首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sunflower plants ( Helianihus animus cv. Tall Single Yellow} were grown in the greenhouse in drain pipes (100 mm inside diameter and 1 m long) rilled with John Innes No. 2 compost. When the fifth leaf had emerged, half of the plants were left unwatered for 6 days, rewatered for 2 days and then not watered for another 12 days. Measurements of water relations and abaxial stomatal conductance were made at each leaf position at regular intervals during the experimental period. Estimates were also made of soil water potentials along the soil profile and of ABA concentrations in xylem sap and leaves.
Soil drying led to some reduction in stomatal conductance alter only 3 days but leaf turgors were not reduced until day 13 (6 days after rewatering). When the water relations of leaves did change, older leases became substantially dehydrated while high turgors were recorded in younger leaves. Leaf ABA content measured on the third youngest leaf hardly changed over the first 13 days of the experiment, despite substantial soil drying, while xylem ABA concentrations changed very significantly and dynamically as soil water status varied, even when there was no effect of soil drying on leaf water relations. We argue that the highest ABA concentrations in the xylem, found as a result of substantial soil drying, arise from synthesis in both the roots and the older leaves, and act to delay the development of water deficit in younger leases.
In other experiments ABA solutions were watered on to the root systems of sunflower plants to increase ABA concentrations in xylem sap. The stomatal response to applied ABA was quantitatively very similar to that to ABA generated as a result of soil drying. There was a log-linear relationship between the reduction of leaf conductance and the increase of ABA concentration m xylem sap.  相似文献   

2.
Wild-type (Steptoe) and abscisic acid (ABA)-deficient mutant(Az34) genotypes of barley were grown in compacted soil to examinethe potential role of ABA as a root-to-shoot signal. Root andshoot growth and leaf conductance were all reduced when plantswere grown in compacted soil with a bulk density of 1.7g cm–3,relative to uncompacted control plants (1.1 g cm–3. Theseeffects occurred in the absence of detectable changes in leafwater status or foliar abscisic acid (ABA) content. Analysisof Steptoe and Az34 xylem sap showed that the ABA concentrationwas greatly increased at 6 d after emergence (6 DAE) when seedlingswere grown in compacted soil (1.7 g cm–3); however, ABAconcentrations were never as high in the mutant as in the wildtype. The increase in xylem sap ABA concentration observed athigh bulk density was closely correlated with reductions inleaf conductance, but not leaf area. These increases were transitory,and xylem sap ABA concentrations subsequently decreased towardsthe control level by 18 DAE in both genotypes. The ABA-deficient mutant, Az34, produced a much lower leaf areathan Steptoe at a bulk density of 1.6 g cm–3. Examinationof epidermal characteristics indicates that this effect resultedmainly from reductions in cell expansion rather than cell division,suggesting that the higher ABA concentrations detected in xylemsap from the wild-type Steptoe may have exerted a positive rolein maintaining leaf expansion in this treatment. The possibleinvolvement of ABA as a root-to-shoot signal mediating the effectsof compaction stress is discussed. Key words: Soil compaction, bulk density, ABA, ABA-deficient mutant, leaf growth  相似文献   

3.
The abscisic acid (ABA)-deficient mutant of barley, Az34, exhibiteda much reduced rate of leaf expansion at a bulk density of 1.6g cm–3 as compared to the isogenic wild-type variety,Steptoe. Az34 had a consistently lower xylem sap ABA concentrationat 7 d and 14 d after emergence (DAE). The xylem sap data suggestthat ABA present at Steptoe concentrations may have a directrole in maintaining leaf expansion at the sub-critical bulkdensity (1.6 g cm–3 To test this hypothesis, additionof synthetic ABA either to the rooting environment (100 nM)or directly to the xylem sap (5 pg µl–1 to reproducethe xylem sap ABA concentrations found in Steptoe, increasedleaf expansion in Az34 to the wild-type level. Furthermore,feeding Steptoe xylem sap to Az34 produced similar effects.These experiments provide direct evidence of a positive rolefor ABA as a root-to-shoot signal which assists in maintainingleaf growth in plants experiencing subcritical levels of compactionstress. Key words: ABA-deficient mutant, leaf expansion, xylem sap, ABA  相似文献   

