首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown, that some benzo[c]-phenanthridine and diisoquinoline alkaloids isolated from Chelidonium majus L. and Macleaya (Bocconia) cordata and M. microcarpa (berberine, sanguinarine, chelidonine) and of drugs ("Ukrain" and "Sanguirythrine") inhibited the enzyme activity of acetylcholinesterase from human erythrocyte and monoamine oxidase from the rat liver. All agents under study have been shown to be reversible inhibitors of the enzymatic hydrolysis of acetylthiocholine. It has been determined that chelidonine belonged to reversible inhibitors of a competitive type, all other examined agents have been demonstrated to be inhibitors of a mixed competitive-noncompetitive type, and a greater contribution to the inhibition was made by the competitive constituent. Among all examined agents berberine, sanguinarine and "Sanguirythrine" were the strongest inhibitors of this reaction and chelidonine and "Ukrain" were much weaker. All agents under study have been shown to be irreversible inhibitors of the oxidative deamination reaction of serotonine and tyramine and not to influence the oxidative deamination reaction of benzylamine as a substrate. Among the examined agents, alkaloid sanguinarine and drug "Ukrain" are the strongest inhibitors of the reaction, alkaloids berberine, sanguinarine and "Sanguirythrine" exhibit a weaker action.  相似文献   

2.
A study was made of a possible inhibitory action on the enzymatic hydrolysis of acetylthiocholine by human erythrocyte acetylcholinesterase of principal alkaloids isolated from Chelidonium majus L. and Macleaya (Bocconia) cordata and microcarpa (namely sanguinarine, chelidonine, berberine), and of drugs "Ukrain" (thiophosphoric acid derivative of a sum of the alkaloids isolated from Chelidonium majus L.) and "Sanguirythrine" (a mixture of unseparated closely related to benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine, isolated from Chelidonium majus L. and other plants of Papaveraceae family). All agents under study have been shown to be reversible inhibitors of the enzymatic hydrolysis of acetylthiocholine. On the basis of the kinetic data it has been determined that chelidonine belonged to reversible inhibitors of a competitive type. All other examined agents have been demonstrated to be inhibitors of a mixed competitive-noncompetitive type, and a greater contribution to the inhibition was made by the competitive constituent. Among all examined agents berberine, sanguinarine and "Sanguirythrine" were the strongest inhibitors of this reaction (the values of generalized inhibitory constants being 0.23, 0.23 and 0.29 microM, respectively) and cheliodonine and "Ukrain" were much weaker (2.0 and 2.5 microM, respectively). Judging from the data obtained, sanguinarine and chelerythrine exert similar inhibitory effects on the reaction of enzymatic hydrolysis of acetylthiocholine, since sanguinarine and "Sanguirythrine" have nearly equal generalized inhibitory constants.  相似文献   

3.
It has been shown that the major alkaloids from plants Chelidonium majus L. and Macleaya (Bocconia) cordata and microcarpa, namely, berberine, sanguinarine, chelidonine, and drugs "Ukrain" (thiophosphoric acid derivative of a sum of the alkaloids isolated from Ch. majus L.) and "Sanguirythrine" (a mixture of the alkaloids sanguinarine and chelerythrine, w/w 3:7, isolated from Macleaya), are irreversible inhibitors of oxidative deamination reaction of serotonin and tyramine as substrates, catalyzed by rat liver mitochondrial monoamine oxidase (MAO). At the same time these substances do not influence the oxidative deamination reaction of benzylamine as substrate (in concentration 1 mM or less). The substrate specificity of this inhibition manifests that mainly the oxidative deamination reactions catalyzed by MAO form A are inhibited by the agents studied. Among the examined agents, alkaloid chelidonine and drug "Ukrain" are the strongest inhibitors of the reaction. Alkaloids berberine and sanguinarine and drug "Sanguirythrine" exhibit a weaker action. Judging from the data obtained, sanguinarine and chelerythrine appear to exert similar inhibitory effects in this reaction, since sanguinarine and "Sanguirythrine" have similar values of bimolecular rate constants of their interaction with mitochondrial MAO. As it is well known, the MAO inhibitors appear to be, as a rule, pronounced antidepressants. The combination of malignotoxicity and antidepressive activity in drug "Ukrain" seems to be favourable for its clinical applications.  相似文献   

