首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary The subepidermal distribution of xanthophores and melanophores is investigated in embryos ofTriturus alpestris with a uniform (stage 28+) and a banded melanophore pattern (stage 35/36). In ultrathin head and trunk sections from stage 35/36 embryos which externally show longitudinal dorsal and lateral melanophore bands in the trunk and less compact continuations of the dorsal bands in the head, xanthophores were discovered in addition to melanophores. Melanophores contain melanosomes while xanthophores which are not externally visible, are recognized by their pterinosomes. Both chromatophore cell types are mutually exclusively distributed on the epidermal basement membrane (bm). Mesenchymal cells seemed not to be able to replace them, except on the bm of the corneal epithelium where there were only mesenchymal cells. In head and trunk sections from stage 28+ embryos which externally show a distribution of uniformly scattered melanophores on the dorsolateral halves, melanophores were found on the dorsolateral neural crest migration route. No epidermal bm was present and xanthophores were undetectable. In ventrolateral and ventral portions of embryos of both stages no chromatophores occurred. This investigation defines the histological localization of melanophores and xanthophores in embryos with a typical uniform and banded melanophore arrangement; a subsequent study analyzes when xanthophores appear and how they arrange with melanophores in alternating zones.  相似文献   

2.
The distribution of melanophores and xanthopores in developing tailbud stages of Triturus alpestris was investigated. In stage 27 embryos (curved tailbuds), melanophores are distributed evenly but sparsely over the entire dorsolateral trunk. With progressive development melanophores arrange themselves into compact dorsal and lateral bands present in stage 34 embryos (9 to 10-mm-long larvae). On the inner surface of detached pieces of skin from early tailbuds which were investigated in the scanning electron microscope xanthophores were discovered in addition to and mixed with melanophores. Unlike melanophores they are invisible from outside. Later in development they occupy the zone between the melanophore bands and also the dorsal fin. Thus, formation of pigment cell patterns in Triturus embryos is a process which seems to depend on the differential sorting out of two populations of neural crest-derived chromatophore cell types.  相似文献   

3.
The striped pigment patterns in the flanks of zebrafish result from chromatophores deep within the dermis or hypodermis, while superficial melanophores associated with dermal scales add a dark tint to the dorsal coloration. The responses of these chromatophores were compared during the long-term adaptation of zebrafish to a white or a black background. In superficial skin, melanophores, xanthophores, and two types of iridophores are distributed in a gradient along the dorso-ventral axis independent of the hypodermal pigment patterns. Within one week the superficial melanophores and iridophores changed their density and/or areas of distribution, which adopted the dorsal skin color and the hue of the flank to the background, but did not affect the striped pattern. The increases or decreases in superficial melanophores are thought to be caused by apoptosis or by differentiation, respectively. When the adaptation period was prolonged for more than several months, the striped color pattern was also affected by changes in the width of the black stripes. Some black stripes disappeared and interstripe areas were emphasized with a yellow color within one year on a white background. Such long-term alteration in the pigment pattern was caused by a decrease in the distribution of melanophores and a concomitant increase in xanthophores in the hypodermis. These results indicate that morphological responses of superficial chromatophores contribute to the effective and rapid background adaptation of dorsal skin and while prolonged adaptation also affects hypodermal chromatophores in the flank to alter the striped pigment patterns.  相似文献   