4.
Two tropical tree species, Acacia confusa and Leucaena leucocephala, were used to study the relationships among stomatal conductance, xylem ABA concentration and leaf water potential during a soil drying and rewatering cycle. Stomatal conductance of both A. confusa and L. leucocephala steadily decreased with the decreases in soil water content and pre-dawn leaf water potential. Upon rewatering, soil water content and pre-dawn leaf water potential rapidly returned to the control levels, whereas the reopening of stomata showed an obvious lag time. The length of this lag time was highly dependent not only upon the degree of water stress but also on plant species. The more severe the water stress, the longer the lag time. When A. confusa and L. leucocephala plants were exposed to the same degree of water stress (around –2.0 MPa in pre-dawn leaf water potential), the stomata of A. confusa reopened to the control level 6 days after rewatering. However, it took L. leucocephala about 14 days to reopen fully. A very similar response of leaf photosynthesis to soil water deficit was also observed for both species. Soil drying resulted in a significant increase in leaf and xylem ABA concentrations in both species. The more severe the water stress, the higher the leaf and xylem ABA concentrations. Both leaf ABA and xylem ABA returned to the control level following relief from water deficit and preceded the full recovery of stomata, suggesting that the lag phase of stomatal reopening was not controlled by leaf and/or xylem ABA. In contrast to drying the whole root system, drying half of the root system did not change the leaf water relations, but caused a significant increase in xylem ABA concentration, which could fully explain the decrease of stomatal conductance. After rewatering, the stomatal conductance of plants in which half of the roots were dried recovered more rapidly than those of whole-root dried plants, indicating that the leaf water deficit that occurred during the drying period was related to the post-stress stomatal inhibition. These results indicated that the decrease in stomatal conductance caused by water deficit was closely related to the increase in xylem ABA, but xylem ABA could not fully explain the reopening of stomata after relief of water stress, neither did the leaf ABA. Some unknown physiological and/or morphological processes in the guard cells may be related to the recovery process.  相似文献   

5.
Abstract. Maize seedlings ( Zea mays L. John Innes F1 hybrid) were grown in a greenhouse in l-m-long tubes of soil. When the plants were well established, water was withheld from half of the tubes. Control plants were watered every day during the 20-d experimental period. The soil drying treatment resulted in a substantial restriction of stomatal conductance and a limitation in shoot growth, even though there was no detectable difference in the water relations of watered and unwatered plants. From day 7 of the soil drying treatment, xylem ABA concentrations (measured using the sap exuded from detopped plants) were substantially increased in unwatered plants compared to values recorded with sap from plants watered every day. Measurements of water potential through the profile of unwatered soil suggest that xylem ABA concentrations reflects the extent of soil drying. Leaf ABA content was a much less sensitive indicator of the effect of soil drying and during the whole of experimental period there was no significant difference between ABA concentration in leaves of well watered and unwatered plants. In a second set of experiments, ABA was fed to part of the roots of potted maize plants to manipulate xylem ABA concentration. These manipulations suggested that the increases in ABA concentration in xylem sap, which resulted from soil drying, were adequate to explain the observed variation in stomatal conductance and might also explain the restriction in leaf growth rate. These results are discussed in the light of recent work which suggests that stomatal responses to soil drying are partly attributable to an as-yet unidentified inhibitor of stomatal opening.  相似文献   

6.
Novel techniques were devised to explore the mechanisms mediating the adverse effects of compacted soil on plants. These included growing plants in: (i) profiles containing horizons differing in their degree of compaction and; (ii) split-pots in which the roots were divided between compartments containing moderately (1·4 g cm ? 3) and severely compacted (1·7 g cm ? 3) soil. Wild-type and ABA-deficient genotypes of barley were used to examine the role of abscisic acid (ABA) as a root-to-shoot signal. Shoot dry weight and leaf area were reduced and root : shoot ratio was increased relative to 1·4 g cm ? 3 control plants whenever plants of both genotypes encountered severely compacted horizons. In bartey cultivar Steptoe, stomatal conductance decreased within 4 d of the first roots encountering 1·7 g cm ? 3 soil and increased over a similar period when roots penetrated from 1·7 g cm ? 3 into 1·4 g cm ? 3 soil. Conductance was again reduced by a second 1·7 g cm ? 3 horizon. These responses were inversely correlated with xylem sap ABA concentration. No equivalent stomatal responses occurred in Az34 (ABA deficient genotype), in which the changes in xylem sap ABA were much smaller. When plants were grown in 1·7 : 1·4 g cm ? 3 split-pots, shoot growth was unaffected relative to 1·4 g cm ? 3 control plants in Steptoe, but was significantly reduced in Az34. Excision of the roots in compacted soil restored growth to the 1·4 g cm ? 3 control level in Az34. Stomatal conductance was reduced in the split-pot treatment of Steptoe, but returned to the 1·4 g cm ? 3 control level when the roots in compacted soil were excised. Xylem sap ABA concentration was initially higher than in 1·4 g cm ? 3 control plants but subsequently returned to the control level; no recovery occurred if the roots in compacted soil were left intact. Xylem sap ABA concentration in the split-pot treatment of Az34 was initially similar to plants grown in uniform 1·7 g cm ? 3 soil, but returned to the 1·4 g cm ? 3 control level when the roots in the compacted compartment were excised. These results clearly demonstrate the involvement of a root-sourced signal in mediating responses to compacted soil; the role of ABA in providing this signal and future applications of the compaction procedures reported here are discussed.  相似文献   