4.
The effect of principal alkaloids (sanguinarine, chelerythrine, coptisine, chelidonine) of greater celandine Chelidonium majus L., as well as the alkaloids from Colchicum autumnale L. (colchicine and colchamine) on calcium accumulation and oxidative phosphorylation in rat liver mitochondria has been studied. The obtained data were compared with DNA intercalating properties of alkaloids detected by the method of thermodenaturation (DNA melting curve plots). It was found that chelerythrine and sanguinarine blocked absorption and accumulation of calcium cations and inhibited oxidative phosphorylation, while the coptisine significantly diminished those indices. Chelidonine, colchicines and colchamine had no influence on the studied characteristics. The effect of alkaloids upon mitochondria functional state correlated tightly with their DNA intercalating properties: chelerythrine and sanguinarine were strong intercalators, while coptisine was a weak one, and chelidonine, colchicine and colchamine did not interact with DNA and caused no changes in its melting point. Correlation coefficient between the intercalating properties of alkaloids and their inhibition of calcium accumulation was 0.89, and with their oxidative phosphorylation inhibition - 0.93. It is suggested that the effect of studied alkaloids upon functional properties of mitochondria can be mediated by mtDNA.  相似文献   

5.
Comparative substrate-inhibitor analysis of catalytic properties of liver monoamine oxidases (MAO) was performed in the mature males of the American mink Mustela vison and the European mink Mustela lutreola. The action on the MAO activity was studied of alkaloids of the benzo[c]phenanthridine group: sanguinarine and chelidonine, diisoquinoline alkaloid berberine, medication agents Ukrain and Sanguirythrin as well as derivatives of 2-propylamine: deprenyl and clorgylin. The latter turned out to be irreversible inhibitor of the MAO A form, whereas deprehyl--irreversible inhibitor of the MAO B form in both studied mink species. The selectivity of action of each inhibitor on the corresponding liver MAO form for the species M. vison was one order of magnitude stronger than for the species M. lutreola. All studied alkaloids as well medication agents on their basis have been shown to be specific irreversible inhibitors of the intermediate strength of the liver MAO A form of both mink species. They inhibit the enzymatic deamination of serotonin, tyramine, and tryptamine without affecting the deamination reaction of benzylamine and beta-phenylethylamine (at concentrations of 10 mM and lower). Out of the studied five isoquinoline agents, the medication Ukrain and alkaloid chelidonine have the highest inhibitory action; the agent Sanguirythrin and alkaloids berberine and sanguinarine produce the weaker monoamine oxidase effect. The revealed specificity of action of the studied inhibitors is an indirect evidence for the presence in the liver enzymes of both mink species, like in the rat liver enzyme, of several molecular forms.  相似文献   

6.
Comparative substrate-inhibitor analysis of catalytic properties of liver monoamine oxidases (MAO) was performed in the mature males of the American mink Mustela vison and the European mink Mustela lutreola. The action on the MAO activity was studied of alkaloids of the benzo[c]phenanthridine group: sanguinarine and chelidonine, diisoquinoline alkaloid berberine, medicinal agents “Ukrain” and “Sanguirythrin” as well as derivatives of 2-propylamine: deprenyl and chlorgylin. The latter turned out to be irreversible inhibitor of the MAO A form, whereas deprenyl-irreversible inhibitor of the MAO B form in both studied mink species. The selectivity of action of each inhibitor on the corresponding liver MAO form for the species M. vison was one order of magnitude stronger than for the species M. lutreola. All studied alkaloids as well medicinal agents on their basis have been shown to be specific irreversible inhibitors of the intermediate strength of the liver MAO A form of both mink species. They inhibit the enzymatic deamination of serotonin, tyramine, and tryptamine without affecting the deamination reaction of benzylamine and β-phenylethylamine (at concentrations of 10 mM and lower). Out of five studied isoquinoline agents, the medication “Ukrain” and alkaloid chelidonine have the highest inhibitory action; the agent “Sanguirythrin” and alkaloids berberine and sanguinarine produce the weaker monoamine oxidase effect. The revealed specificity of action of the studied inhibitors is an indirect evidence for the presence in the liver enzymes of both mink species, like in the rat liver enzyme, of several molecular forms.  相似文献   