4.
Summary The barred pigment pattern (Lehman 1957) of the axolotl larva is best observed from stage 41 onwards, where it already consists of alternating transverse bands of melanophores and xanthophores along the dorsal side of the trunk. The present study investigateswhen the two populations of neural crest derived chromatophores, melanophores and xanthophores become determined andhow they interact to create the barred pigment pattern. The presence of phenol oxidase (tyrosinase) in melanophores (revealed by dopa incubation) and pteridines in xanthophores (visualized by fluorescence) were used as markers for cell differentiation in order to recognize melanophores and xanthophores before they became externally visible. It was found that melanophores and xanthophores were already determined in the premigratory neural crest, at stages 30/31 and 35–36, respectively. Between stages 35–36 and 38 they were arranged in a prepattern of several distinct, mixed chromatophore groups along the dorsal trunk, morphologically correlated in the scanning electron microscope with humps on the original crest cell string. While the occurrence of xanthophores was restricted to the chromatophore groups and around them, melanophores were already uniformly distributed in the dorsolateral flank area, having migrated from trunk neural crest portions including the groups. The bar component of the pigment pattern was subsequently initiated by xanthophores, which caused melanophores in and around the chromatophore groups to fade or become invisible. The barred pattern was established by the formation of alternating clusters of like cells, melanophores and xanthophores.  相似文献   

5.
The appearance of the pseudo-albino phenotype was investigated in developing Senegalese sole (Solea senegalensis, Kaup 1858) larvae at morphological and molecular levels. In order to induce the development of pseudo-albinos, Senegalese sole larvae were fed Artemia enriched with high levels of arachidonic acid (ARA). The development of their skin pigmentation was compared to that of a control group fed Artemia enriched with a reference commercial product. The relative amount of skin melanophores, xanthophores and iridophores revealed that larval pigmentation developed similarly in both groups. However, results from different relative proportions, allocation patterns, shapes and sizes of skin chromatophores revealed changes in the pigmentation pattern between ARA and control groups from 33 days post hatching onwards. The new populations of chromatophores that should appear at post-metamorphosis were not formed in the ARA group. Further, spatial patterns of distribution between the already present larval xanthophores and melanophores were suggestive of short-range interaction that seemed to be implicated in the degradation of these chromatophores, leading to the appearance of the pseudo-albino phenotype. The expression profile of several key pigmentation-related genes revealed that melanophore development was promoted in pseudo-albinos without a sufficient degree of terminal differentiation, thus preventing melanogenesis. Present results suggest the potential roles of asip1 and slc24a5 genes on the down-regulation of trp1 expression, leading to defects in melanin production. Moreover, gene expression data supports the involvement of pax3, mitf and asip1 genes in the developmental disruption of the new post-metamorphic populations of melanophores, xanthophores and iridophores.  相似文献   

6.
Clonal cultures were performed with the use of neural crest cells and their derivatives, chromatophores, from Xenopus laevis in order to elucidate the state of commitment in early embryogenesis. Neural crest cells that outgrew from neural tube explants were isolated and plated at clonal density. Cloned neural crest cells differentiated and gave rise to colonies that consisted of 1) only melanophores, 2) only xanthophores, or 3) melanophores and xanthophores. Xanthophores and iridophores, which differentiated in vitro, were also isolated and cloned. Cloned xanthophores proliferated in a stable fashion and did not lose their properties. On the other hand, cloned iridophores converted into melanophores as they proliferated. These results suggest that there is heterogeneity in the state of commitment of neural crest cells immediately after migration with regard to chromatophore differentiation and that iridophore determination is relatively labile (at least in vitro), whereas melanophore and xanthophore phenotypes are stable.  相似文献   

7.
In the tadpole of the tree frog Hyla arborea, the color of the dorsal skin was dark brown. Dermal melanophores, xanthophores, and iridophores were scattered randomly under the subepidermal collagen layer (SCL). After metamorphosis, the dorsal color of the animal changed to green and the animal acquired the ability of dramatic color change, demonstrating that the dermal chromatophore unit (DCU) was formed at metamorphosis. Fibroblasts invaded the SCL and divided it into two parts: the stratum spongiosum (SS) and the stratum compactum (SC). The activity of collagenase increased at metamorphosis. The fibroblasts appeared to dissolve the collagen matrix as they invaded the SCL. Then, three types of chromatophores migrated through the SCL and the DCU was formed in the SS. The mechanism how the three types of chromatophores were organized into a DCU is uncertain, but different migration rates of the three chromatophore types may be a factor that determines the position of the chromatophores in the DCU. Almost an equal number of each chromatophore type is necessary to form the DCUs. However, the number of dermal melanophores in the tadpoles was less than the number of xanthophores and iridophores. It was suggested that epidermal melanophores migrated to the dermis at metamorphosis and developed into dermal melanophores. This change may account for smaller number of dermal melanophores available to form the DCUs.  相似文献   