7.
When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.  相似文献   

8.
Is coordination of leaf and root growth mediated by abscisic acid? Opinion   总被引:13,自引:1,他引:12  
Leaf growth is more inhibited than root growth when the soil is nitrogen-deficient, dry, saline, compacted, or of restricted volume. Similar differential responses in leaf and root growth occur when ABA is applied to plants in well-watered and well-fertilised conditions, and opposite responses are often found in ABA-deficient mutants. ABA levels increase in plants in dry or saline soils, suggesting a regulating role in leaf and root growth in soils of low water potential. In nitrogen-deficient or compacted soils, or soils of restricted volume, ABA only sometimes increases, and in these situations its accumulation may be of secondary importance. Use of ABA-deficient mutants has so far indicated that ABA influences leaf and root growth in unstressed plants, and plants in dry soils, but not in soils that are compacted, of restricted volume, or are nitrogen-deficient.For ABA to determine the relationship between the rate of leaf growth and the rate of root growth, there must be long-distance transport of either ABA itself or a compound that controls ABA synthesis in the growing cells of leaves and roots. ABA invariably increases in xylem sap as the soil becomes dry or saline, and sometimes when it becomes nitrogen-deficient or compacted, however the ABA is of too low a concentration to affect leaf growth. There may be a compound in xylem sap that controls the synthesis of ABA in the leaf, but no such compound has been identified. ABA accumulates in phloem sap of plants in dry or saline soil, but its function in controlling root or leaf growth is unknown.We conclude that ABA affects the ratio of root growth to leaf growth via its independent effects on root and leaf growth, and may regulate the ratio of root to leaf growth via feedforward signals in xylem or phloem, but there is no satisfactory explanation of its mechanism of control.  相似文献   

9.
To investigate the contribution of different parts of the root system to total sap flow and leaf xylem abscisic acid (ABA) concentration ([X-ABA]leaf), individual sunflower ( Helianthus annuus L.) shoots were grafted onto the root systems of two plants grown in separate pots and sap flow through each hypocotyl measured below the graft union. During deficit irrigation (DI), both pots received the same irrigation volumes, while during partial root zone drying (PRD) one pot ('wet') was watered and another ('dry') was not. During PRD, once soil water content ( θ ) decreased below a threshold, the fraction of sap flow from drying roots declined. As θ declined, root xylem ABA concentration increased in both irrigation treatments, and [X-ABA]leaf increased in DI plants, but [X-ABA]leaf of PRD plants actually decreased within a certain θ range. A simple model that weighted ABA contributions of wet and dry root systems to [X-ABA]leaf according to the sap flow from each, better predicted [X-ABA]leaf of PRD plants than either [X-ABA]dry, [X-ABA]wet or their mean. Model simulations revealed that [X-ABA]leaf during PRD exceeded that of DI with moderate soil drying, but continued soil drying (such that sap flow from roots in drying soil ceased) resulted in the opposite effect.  相似文献   

