首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we showed that antisense peptide nucleic acids (PNA) containing a short pyrimidine stretch (C(4)TC(3)) invade Ha-ras mRNA hairpin structures to form highly stable duplex and triplex complexes that contribute to the arrest of translation elongation. The antisense PNA targeted to codon 74 of Ha-ras was designed to bind in antiparallel configuration (the N-terminal of the PNA faces the 3'-end of target mRNA), as PNA/RNA duplexes are most stable in this configuration. In order to show that different sequences in the coding region could be targeted successfully with antisense PNAs, we extended our study to three other purine-rich targets. We show that the tridecamer PNA (targeted to codon 149) containing a CTC(3)T pyrimidine stretch forms with the complementary oligoribonucleotide (ORN) a stable (PNA)(2)/ORN triplex at neutral pH (T(m) = 50 degrees C) and arrests Ha-ras mRNA translation elongation. Interestingly, the thermal stability of triplexes formed with PNAs designed to bind to the complementary ORN in a parallel orientation (the N-terminal of the PNA faces the 5'-end of target) was higher than that formed with antiparallel oriented PNAs (T(m) = 58 degrees C). Because parallel and antiparallel PNAs form stable triplexes with target sequence, they act as translation elongation blockers. These duplex-forming and partly triplex-forming PNAs targeted to Ha-ras mRNA also arrested translation elongation at specific polypurine sites contained in the mRNA coding for HIV-integrase protein. Furthermore, the tridecamer PNA containing the C(3)TC(4) motif was more active than a bis-PNA in which the Hoogsteen recognizing strand was linked to the Watson-Crick recognizing strand by a flexible linker. Pyrimidine-rich, short PNAs that form very stable duplexes with target Ha-ras mRNA inhibit translation by a mechanism that does not involve ribosome elongation arrest, whereas PNAs forming duplex and triplex structures arrest ribosome elongation. The remarkable efficacy of the tridecamer PNAs in arresting translation elongation of HIV-1 integrase mRNA is explained by their ability to form stable triplexes at neutral pH with short purine sequences.  相似文献   

2.
Recently, we have shown that peptide nucleic acid (PNA) tridecamers targeted to the codon 74, 128 and 149 regions of Ha-ras mRNA arrested translation elongation in vitro. Our data demonstrated for the first time that PNAs with mixed base sequence targeted to the coding region of a messenger RNA could arrest the translation machinery and polypeptide chain elongation. The peculiarity of the complexes formed with PNA tridecamers and Ha-ras mRNA rests upon the stability of PNA-mRNA hybrids, which are not dissociated by cellular proteins or multiple denaturing conditions. In the present study, we show that shorter PNAs such as a dodecamer or an undecamer targeted to the codon 74 region arrest translation elongation in vitro. The 13, 12, and 11-mer PNAs contain eight and the 10-mer PNA seven contiguous pyrimidine residues. Upon binding with parallel Hoogsteen base-pairing to the PNA-RNA duplex, six of the cytosine bases and one thymine base of a second PNA can form C.G*C(+) and T.A*T triplets. Melting experiments show two well-resolved transitions corresponding to the dissociation of the third strand from the core duplex and to melting of duplex at higher temperature. The enzymatic structure mapping of a target 27-mer RNA revealed a hairpin structure that is disrupted upon binding of tri-, dodeca-, undeca- and decamer PNAs. We show that the non-bonded nucleobase overhangs on the RNA stabilize the PNA-RNA hybrids and probably assist the PNA in overcoming the stable secondary structure of the RNA target. The great stability of PNA-RNA duplex and triplex structures allowed us to identify both 1:1 and 2:1 PNA-RNA complexes using matrix-assisted laser desorption/ionization time-of -flight mass spectrometry. Therefore, it is possible to successfully target mixed sequences in structured regions of messenger RNA with short PNA oligonucleotides that form duplex and triplex structures that can arrest elongating ribosomes.  相似文献   