7.
Sanguinarine, chelerythrine and chelidonine are isoquinoline alkaloids derived from the greater celandine. They possess a broad spectrum of pharmacological activities. It has been shown that their anti-tumor activity is mediated via different mechanisms, which can be promising targets for anti-cancer therapy. We focused our study on the differential effects of these alkaloids upon cell viability, DNA damage effect and nucleus integrity in mouse primary spleen cells and mouse lymphocytic leukemic cells, L1210. Sanguinarine and chelerythrine produce a dose-dependent increase in DNA damage and cytotoxicity in both primary mouse spleen cells and L1210 cells. Chelidonine did not show a significant cytotoxicity or damage DNA in both cell types, but completely arrested growth of L1210 cells. Examination of nuclear morphology revealed more cells with apoptotic features upon treatment with chelerythrine and sanguinarine, but not chelidonine. In contrast to primary mouse spleen cells, L1210 cells showed slightly higher sensitivity to sanguinarine and chelerythrine treatment. This suggests that cytotoxic and DNA damaging effects of chelerythrine and sanguinarine are more selective against mouse leukemic cells and primary mouse spleen cells, whereas chelidonine blocks proliferation of L1210 cells. The action of chelidonine on normal and tumor cells requires further investigation.  相似文献   

8.
Comparative study was performed of action of a group of 15 isoquinoline homoproaporphine and homoaporphine alkaloids, 10 tropolone colchicine alkaloids and their lumoderivatives that were isolated from corms of a representative of the lily family, the showy autumn crocus Colchicum speciosum Stev. on activity of mammalian erythrocyte acetylcholinesterase and serum butyrylcholinesterase. The studied compounds have turned out to be moderate-potency reversible inhibitors of the studied cholinesterases and to show to a certain degree some specificity of action towards different enzymes both quantitatively, by the ratio of total inhibitor constant values, and qualitatively, by the type of mechanism of the enzymatic activity inhibition. The overwhelming majority of the studied alkaloids revealed certain specificity towards butyrylcholinesterase. An exception was colchamine.  相似文献   

9.
10.
Glycine transporter inhibitors modulate the transmission of pain signals. Since it is well known that extracts from medicinal plants such as Chelidonium majus exhibit analgesic properties, we investigated the effects of alkaloids typically present in this plant on glycine transporters. We found that chelerythrine and sanguinarine selectively inhibit the glycine transporter GlyT1 with comparable potency in the low micromolar range while berberine shows no inhibition at all. At this concentration both alkaloids only minimally affected transport of the closely related glycine transporter GlyT2, suggesting that the effect is not mediated by the inhibitory activity of these alkaloids on the Na(+)/K(+) ATPase. GlyT1 inhibition was time-dependent, noncompetitive and increased with glycine concentration. While chelerythrine inhibition was reversible, the effect of sanguinarine was resistant to wash out. These results suggest that benzophenanthridine alkaloids interact with glycine transporters and at low micromolar range selectively target glycine transporter GlyT1.  相似文献   