10.
Plants of Helianthus annuus were grown in soil in pots suchthat approximately 30% of the root system protruded throughthe base of the pot. After 7 d further growth in aerated nutrientsolution, the attached, protruding roots were air-dried for10–15 min and thereafter surrounded with moist still air,in the dark, for 49 h, whilst the soil was kept at field capacity.The roots of the control plants remained in the nutrient solutionthroughout the experiment. This treatment rapidly reduced the water content of protrudingroots from 20.5 to 17.8 g g–1 dry mass (DM), which remainedless than that of the control roots for the rest of the experiment.This treatment also reduced root turgor and water potential.The abscisic acid (ABA) concentrations in the protruding roots,xylem sap and leaves of the treated plants increased significantly,compared to values recorded for control plants. In treated roots, the ABA concentration was significantly increased4 h after treatment, with a maximum of 4.4+0.1 nmol g–1(DM) after 25 h. The ABA concentration in the xylem sap of thetreated plants was significantly greater than in the controls25 h, 30 h, and 49 h after the partial drying of the roots,with a maximum concentration of approximately 970 pmol ABA cm-3at 49 h. Initially, the ABA concentration in the leaves was0.45 nmol g–1 (DM) which increased significantly to 1.1±0.1 nmol g–1 at 25 h, to 1.7±0.3 nmol g–1at 49 h. Leaf conductance was significantly less in plants with air-driedroots than in the controls 8 h after the start of the treatmentand thereafter. The water relations of the leaves of the treatedplants did not differ from those of the control plants. These results confirm previous reports that ABA is rapidly generatedin partially-dried and attached root systems and demonstratesa concomitant large increase in the ABA content of the xylemsap. It is suggested that partial dehydration of some of theroots of Helianthus annuus, increases ABA concentration in thetranspiration stream and decreases leaf conductance in the absenceof changes in leaf water status. As these responses were initiatedin free-growing roots the stimulus is independent of any increasesin soil shear strength that are associated with soil drying. Key words: Soil drying, roots, ABA, leaf conductance, water relations  相似文献   

11.
Sycamore seedlings were grown with their root systems dividedequally between two containers. Water was withheld from onecontainer while the other container was kept well-watered. Effectsof soil drying on stomatal behaviour, shoot water status, andabscisic acid (ABA) concentration in roots, xylem sap and leaveswere evaluated. At 3 d, root ABA in the drying container increased significantly,while the root ABA in the unstressed container of the same plantsdid not differ from that of the control. The increase in rootABA was associated with the increase in xylem sap ABA and withthe decrease in stomatal conductance without any significantperturbation in shoot water status. At 7 d, despite the continuous increase in root ABA concentration,xylem sap ABA showed a marked decline when soil water contentwas depleted below 013 g g–1. This reduction in xylemsap ABA coincided with a partial recovery of stomatal conductance.The results indicate that xylem sap ABA is a function of rootABA as well as the flow rate of water from roots to shoots,and that this ABA can be a sensitive indicator to the shootof the effect of soil drying. Key words: Acer pseudoplatanus L., soil drying, stomatal behaviour, xylem sap ABA  相似文献   

12.
The ABA concentrations of leaves, roots, soils and transport fluids of chickpea and lupin plants growing in acid (pH=4.8) and alkaline (pH=8.0) soils and an acid soil with an alkaline subsoil and an alkaline soil with an acid subsoil were measured with the aim of explaining the poor growth of narrow-leafed lupins in alkaline soil. The ABA concentration in the leaves was higher in lupin than chickpea, but did not differ when the plants were grown in alkaline compared to acid soil. The ABA concentration of the roots and xylem sap of lupin did not differ significantly when grown in acid or alkaline soil. Chickpea roots and xylem sap had, however, lower ABA concentrations in acid soil. The ABA concentration in the soil solution was higher in the acid than in the alkaline soil. Roots of lupin and chickpea showed no suberization of the hypodermis or exodermis whether grown aeroponically or hydroponically and the pH of the cytoplasm did not change significantly when root cells of lupin and chickpea were exposed to external pHs of 4.8 or 8.0. The chickpea roots had greater suberization of the endodermal cells adjacent to radial xylem rays and maintained a slightly higher vacuolar pH than lupin in both acid and alkaline external media, but these small differences are insufficient to explain the reductions in lupin growth in alkaline soil.  相似文献   

13.
Abstract. It is now clear that drying of the soil does not always result in an early change in shoot water status. This may be because stomata close and leaf growth slows to reduce water loss. When this is the case, it is necessary to ask how the change in soil water status has been 'sensed'by the shoot. The current view is that soil drying results in some type of chemical signalling between roots and shoots. The sensitivity of the response and experiments involving the manipulation of small parts of root systems suggest that the signalling involves more than a simple change in root activity in response to soil drying. In this paper, we consider the evidence for chemical signalling between roots and shoots and discuss the possible candidates for such signals. In some plants, root-sourced ABA can apparently influence shoot physiology and growth in the absence of any perturbation of shoot water relations. The ABA produced is quantitatively sufficient to account for the responses observed. Applied ABA can mimic many of the effects of soil drying on plants, including effects at the plasma membrane and on gene expression. Perhaps uniquely, ABA seems to be involved in signalling between different plant organs, and in signalling at the transmembrane and genome levels. We review the effects of ABA on leaf cells with a view to gaining some understanding of how soil drying may influence plant development.  相似文献   