3.
Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thio-pseudoisocytosine (L), and binding studies of PNAs incorporating the monomer L. Thermal melting and gel electrophoresis studies reveal that L-incorporated 8-mer PNAs have superior affinity and specificity in recognizing the duplex region of a model RNA hairpin to form a pyrimidine motif major-groove RNA2–PNA triplex, without appreciable binding to single-stranded regions to form an RNA–PNA duplex or, via strand invasion, forming an RNA–PNA2 triplex at near-physiological buffer condition. In addition, an L-incorporated 8-mer PNA shows essentially no binding to single-stranded or double-stranded DNA. Furthermore, an L-modified 6-mer PNA, but not pseudoisocytosine (J) modified or unmodified PNA, binds to the HIV-1 programmed −1 ribosomal frameshift stimulatory RNA hairpin at near-physiological buffer conditions. The stabilization of an RNA2–PNA triplex by L modification is facilitated by enhanced van der Waals contacts, base stacking, hydrogen bonding and reduced dehydration energy. The destabilization of RNA–PNA and DNA–PNA duplexes by L modification is due to the steric clash and loss of two hydrogen bonds in a Watson–Crick-like G–L pair. An RNA2–PNA triplex is significantly more stable than a DNA2–PNA triplex, probably because the RNA duplex major groove provides geometry compatibility and favorable backbone–backbone interactions with PNA. Thus, L-modified triplex-forming PNAs may be utilized for sequence-specifically targeting duplex regions in RNAs for biological and therapeutic applications.  相似文献   

4.
5.
Marin VL  Armitage BA 《Biochemistry》2006,45(6):1745-1754
Peptide nucleic acid (PNA) oligomers targeted to guanine quadruplex-forming RNAs can be designed in two different ways. First, complementary cytosine-rich PNAs can hybridize by the formation of Watson-Crick base pairs, resulting in hybrid PNA-RNA duplexes. Second, guanine-rich homologous PNAs can hybridize by the formation of G tetrads, resulting in hybrid PNA-RNA quadruplexes. UV thermal denaturation, circular dichroism, and fluorescence spectroscopy experiments were used to compare these two recognition modes and revealed 1:1 duplex formation for the complementary PNA and 2:1 (PNA2-RNA) quadruplex formation for the homologous PNA. Both hybrids were very stable, and hybridization was observed at low nanomolar concentrations. Hybrid quadruplex formation was equally efficient regardless of the PNA strand polarity, indicating a lack of interaction between the loop nucleobases on the PNA and RNA strands. The implications of this finding on sequence specificity as well as methods to improve affinity are also discussed.  相似文献   

6.
Fluorescently labeled peptide nucleic acids (PNAs) are important tools in fundamental research and biomedical applications. However, synthesis of labeled PNAs, especially using modern and expensive dyes, is less explored than similar preparations of oligonucleotide dye conjugates. Herein, we present a simple procedure for labeling of the PNA N-terminus with HiLyte Fluor 488 as the last step of solid phase PNA synthesis. A minimum excess of 1.25 equiv of activated carboxylic acid achieved labeling yields close to 90% providing a good compromise between the price of dye and the yield of product and significant improvement over previous literature procedures. The HiLyte Fluor 488-labeled PNAs retained the RNA binding ability and in live cell fluorescence microscopy experiments were brighter and significantly more photostable than PNA labeled with carboxyfluorescein. In contrast to fluorescein-labeled PNA, the fluorescence of PNAs labeled with HiLyte Fluor 488 was independent of pH in the biologically relevant range of 5–8. The potential of HiLyte Fluor 488-labeling for studies of PNA cellular uptake and distribution was demonstrated in several cell lines.  相似文献   

7.
Bentin T  Larsen HJ  Nielsen PE 《Biochemistry》2003,42(47):13987-13995
"Tail-clamp" PNAs composed of a short (hexamer) homopyrimidine triplex forming domain and a (decamer) mixed sequence duplex forming extension have been designed. Tail-clamp PNAs display significantly increased binding to single-stranded DNA compared with PNAs lacking a duplex-forming extension as determined by T(m) measurements. Binding to double-stranded (ds) DNA occurred by combined triplex and duplex invasion as analyzed by permanganate probing. Furthermore, C(50) measurements revealed that tail-clamp PNAs consistently bound the dsDNA target more efficiently, and kinetics experiments revealed that this was due to a dramatically reduced dissociation rate of such complexes. Increasing the PNA net charge also increased binding efficiency, but unexpectedly, this increase was much more pronounced for tailless-clamp PNAs than for tail-clamp PNAs. Finally, shortening the tail-clamp PNA triplex invasion moiety to five residues was feasible, but four bases were not sufficient to yield detectable dsDNA binding. The results validate the tail-clamp PNA concept and expand the applications of the P-loop technology.  相似文献   