11.
The purpose of this study was to examine the relationship between the DNA intercalating characteristics and the DNA damaging capacity of four alkaloids extracted from Chelidonium majus L, as well as their toxicity towards murine NK/Ly lymphoma cells. Chelerythrine, sanguinarine and coptisine were found to be intercalated into the DNA isolated from NK/Ly cells, meanwhile, chelidonine exhibited no affinity to DNA. Sanguinarine exhibited the greatest toxicity toward NK/Ly cells, and the toxicity of the other three decreased in descending order: chelerythrine, coptisine and chelidonine. Chelerythrine and sanguinarine caused DNA damage, illustrated by the formation of comets of the third class. Coptisine was less toxic than chelerythrine and sanguinarine, and affected the formation the same class of comets in higher concentration. The quantity of comets induced by chelidonine were negligible, a finding consistent with its inability to intercalate into DNA structure. The ability of four main alkaloids of Chelidonium majus L., to intercalate into DNA isolated from murine NK/Ly lymphoma cells, correlated with their ability to induce breaks in cellular DNA and with their toxic effect towards those cells.  相似文献   

12.
Alkyl tributylphosphonium and triphenylphosphonium derivatives as well as tetraphenylphosphonium were first studied as inhibitors of acetylcholinesterase of human blood erythrocytes and butyrylcholinesterase of horse blood serum. The inhibition is reversible, of mixed type, with a different contribution of competitive and uncompetitive components. The value of the inhibitory effect is essentially dependent on the structure of phosphonium compounds, especially in experiments with butyrylcholinesterase: allyltriphenylphosphonium is 290 times as strong enzyme inhibitor as methyltributylphosphonium. Hexyltributylphosphonium is identical to hexyltributylammonium in both the pattern and efficiency of the inhibitory action on cholinesterases.  相似文献   

13.
The tribe Chelidonieae of Papaveraceae, consists of 8 genera and 23 species in the world. Most species belonging to this taxon contain dominantly biologically active substances and are widely used as medicinal plants. A chemotaxonomic study in this tribe reveals that Chelidonieae is linked to the other tribes in the presence of protopine-type alkaloids, and the ubiquitous occurrence of dehydrogenated benzophenanthridine-type alkaloids (ex. chelerythrine and sanguinarine) can be served as a chemical character of Chelidonieae. Furthermore, our results indicate that Chelidonieae can obviously be divided into two groups:the first group, including genera Sanguinaria, Eomecon, Macleaya and Bocconia, is characterized by the absence of TLC detected aporphine-, tetrahydroberberine- and reduced benzophenanthridi netype alkaloids, and their undulatedly or palmately incised leaves, as well as short capsules. The second group, comprising Stylophorum, Hylomecon, Dicranostigma and Chelidonium, yields predominately tetrahydroberberine- and reduced benzophenanthridinetype alkaloids, with usually deeply pinnatifid leaves, and long and slender capsules. As regards the medical importance and the resource utilization of Chelidonieae much attention should be paid to the following alkaloids and the taxa: chelidonine (Chelidonium majus ) , isocorydine ( Dicranostigma ) , tetrahydrocoptisine ( Stylophorum ) , chelerythrine (whole tribe particularly the genus Macleaya) and sanguinarine (whole tribe, particularly Macleaya).  相似文献   

14.
Ruben H. Vallejos 《BBA》1973,292(1):193-196
Sanguinarine, chelerythrine and chelidonine, benzophenanthridine alkaloids, inhibited both photosynthetic phosphorylation associated with ferricyanide reduction and cyclic photophosphorylation catalyzed by phenazine methosulphate. They did not affect electron transport in the presence of ADP and Pi and stimulated it in their absence. The inhibition of O2 evolution by energy transfer inhibitors was reversed by the alkaloids. It is concluded that these alkaloids are uncouplers with the same efficiency in cyclic and non-cyclic photophosphorylation. This property might have some bearing in the physiological role of the alkaloids.  相似文献   