8.
In the integument of the red-spotted newt there occasionally appear patches of skin which are at the same time melanistic and iridescent. Such hyperpigmented patches have been found on the back, on the tail and on the dorsal surface of both fore and hind limbs. Cytological examination of several such areas revealed the presence of large numbers of chromatophores distributed throughout the dermis. The majority of the chromatophores consisted of atypically large and dendritic melanophores, which contained typical pigment granules. The iridescence resulted from a high incidence of iridophores. Xanthophores also were found in considerable abundance. This extensive and apparently random intermingling of melanophores, iridophores and xanthophores in limited areas constitutes a striking exception to the usual distributional patterns of pigment cells in this animal.  相似文献   

9.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

10.
In keeping with the concept that local factors in the vertebrate integument affect the expression of pigment cells, the present study was directed toward demonstrating the existence of such factors in the skin of the channel catfish, Ictalurus punctatus. This species has a dark dorsal surface in marked contrast to an almost white midventral surface. Pieces of skin from these two surfaces were used to condition culture media, which were in turn bioassayed using the Xenopus neural tube explant system (Fukuzawa and Ide, 1988, Dev. Biol. 129:25). A certain number of neural crest cells grow out from the explant, and many of these are melanized in a culture medium of Steinberg's basic salt solution (BSS). When the BSS was conditioned with either dorsal or ventral skin, a profound increase in both the number of crest cells emigrated from the neural tubes and the percentage of melanized cells was observed. The effects of dorsal skin were stronger than those of ventral skin and were evident on a dose/response basis. Initial fractionation of conditioned BSS with DEAE ion exchange chromatography produced fractions of particular potency in the stimulation of melanogenesis. A similarly conditioned medium based upon Leibovitz's L-15 was used in the primary culture of mature chromatophores, namely, melanophores, iridophores, and xanthophores from tadpoles of Rana pipiens. Both dorsal and ventral conditioned media stimulated iridophores and xanthophores, but seemed to have little or no effect on tadpole melanophores. A melanization inhibiting factor (MIF) from the ventral surface of adult frogs has been suggested as the basis for the light colored ventrum of amphibians, and although the present experiments were not designed to study catfish MIF, the possible existence of such a factor in this species was supported by the results. The total results of this investigation are discussed in the light of the possible presence of a melanization inhibiting factor (MIF) of greater prevalence in the ventrum and a melanization stimulatory factor (MSF) of greater prevalence in the dorsal integument. It is suggested that the light-colored ventral surface of the catfish and other poikilotherms may result from the presence of higher levels of MIF than MSF. Thus, the expression of melanophores is inhibited while that of iridophores is enhanced. In contrast, higher levels of MSF over MIF in the dark dorsal surface would result in melanophore stimulation and inhibition of iridophore expression.  相似文献   

11.
Cytoskeletal construction of dermal chromatophores of Orgzias latipes was studied by immunofluorescence microscopy. A microtubule system was most prominent in melanophores where a large number of microtubules emanated from the center of the cell. Xanthophores had an arrangement basically similar to that of melanophores, though the radial pattern became more irregular in the peripheral region where intersecting wavy microtubules were quite frequent. Oval-shaped leucophores exhibited the least-developed microtubule system, where the limited number of microtubules formed a loose basket-like architecture. Intermediate filaments were ubiquitously present in all types of chromatophores and were found to be vimentin-immunoreactive. Examination of doubly-labeled cells indicated that vimentin filaments had similar distribution patterns with microtubules. Orderly arranged bundles of actin filaments were found only in xanthophores, while in melanophores and xanthophores, actin expression was diffuse without displaying a conspicuous filamentous organization. Colchicine treatment induced depolymerization of microtubules and retraction of dendrites in varying degrees in cells in culture and in situ. Melanophores in culture are very sensitive to the treatment while xanthophores appeared to be more resistant in respect to the maintenance of cell morphology.  相似文献   