14.
Sequence of drought response of maize seedlings in drying soil   总被引:2,自引:0,他引:2  
Leaf elongation in monocotyledonous plants is sensitive to drought. To better understand the sequence of events in plants subjected to soil drying, leaf elongation and transpiration of maize seedlings ( Zea mays L.) of 4 cultivars were monitored continuously and the diurnal courses of the root and leaf water relations were determined. Results from this study indicate the following sequence of drought response: Leaf elongation decreased before changes in the leaf water relations of non‐growing zones of leaf blades were detected and before transpiration decreased. Reductions in leaf elongation preceded changes in the root water potential (ψw). Root ψw was not a very sensitive indicator of soil dryness, whereas the root osmotic potential (ψs) and root turgor (ψp) were more sensitive indicators. The earliest events observed in drying soil were a significant increase in the largest root diameter class (1 720 to 1 960 gm) and a decrease in leaf elongation ( P = 0.08) 2 days after withholding water. Significant increases in root length were observed 2 days later. Soil drying increased the number of fine roots with diameters of <240 µm. Slight increases in soil strength did not affect leaf elongation in the drying soil.  相似文献   

15.
The physiological responses of potato (Solanum tuberosum L. cv. Folva) to partial root-zone drying (PRD) were investigated in potted plants in a greenhouse (GH) and in plants grown in the field under an automatic rain-out-shelter. In the GH, irrigation was applied daily to the whole root system (FI), or to one-half of the root system while the other half was dried, for 9 d. In the field, the plants were drip irrigated either to the whole root system near field capacity (FI) or using 70% water of FI to one side of the roots, and shifted to the other side every 5-10 d (PRD). PRD plants had a similar midday leaf water potential to that of FI, whereas in the GH their root water potential (Psi(r)) was significantly lowered after 5 d. Stomatal conductance (g(s)) was more sensitive to PRD than photosynthesis (A) particularly in the field, leading to greater intrinsic water use efficiency (WUE) (i.e. A/g(s)) in PRD than in FI plants on several days. In PRD, the xylem sap abscisic acid concentration ([ABA](xylem)) increased exponentially with decreasing Psi(r); and the relative [ABA](xylem) (PRD/FI) increased exponentially as the fraction of transpirable soil water (FTSW) in the drying side decreased. In the field, the leaf area index was slightly less in PRD than in FI treatment, while tuber biomass was similar for the two treatments. Compared with FI, PRD treatment saved 30% water and increased crop water use efficiency (WUE) by 59%. Restrictions on leaf area expansion and g(s) by PRD-induced ABA signals might have contributed to reduced water use and increased WUE.  相似文献   

16.
Abstract. Maize plants were grown in 1-m-long tubes of John Innes No. 2 potting compost. From the start of the experimental period, half of the plants were unwatered. Stomatal conductance of these plants was restricted 6 d after last watering and continued to decline thereafter. This was despite the fact that as a result of solute accumulation, unwatered plants showed consistently higher leaf turgors than well-watered plants. Leaf water potentials of unwatered plants were not significantly lower than those of plants that were watered well. Main seminal and nodal roots showed solute regulation in drying soil and continued to grow even in the driest soil, and plants growing in drying soil showed consistently higher root dry weights than did well-watered plants, water potentials and turgors of the tips of fine roots in the upper part of the column decreased as the soil dried. Soil drying below a water content of around 0–25 g cm−3 (a bulk soil water potential of between -0.2 and -0.3 MPa) resulted in a substantial increase in the ABA content of roots. As soil columns dried progressively from the top, ABA content increased in roots deeper and deeper in the soil. These responses suggest that ABA produced by dehydrating roots and which was subsequently transported to the shoots provided a sensitive indication of the degree of soil drying.  相似文献   