15.
The mechanism of reversible inhibition of human erythrocyte acetylcholinesterase, horse blood serum butyrylcholinesterase, cholinesterase from optical ganglia of the squids, PacificTodarodes pacificus and CommodoreBerryteuthis magister, from different zones of habitation area is studied in the presence of substrates of various structures (acetylcholine, butyrylcholine, acetylthiocholine, butyrylthiocholine, phenylacetate, indophenylacetate, 2,6-dichlorophenylindophenylacetate). Tested as reversible inhibitors were tetramethylammonium iodide, tetraethylammonium iodide, choline iodide, and two derivatives of α,ω-bis(trimethylammoniommethyl)oligodimethylsiloxane dichloride. It has been revealed that the mechanism of the reversible anticholinesterase action depends essentially both on the enzyme nature and on the structures of substrate and inhibitor. The transfer from cation-containing to hydrophobic substrates increased essentially the contribution of uncompetitive component of the inhibitory constant. In the presence of butyric acid esters (butyrylcholine, butyrylthiocholine), the potency of inhibitors was lower than at hydrolysis of the corresponding acetates. The effect of the substrate structure on the mechanism of reversible inhibition was revealed to a greater extent in reactions with participation of squid cholinesterases.  相似文献   

16.
Representatives of eleven different classes of isoquinoline alkaloids inhibit Na+, K+-ATPase and Mg2+-ATPase in rat brain microsomal preparations. In most cases the Na+, K+-ATPase is more sensitive than Mg2+-ATPase to inhibition by the alkaloids. The classes of alkaloids can be ranked according to potency of inhibition of Na+, K+-ATPase. Protoberberines are most effective, followed in decreasing order by benzophenanthridines, benzylisoquinolines, aporphines, tetrahydroprotoberberines, pavines, protopines, isoquinolines, tetrahydrobenzylisoquinolines, morphinanes, and tetrahydroisoquinolines. As specific representatives of each of the first four classes of alkaloids, berberine, sanguinarine, papaveroline and 1,2,10,11-tetrahydroxyaporphine, respectively, prove most valuable in kinetic studies because they exhibit the greatest inhibitory action on brain Na+, K+-ATPase. Kinetic analyses plotted in double reciprocal form reveal that berberine and 1,2,10,11-tetrahydroxyaporphine are simple linear competitive inhibitors with respect to ATP, whereas sanguinarine and papaveroline are simple linear noncompetitive inhibitors. These four representative alkaloids exhibit nonlinear competitive inhibition with respect to Na+-activation. Additionally, these alkaloids significantly inhibit rat brain microsomal K+-activatedpNPPase. The results demonstrate that certain members of several classes of isoquinoline alkaloids markedly affect various cation-dependent phosphohydrolases in vitro.  相似文献   

17.
It is known that certain microorganisms produce extracellular lipase to better colonize the skin and mucosal surfaces. Since different extracts from medicinal plants have anti-lipase activity (Shimura et al., Biosci. Biotechnol. Biochem., 56: 1478-1479, 1992), we examined the effects of selected natural substances on Candida rugosa lipase. In the presence of the compounds under examination, the enzyme was incubated with beta-naphthyl laurate, and beta-naphthol, produced by the enzymatic reaction, was extracted with ethyl acetate and analyzed by reversed phase HPLC, using a C-18 column. Thus, the inhibitory activity was calculated by a proper formula based on the variations of the area under the chromatographic peak of beta-naphthol. The method was validated by analyzing substances with known anti-lipase activity such as saturated fatty acids (C10-16) and tetracycline. Berberine and a number of structurally related alkaloids such as chelidonine, chelerythrine, and sanguinarine appeared active. This property of berberine and sanguinarine is of interest because they are used in pathological conditions in which microbial lipases could play a pathogenic role.  相似文献   