12.
Flounders form left-right asymmetry in body coloration during metamorphosis through differentiation of adult-type melanophores and xanthophores on the ocular side. As the first step in investigating the formation of flounder body coloration asymmetry, in this study, we aimed to determine where the precursors of adult-type chromatophores distribute in larvae before metamorphosis. In Paralichthys olivaceus and Verasper variegatus, GTP cyclohydrolase 2 (gch2), a common marker of melanoblasts and xanthoblasts, was found to be transiently expressed in cells located along the bilateral skeletal muscles at the basal parts of the dorsal and anal fins of premetamorphic larvae. When V. variegatus larvae were fed with a strain of Artemia collected in Brazil, this gch2 expression was abolished and the differentiation of adult-type melanophores was completely inhibited, while the density of larval melanophores was not affected. In a cell trace test in which the cells at the basal part of the dorsal fin were labeled with DiI at the premetamorphic stage, adult-type melanophores labeled with DiI were found in the skin on the ocular side after metamorphosis. These data suggest that, in flounder larvae, adult-type melanophores are distributed at the basal parts of the dorsal and anal fins as unpigmented precursor cells.  相似文献   

13.
Pigment pattern formation in zebrafish presents a tractable model system for studying the morphogenesis of neural crest derivatives. Embryos mutant for choker manifest a unique pigment pattern phenotype that combines a loss of lateral stripe melanophores with an ectopic melanophore ;collar' at the head-trunk border. We find that defects in neural crest migration are largely restricted to the lateral migration pathway, affecting both xanthophores (lost) and melanophores (gained) in choker mutants. Double mutant and timelapse analyses demonstrate that these defects are likely to be driven independently, the collar being formed by invasion of melanophores from the dorsal and ventral stripes. Using tissue transplantation, we show that melanophore patterning depends upon the underlying somitic cells, the myotomal derivatives of which--both slow--and fast-twitch muscle fibres--are themselves significantly disorganised in the region of the ectopic collar. In addition, we uncover an aberrant pattern of expression of the gene encoding the chemokine Sdf1a in choker mutant homozygotes that correlates with each aspect of the melanophore pattern defect. Using morpholino knock-down and ectopic expression experiments, we provide evidence to suggest that Sdf1a drives melanophore invasion in the choker mutant collar and normally plays an essential role in patterning the lateral stripe. We thus identify Sdf1 as a key molecule in pigment pattern formation, adding to the growing inventory of its roles in embryonic development.  相似文献   

14.
Summary The purpose of the present investigation was to provide and apply a methodological manual with which the distribution, patterning and relationship of melanophores and xanthophores can be analyzed during early amphibian development. For demonstration of the methods, which include ultrastructural, histochemical and biochemical approaches, Triturus alpestris and Ambystoma mexicanum (axolotl) embryos are used. These two species differ conspicuously in their larval pigment patterns, showing alternating melanophore bands in horizontal (T. alpestris) and vertical (axolotl) arrangements. With transmission- and scanning electron microscopy melanophores and xanthophores were distinguished by their different pigment organelles and surface structures. The presence of phenol oxidase (tyrosinase) was used to reveal externally invisible or faintly visible melanophores by applying an excess of 3,4 dihydroxy-phenylalanine (dopa). Xanthophores were made visible in fixed and living embryos by demonstrating their pterin fluorescence. In addition, pterins were analyzed by HPLC in embryos before and after pigmentation was visible.Abbreviations DOPA dihydroxy-phenylalanine - FCS fetal calf serum - FIF formaldehyde-induced fluorescence - FITC fluorescein isothiocyanate - HPLC high performance liquid chromatography Dedicated to the memory of Dr. Michael Claviez  相似文献   