17.
We studied the effects of drought on leaf conductance (g) and on the concentration of abscisic acid (ABA) in the apoplastic sap of Lupinus albus L. leaves. Withholding watering for 5d resulted in complete stomatal closure and in severe leaf water deficit. Leaf water potential fully recovered immediately after rewatering, but the aftereffect of drought on stomata persisted for 2d. ABA and sucrose were quantified in pressurized leaf xylem extrudates. We assumed that the xylem sucrose concentration is negligible and hence that the presence of sucrose in leaf extrudates indicated that they were contaminated by phloem. To eliminate this interference, the concentration of ABA in leaf apoplast was estimated by extrapolation to zero sucrose concentration, using the regression between ABA and sucrose concentrations. The estimated apoplastic ABA concentration increased by 100-fold with soil drying and did not return to pre-stress values immediately following rewatering. g was closely related to the concentration of ABA in leaf apoplast. Furthermore, the feeding of exogenous ABA to leaves detached from well-watered plants brought about the same degree of depression in g as resulted from the drought-induced increase in ABA concentration. We therefore conclude that the observed changes in the concentration of ABA in leaf apoplast were quantitatively adequate to explain drought-induced stomatal closure and the delay in stomatal reopening following rewatering.  相似文献   

18.
Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely to be a result of the interactions and modulations ámong root signals. As a stress signal, abscisic acid (ABA) plays a central role in root to shoot signaling, pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed soil water status, pH itself can be modified by several factors, among which the chemical compositions in the xylem stream and the live cells surrounding the vessels play crucial roles. In addition to the xylem pH, more attention should be paid to the direct modulation of leaf apoplastic pH, because many chemical compositions might strongly modify the leaf apoplastic pH while having no significant effect on the xylem pH. The direct modulation of the ABA signal intensity may be more important for the regulation of stomatal responses to soil drying than the ABA signal per se. The ABA signal is also regulated by the ABA catabolism and the supply of precursors to the roots if a sustained root to shoot communication of soil drying operates at the whole plant level. More importantly, ABA catabolism could play crucial roles in the determination of the fate of the ABA signal and thereby control the stomatal behavior of the root-sourced ABA signal.  相似文献   

19.
Abscisic acid (ABA) moving from roots to shoots in the transpirationstream is a potential hormonal message integrating perceptionof a root stress with adaptive changes in the shoot. A twinroot system was used to study ways of estimating effects ofdroughting the upper roots of Ricinus communis L. on abscisicacid (ABA) transport to the shoot in the transpiration stream.Droughted plants transpired more slowly than controls. Droughtingalso increased concentrations of ABA up to I I-fold in sap inducedto flow from the roots of freshly decapitated plants at ratesof whole plant transpiration. However, because of dilution effectsarising from the different sap flows in control and droughtedplants, these changes in ABA concentration in the xylem sapdid not accurately reflect amounts of ABA transported. To overcomethis problem, delivery rates were calculated by multiplyingconcentration with sap flow rate to generate ABA delivery interms of µmol s–1 per plant. Droughting for 24 hor more increased ABA delivery from roots to shoots by 5-fold.Since droughting can alter the relative sizes of the roots andshoots and also the root:shoot ratio these delivery rates wererefined in several ways to reflect both the amount of root generatingthe ABA message and the size of the recipient shoot system. Key words: Abscisic acid, Ricinus communis L., soil drying, xylem sap  相似文献   

20.
Partial root-zone drying during irrigation (PRD) has been shown effective in enhancing plant water use efficiency (WUE), however, the roles of chemical signals from root and shoot that are involved and the possible interactions affected by nitrogen nutrition are not clear. Pot-grown cotton (Gossypium spp.) seedlings were treated with three levels of N fertilization and PRD. The concentrations of nitrate (NO3), abscisic acid (ABA) and the pH value of leaf and root xylem saps, biomass and WUE were measured. Results showed that PRD plants produced larger biomass and higher WUE than non-PRD plants, with significant changes in leaf xylem ABA, leaf and root xylem NO3 concentrations and pH values, under heterogeneous soil moisture conditions. Simultaneously, high-N treated plants displayed larger changes in leaf xylem ABA and higher root xylem NO3 concentrations, than in the medium- or low-N treated plants. However, the WUE of plants in the low-N treatment was higher than that of those in the high- and medium-N treatments. PRD and nitrogen levels respectively induced signaling responses of ABA/NO3 and pH in leaf or root xylem to affect WUE and biomass under different watering levels, although significant interactions of PRD and nitrogen levels were found when these signal molecules responded to soil drying. We conclude that these signaling chemicals are regulated by interaction of PRD and nitrogen status to regulate stomatal behavior, either directly or indirectly, and thus increase PRD plant WUE under less irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号