8.
Targeting double-stranded DNA with homopyrimidine PNAs results in strand displacement complexes PNA/DNA/PNA rather than PNA/DNA/DNA triplex structures. Not much is known about the binding properties of DNA-PNA chimeras. A 16-mer 5'-DNA-3'-p-(N)PNA(C) has been investigated for its ability to hybridize a complementary duplex DNA by DSC, CD, and molecular modeling studies. The obtained results showed the formation of a triplex structure having similar, if not slightly higher, stability compared to the same all-DNA complex.  相似文献   

9.
Peptide nucleic acids (PNAs) are effective antisense reagents that bind specific mRNAs preventing their translation. However, PNAs cannot cross cell membranes, hampering delivery to cells. To overcome this problem we made PNAs membrane-permeant by conjugation to the lipophilic triphenylphosphonium (TPP) cation through a disulphide bond. The TPP cation led to efficient PNA uptake into the cytoplasm where the disulphide bond was reduced, releasing the antisense PNA to block expression of its target gene. This method of directing PNAs into cells is a significant improvement on current procedures and will facilitate in vitro and pharmacological applications of PNAs.  相似文献   

10.
11.
12.
Pretargeting with amplification using polymeric peptide nucleic acid   总被引:14,自引:0,他引:14  
One goal of this investigation was to develop a polymer conjugated with multiple copies of peptide nucleic acid (PNA) and with pharmacokinetic properties suitable for applications in vivo. The second goal was to establish whether the multiple copies of PNA on the polymer could be targeted by hybridization in vitro and in vivo with (99m)Tc-labeled complementary PNA (cPNA). If successful, this approach could then be considered in further investigations as an alternative to existing pretargeting approaches because of the potential for signal amplification in the target. A 80 KDa poly(methyl vinyl ether-alt-maleic acid) (PA) polymer was conjugated with multiple copies of PNA and with multiple copies of poly(ethylene glycol) (PEG) by reacting the NHS derivative of PA with the amine derivatives of PNA and PEG. Using (99m)Tc-MAG(3)-cPNA, targeting of PNA-PA-PEG was studied in vitro and in vivo in inflammation and tumor mouse models, in both cases relying upon nonspecific diffusion for localization. In addition, cPNA-avidin was considered as a clearing agent with biotinylated PNA-PA-PEG. About 80 PNAs could be conjugated to PA provided that about 200 PEGs were also conjugated to raise the aqueous solubility of the PNA-PA-PEG polymer lowered by the addition of the PNAs. About 70% of the PNAs on this polymer in vitro either in solution or attached to beads could be successfully targeted with (99m)Tc-cPNA. In both the inflammation and tumor mouse models, between 35 and 60% of these PNAs could be targeted in the lesions. The advantage of amplification was evident when less favorable results were obtained with PNA-PA-PEG conjugated with only six PNAs. We conclude that amplification can be achieved in vivo using polymers of PNA followed by radiolabeled complementary PNA and that the application of pretargeting using polymers of PNA for amplification can improve localization.  相似文献   

13.
14.
Peptide nucleic acid (PNA) binding-mediated gene regulation   总被引:2,自引:0,他引:2  
Wang G  Xu XS 《Cell research》2004,14(2):111-116
  相似文献   