15.
To determine whether or not the erythrophore originates from xanthophores in the dorsal skin of the brown frog, Rana ornativentris, we morphologically examined the differentiation and migration of the two chromatophore types and their pigmentary organelle formation. At an early tadpole stage, three kinds of chromatophores, xanthophores, iridophores, and melanophores, appeared in the subdermis, whereas the erythrophore did so just before the foreleg protrusion stage. By the middle of metamorphosis, most chromatophores other than erythrophores had migrated to the subepidermal space. Erythrophores, which appeared late in the subdermis, proliferated actively there during metamorphosis and finished moving into the subepidermal space by the completion of metamorphosis. Carotenoid vesicles and pterinosomes within the erythrophores and xanthophores showed several significant differences in structure. In xanthophores, carotenoid vesicles were abundant throughout life, whereas those in erythrophores decreased in number with the growth of the frogs. The fibrous materials contained in the pterinosomes were initially scattered but soon formed a concentric lamellar structure. In erythrophores, the lamellar structure began to form at the periphery of the organelles but at the center in xanthophores. In addition, the pterinosomes of erythrophores were uniform in size throughout development, while those of xanthophores showed a tendency to become smaller after metamorphosis. The pterinosomes of xanthophores were significantly larger than those of erythrophores. These findings suggest that an erythrophore is not a transformed xanthophore, although they resemble each other closely in many respects.  相似文献   

16.
色素细胞是皮肤图案形成的基础,为了解鳜(Siniperca chuatsi)皮肤图案区域色素细胞的种类、分布及排列特征,采用光学显微镜与电子显微镜对鳜皮肤中图案区域、非图案区域及交界处皮肤的色素细胞进行显微及超显微结构观察。结果显示,鳜皮肤中含有黑色素细胞、黄色素细胞、红色素细胞及虹彩细胞,主要分布于表皮层和色素层。头部过眼条纹、躯干纵带、躯干斑块等图案区域皮肤表皮层与色素层均含有黑色素细胞,非图案区域仅表皮层含有少量黑色素细胞。躯干图案区域(纵带、斑块)皮肤色素层色素细胞分布层次明显,由外到内依次为黄色素细胞、红色素细胞、黑色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较长,整齐水平排列;躯干非图案区域皮肤色素层由外到内依次为黄色素细胞、红色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较短,无规则排列。头部过眼条纹色素层含有4种色素细胞,色素细胞数量较少,且无规则排列,其中,黑色素细胞内黑色素颗粒较大。交界处皮肤色素层黑色素细胞数量向非图案区域一侧逐渐减少,虹彩细胞数量逐渐增加。结果表明,鳜图案区域与非图案区域、不同图案区域的色素细胞分布与排列各不相同,本研究结果为鳜色素细胞图案化形成机制提供了基础资料。  相似文献   

17.
Summary The skin of the lizard, Anolis carolinensis, changes rapidly from bright green to a dark brown color in response to melanophore stimulating hormone (MSH). Chromatophores responsible for color changes of the skin are xanthophores which lie just beneath the basal lamina containing pterinosomes and carotenoid vesicles. Iridophores lying immediately below the xanthophores contain regularly arranged rows of reflecting platelets. Melanophores containing melanosomes are present immediately below the iridophores. The ultrastructural features of these chromatophores and their pigmentary organelles are described. The color of Anolis skin is determined by the position of the melanosomes within the melanophores which is regulated by MSH and other hormones such as norepinephrine. Skins are green when melanosomes are located in a perinuclear position within melanophores. In response to MSH, they migrate into the terminal processes of the melanophores which overlie the xanthophores above, thus effectively preventing light penetration to the iridophores below, resulting in skins becoming brown. The structural and functional characteristics of Anolis chromatophores are compared to the dermal chromatophore unit of the frog.This study was supported in part by GB-8347 from the National Science Foundation.Contribution No. 244, Department of Biology, Wayne State University.The authors are indebted to Dr. Joseph T. Bagnara for his encouragement during the study and to Dr. Wayne Ferris for his advice and the use of his electron microscope laboratory.  相似文献   