18.
Evidence suggests that specific inhibition of butyrylcholinesterase may be an appropriate focus for the development of more effective drugs to treat dementias such as Alzheimer's disease. Butyrylcholinesterase is a co-regulator of cholinergic neurotransmission and its activity is increased in Alzheimer's disease, and is associated with all neuropathological lesions in this disease. Some selective butyrylcholinesterase inhibitors have already been reported to increase acetylcholine levels and to reduce the formation of abnormal amyloid found in Alzheimer's disease. Synthesized N-(10)-aryl and N-(10)-alkylaryl amides of phenothiazine are specific inhibitors of butyrylcholinesterase. In some cases, inhibition constants in the nanomolar range are achieved. Enzyme specificity and inhibitor potency of these molecules can be related to molecular volumes, steric and electronic factors. Computed logP values indicate high potential for these compounds to cross the blood-brain barrier. Use of such butyrylcholinesterase inhibitors could provide direct evidence for the importance of this enzyme in the normal nervous system and in Alzheimer's disease.  相似文献   

19.
Growing pharmaceutical interest in benzylisoquinoline alkaloids (BIA) coupled with their chemical complexity make metabolic engineering of microbes to create alternative platforms of production an increasingly attractive proposition. However, precise knowledge of rate‐limiting enzymes and negative feedback inhibition by end‐products of BIA metabolism is of paramount importance for this emerging field of synthetic biology. In this work we report the structural characterization of (S)‐norcoclaurine‐6‐O‐methyltransferase (6OMT), a key rate‐limiting step enzyme involved in the synthesis of reticuline, the final intermediate to be shared between the different end‐products of BIA metabolism, such as morphine, papaverine, berberine and sanguinarine. Four different crystal structures of the enzyme from Thalictrum flavum (Tf 6OMT) were solved: the apoenzyme, the complex with S‐adenosyl‐l ‐homocysteine (SAH), the complexe with SAH and the substrate and the complex with SAH and a feedback inhibitor, sanguinarine. The Tf 6OMT structural study provides a molecular understanding of its substrate specificity, active site structure and reaction mechanism. This study also clarifies the inhibition of Tf 6OMT by previously suggested feedback inhibitors. It reveals its high and time‐dependent sensitivity toward sanguinarine.  相似文献   

20.
Monoamine oxidase (MAO) is a mitochondrial outer-membrane flavoenzyme involved in brain and peripheral oxidative catabolism of neurotransmitters and xenobiotic amines, including neurotoxic amines, and a well-known target for antidepressant and neuroprotective drugs. Recently, positron emission tomography imaging has shown that smokers have a much lower activity of peripheral and brain MAO-A (30%) and -B (40%) isozymes compared to non-smokers. This MAO inhibition results from a pharmacological effect of smoke, but little is known about its mechanism. Working with mainstream smoke collected from commercial cigarettes we confirmed that cigarette smoke is a potent inhibitor of human MAO-A and -B isozymes. MAO inhibition was partly reversible, competitive for MAO-A, and a mixed-type inhibition for MAO-B. Two beta-carboline alkaloids, norharman (beta-carboline) and harman (1-methyl-beta-carboline), were identified by GC-MS, quantified, and isolated from the mainstream smoke by solid phase extraction and HPLC. Kinetics analysis revealed that beta-carbolines from cigarette smoke were competitive, reversible, and potent inhibitors of MAO enzymes. Norharman was an inhibitor of MAO-A (K(i)=1.2+/-0.18 microM) and MAO-B (K(i)=1.12+/-0.19 microM), and harman of MAO-A (K(i)=55.54+/-5.3nM). Beta-carboline alkaloids are psychopharmacologically active compounds that may occur endogenously in human tissues, including the brain. These results suggest that beta-carboline alkaloids from cigarette smoke acting as potent reversible inhibitors of MAO enzymes may contribute to the MAO-reduced activity produced by tobacco smoke in smokers. The presence of MAO inhibitors in smoke like beta-carbolines and others may help us to understand some of the purported neuropharmacological effects associated with smoking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号