15.
Peptide nucleic acid (PNA) is a DNA analog with broad biotechnical applications, and possibly also treatment applications. Its suggested uses include that of a specific anchor sequence for biologically active peptides to plasmids in a sequence-specific manner. Such complexes, referred to as Bioplex, have already been used to enhance non-viral gene transfer in vitro. To investigate how hybridization of PNAs to supercoiled plasmids would be affected by the binding of multiple PNA-peptides to the same strand of DNA, we have developed a method of quantifying the specific binding of PNA using a PNA labeled with a derivative of the fluorophore thiazole orange (TO). Cooperative effects were found at a distance of up to three bases. With a peptide present at the end of one of the PNAs, steric hindrance occurred, reducing the increase in binding rate when the distance between the two sites was less than two bases. In addition, we found increased binding kinetics when two PNAs binding to overlapping sites on opposite DNA strands were used, without the use of chemically modified bases in the PNAs.  相似文献   

16.
In the search of facile and efficient methods for PNA cellular delivery, we have tested a series of PNA conjugates based on (hetero) aromatic, lipophilic compounds such as 9-aminoacridine, benzimidazoles, carbazole, anthraquinone, porphyrine, psoralen, pyrene, and phenyl-bis-benzimidazole ("Hoechst"). These chemically modified PNAs were delivered to cultured pLuc705HeLa cells mediated by cationic liposomes (LipofectAMINE or LiofectAMINE2000), and their nuclear delivery was inferred from induced luciferase activity as a consequence of pre-mRNA splicing correction by the antisense-PNA. PNAs modified with 9-aminoacridine, "Hoechst", or acetyl-"Hoechst" showed highest antisense activities (while unmodified PNA failed to show any significant antisense activity). In particular, bis-acridine-conjugated PNA showed nearly 60% splicing correction at 250 nM concentration in combination with LipofectAMINE2000. Interestingly, relative differences between the derivatives were observed when LipofectAMINE was used as compared to LipofectAMINE2000, but in general the latter yielded the higher antisense activity. The most active modifications of these PNA constructs were further tested for antisense down-regulation of luciferase in p53R cells in order to evaluate the cytoplasmic activity (uptake) of the PNAs. A dose-dependent down regulation of luciferase was demonstrated also in this system. The PNA conjugated to acetyl-Hoechst caused a reduction of luciferase activity to less than 40% of the control at a concentration of 1 muM. These results indicate that conjugation of (hetero) polyaromatic compounds to PNA can dramatically improve liposome-mediated cellular delivery both to cytoplasm as well as to the nucleus. However, no clear structure/activity relations are apparent from the present results, except that both 9-aminoacridine and "Hoechst" are also nucleic acid binding ligands.  相似文献   

17.
Biosensors allow the real-time and label-free observation of biochemical reactions between various ligands including antigen-antibody reactions and nucleic acids hybridizations. In our studies, we used a surface plasmon resonance biosensor to elucidate the hybridization characteristics of a peptide nucleic acid (PNA) ligand immobilized on sensor surfaces either through covalent or streptavidin-biotin coupling. A biotin-labeled PNA was employed in the latter approach whereas the covalent immobilization included the following steps: A maleimide group was attached to the N-terminal of the PNA using N-succinimidyl 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (SMCC). To generate free thiol groups for coupling, a carboxylated dextran matrix of the sensor surface was activated with N-hydroxysuccinimide (NHS) and N-ethyl-N'-(dimethylaminopropyl)-carbodiimide (EDC) and thiolated by addition of cystamine dihydrochloride followed by reduction with 1, 4-dithioerythrite (DTE). Finally, the modified PNA was coupled to the sulfhydryl groups of the activated dextran matrix. Repetitive hybridizations of a single-stranded synthetic DNA oligomer to the PNAs demonstrated the superior stability of covalent immobilization compared to noncovalent immobilization. Differentiation of point mutations in the analyte molecule was accomplished at 40 degrees C using guanidine thiocyanate concentrations of 1.5-1.7 M. In further experiments, we showed that a perfectly matched PNA allows the detection of a single-stranded DNA at a sensitivity of less than 1% in a background of single-stranded DNA having a single C to T point mutation in the region complementary to the PNA. Consequently, covalently bound PNAs provide a stable and reproducible environment for the development of mutation-specific DNA analysis assays.  相似文献   