18.
Ectothermic vertebrates exhibit a diverse array of adult pigment patterns. A common element of these patterns is alternating dark and light stripes each comprising different classes of neural crest-derived pigment cells. In the zebrafish, Danio rerio, alternating horizontal stripes of black melanophores and yellow xanthophores are a prominent feature of the adult pigment pattern. In fms mutant zebrafish, however, xanthophores fail to develop and melanophore stripes are severely disrupted. fms encodes a type III receptor tyrosine kinase expressed by xanthophores and their precursors and is the closest known homologue of kit, which has long been studied for roles in pigment pattern development in amniotes. In this study we assess the cellular and temporal requirements for Fms activity in promoting adult pigment pattern development. By transplanting cells between fms mutants and either wild-type or nacre mutant zebrafish, we show that fms acts autonomously to the xanthophore lineage in promoting the striped arrangement of adult melanophores. To identify critical periods for fms activity, we isolated temperature sensitive alleles of fms and performed reciprocal temperature shift experiments at a range of stages from embryo to adult. These analyses demonstrate that Fms is essential for maintaining cells of the xanthophore lineage as well as maintaining the organization of melanophore stripes throughout development. Finally, we show that restoring Fms activity even at late larval stages allows essentially complete recovery of xanthophores and the development of a normal melanophore stripe pattern. Our findings suggest that fms is not required for establishing a population of precursor cells during embryogenesis but is required for recruiting pigment cell precursors to xanthophore fates, with concomitant effects on melanophore organization.  相似文献   

19.
The dermal chromatophore unit   总被引:3,自引:3,他引:0       下载免费PDF全文
Rapid color changes of amphibians are mediated by three types of dermal chromatophores, xanthophores, iridophores, and melanophores, which comprise a morphologically and physiologically distinct structure, the dermal chromatophore unit. Xanthophores, the outermost element, are located immediately below the basal lamella. Iridophores, containing light-reflecting organelles, are found just beneath the xanthophores. Under each iridophore is found a melanophore from which processes extend upward around the iridophore. Finger-like structures project from these processes and occupy fixed spaces between the xanthophores and iridophores. When a frog darkens, melanosomes move upward from the body of the melanophore to fill the fingers which then obscure the overlying iridophore. Rapid blanching is accomplished by the evacuation of melanosomes from these fingers. Pale coloration ranging from tan to green is provided by the overlying xanthophores and iridophores. Details of chromatophore structure are presented, and the nature of the intimate contact between the chromatophore types is discussed.  相似文献   

20.
The present study is an attempt to determine the factors responsible for the melanophore pattern of the freshwater teleost, Puntius conchonius (Ham.) under normal background conditions (i.e., the existence of a large round black spot on the middle of the side above the posterior part of the anal fin and the dull shade of the rest of the body which is brownish on the dorsal part, referred here in the present study as the general body surface and silvery along the lateral and ventral part of the body). On the basis of nature of their branching pattern various morphological types of melanophores are classified in a scale from the dark spot area as well as the general body surface. There are as many as 7 types of melanophores termed as A, B, C, AB/AC (all system I deep melanophores) and a, b and c (all system I superficial melanophores). The integument of the fish, however, possesses 3 kinds of chromatophores namely--melanophores, xanthophores and iridophores. The identity of the dark spot as clearly maintained entity independant from the general body surface may be attributed to greater number of system I melanophores, greater melanin content in the system I and system II melanophores, smaller interspaces between system I and system II deep melanophores, greater anastomosing in the superficial melanophores, larger size of system I deep as well as superficial melanophores. The reverse order of the above mentioned factors is responsible for the dull-brownish shade of the general body surface of the fish. The dark spot toward the tail end in the fish, possibly may serve to intimidate or misdirect attack and thus facilitate escape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号