolonged hypoxic or ischemic episodes.  相似文献   

16.
Effects of epidermal growth factor (EGF) on the intracellular Ca(2+) ([Ca(2+)](i)) responses to nucleotides, Ca(2+) release from thapsigargin-sensitive stores and capacitative Ca(2+) entry were investigated in cultured mouse mammary epithelial cells. EGF treatment induced proliferation of mammary epithelial cells. We checked for mitotic activity by immunocytochemistry with an anti-PCNA (proliferating cell nuclear antigen) antibody, which stains nuclei of the cells in S-phase of cell cycle. EGF treatment apparently increased the number of PCNA-stained cells compared to those treated with differentiating hormones (insulin, prolactin and cortisol) or without any hormone. Application of EGF did not induce any acute [Ca(2+)](i) response. EGF treatment for 1-2 days in culture, however, enhanced [Ca(2+)](i) responses including [Ca(2+)](i) increase by ATP, UTP and other nucelotides, Ca(2+) release from thapsigargin-sensitive stores, as well as capacitative Ca(2+) entry. Genistein, a tyrosine kinase inhibitor, prevented EGF-induced cell proliferation and the [Ca(2+) ](i) responses in a dose-dependent manner. These results indicate that EGF treatment enhances Ca(2+) mobilization and capacitative Ca(2+) entry, well correlated with cellular proliferation in mammary epithelial cells.  相似文献   

17.
The mechanisms by which Pi depletion rapidly regulates gene expression and cellular function have not been clarified. Here, we found a rapid increase in intracellular ionized calcium [Ca(2+)](i) by phosphate depletion in LLC-PK(1) cells using confocal microscopy with the green-fluorescence protein based calcium indicator "yellow cameleon 2.1." The increase of [Ca(2+)](i) was observed in the presence or absence of extracellular Ca(2+). At the same time, an approximately twofold increase in intracellular inositol 1,4,5-triphosphate (IP(3)) occurred in response to the acute Pi depletion in the medium. Furthermore, 2-aminoethoxydiphenyl borate completely blocked the [Ca(2+)](i) increase induced by Pi depletion. These results suggest that Pi depletion causes IP(3)-mediated release of Ca(2+) from intracellular Ca(2+) pools and rapidly increases [Ca(2+)](i) in LLC-PK(1) cells.  相似文献   

18.
In order to investigate the currently unknown cellular signaling pathways of T-type Ca(2+) channels, we decided to construct a new cell line which would stably express alpha(1G) and Kir2.1 subunits in HEK293 cells (HEK293/alpha(1G)/Kir2.1). Compared to cells which only expressed alpha(1G) (HEK293/alpha(1G)), HEK293/alpha(1G)/Kir2.1 cells produced an enormous inward rectifying current which was blocked by external Ba(2+) and Cs(+) in a concentration-dependent manner. The expression of Kir2.1 channels contributed significantly to the shift of membrane potential from -12.2+/-2.8 to -57.3+/-3.7mV. However, biophysical and pharmacological properties of alpha(1G)-mediated Ca(2+) channels remained unaffected by the expression of Kir2.1 subunits, except for the enlarging of the window current region. Biochemical activation of alpha(1G) channels using 150mM KCl brought about an increase in [Ca(2+)](i), which was blocked by mibefradil, the T-type Ca(2+) channel blocker. These data suggest that the HEK293/alpha(1G)/Kir2.1 cell line would have potential uses in the study of T-type Ca(2)(+) channel-mediated signaling pathways and possibly useful in the development of new therapeutic drugs associated with T-type Ca(2)(+) channels.  相似文献   

19.
The effect of propranolol on Ca(2+) signalling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Propranolol increased cytosolic free Ca(2+) levels ([Ca(2+)](i)) in a concentration-dependent manner between 0.1 and 1 mM. The response was partly inhibited by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with 0.2 mM propranolol partly inhibited the [Ca(2+)](i) rise induced by 1 microM thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with thapsigargin abolished propranolol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 0.2 mM propranolol in Ca(2+)-free medium. Propranolol (0.2 mM) inhibited 25% of thapsigargin-induced capacitative Ca(2+) entry. Suppression of 1,4,5-trisphosphate (IP(3)) formation by 2 microM U73122, a phospholipase C inhibitor, did not alter 0.2 mM propranolol-induced internal Ca(2+) release. Propranolol (1 mM) also increased [Ca(2+)](i) in human neutrophils. Collectively, we have found that 0.2 mM propranolol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from thapsigargin-sensitive Ca(2+) stores in an IP(3)-independent manner, followed by Ca(2+) influx from external space. Independently, propranolol was able to inhibit thapsigargin-induced capacitative Ca(2+) entry.  相似文献   

20.
The data presented in this work suggest that in human umbilical artery (HUA) smooth muscle cells, the Na(+)/Ca(2+) exchanger (NCX) is active and working in the reverse mode. This supposition is based on the following results: (i) microfluorimetry in HUA smooth muscle cells in situ showed that a Ca(2+)-free extracellular solution diminished intracellular Ca(2+) ([Ca(2+)](i)), and KB-R7943 (5microM), a specific inhibitor of the Ca(2+) entry mode of the exchanger, also decreased [Ca(2+)](i) (40.6+/-4.5% of Ca(2+)-free effect); (ii) KB-R7943 produced the relaxation of HUA rings (-24.7+/-7.3gF/gW, n=8, p<0.05); (iii) stimulation of the NCX by lowering extracellular Na(+) increases basal [Ca(2+)](i) proportionally to Na(+) reduction (Delta fluorescence ratio=0.593+/-0.141 for Na(+)-free solution, n=8) and HUA rings' contraction (peak force=181.5+/-39.7 for 130mM reduction, n=8), both inhibited by KB-R7943 and a Ca(2+)-free extracellular solution. In conclusion, the NCX represents an important Ca(2+) entry route in HUA smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号