18.
Antisense properties of duplex- and triplex-forming PNAs.   总被引:12,自引:3,他引:9       下载免费PDF全文
The potential of peptide nucleic acids (PNAs) as specific inhibitors of translation has been studied. PNAs with a mixed purine/pyrimidine sequence form duplexes, while homopyrimidine PNAs form (PNA)2/RNA triplexes with complementary sequences on RNA. We show here that neither of these PNA/RNA structures are substrates for RNase H. Translation experiments in cell-free extracts showed that a 15mer duplex-forming PNA blocked translation in a dose-dependent manner when the target was 5'-proximal to the AUG start codon on the RNA, whereas similar 10-, 15- or 20mer PNAs had no effect when targeted towards sequences in the coding region. Triplex-forming 10mer PNAs were efficient and specific antisense agents with a target overlapping the AUG start codon and caused arrest of ribosome elongation with a target positioned in the coding region of the mRNA. Furthermore, translation could be blocked with a 6mer bisPNA or with a clamp PNA, forming partly a triplex, partly a duplex, with its target sequence in the coding region of the mRNA.  相似文献   

19.

Background

The genome of retroviruses, including HIV-1, is packaged as two homologous (+) strand RNA molecules, noncovalently associated close to their 5′-end in a region called dimer linkage structure (DLS). Retroviral HIV-1 genomic RNAs dimerize through complex interactions between dimerization initiation sites (DIS) within the (5′-UTR). Dimer formation is prevented by so calledLong Distance Interaction (LDI) conformation, whereas Branched Multiple Hairpin (BMH) conformation leads to spontaneous dimerization.

Methods and Results

We evaluated the role of SL1 (DIS), PolyA Hairpin signal and a long distance U5-AUG interaction by in-vitro dimerization, conformer assay and coupled dimerization and template-switching assays using antisense PNAs. Our data suggests evidence that PNAs targeted against SL1 produced severe inhibitory effect on dimerization and template-switching processes while PNAs targeted against U5 region do not show significant effect on dimerization and template switching, while PNAs targeted against AUG region showed strong inhibition of dimerization and template switching processes.

Conclusions

Our results demonstrate that PNA can be used successfully as an antisense to inhibit dimerization and template switching process in HIV -1 and both of the processes are closely linked to each other. Different PNA oligomers have ability of switching between two thermodynamically stable forms. PNA targeted against DIS and SL1 switch, LDI conformer to more dimerization friendly BMH form. PNAs targeted against PolyA haipin configuration did not show a significant change in dimerization and template switching process. The PNA oligomer directed against the AUG strand of U5-AUG duplex structure also showed a significant reduction in RNA dimerization as well as template- switching efficiency.The antisense PNA oligomers can be used to regulate the shift in the LDI/BMH equilibrium.  相似文献   

20.
Hairpin loop structures are common motifs in folded nucleic acids. The 5'-GCGCAGC sequence in DNA forms a characteristic and stable trinucleotide hairpin loop flanked by a two basepair stem helix. To better understand the structure formation of this hairpin loop motif in atomic detail, we employed replica-exchange molecular dynamics (RexMD) simulations starting from a single-stranded DNA conformation. In two independent 36 ns RexMD simulations, conformations in very close agreement with the experimental hairpin structure were sampled as dominant conformations (lowest free energy state) during the final phase of the RexMDs ( approximately 35% at the lowest temperature replica). Simultaneous compaction and accumulation of folded structures were observed. Comparison of the GCA trinucleotides from early stages of the simulations with the folded topology indicated a variety of central loop conformations, but arrangements close to experiment that are sampled before the fully folded structure also appeared. Most of these intermediates included a stacking of the C(2) and G(3) bases, which was further stabilized by hydrogen bonding to the A(5) base and a strongly bound water molecule bridging the C(2) and A(5) in the DNA minor groove. The simulations suggest a folding mechanism where these intermediates can rapidly proceed toward the fully folded hairpin and emphasize the importance of loop and stem nucleotide interactions for hairpin folding. In one simulation, a loop motif with G(3) in syn conformation (dihedral flip at N-glycosidic bond) accumulated, resulting in a misfolded hairpin. Such conformations may correspond to long-lived trapped states that have been postulated to account for the folding kinetics of nucleic acid hairpins that are slower than expected for a semiflexible polymer of the same size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号