首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum contains an amino acid motif based around the sequence WSPCSVTCG which is also found in region II of the circumsporozoite (CS) proteins of different species of Plasmodium. This amino acid motif confers on the CS protein the ability to bind specifically to sulfated glycoconjugates and to hepatocytes. This suggests that the interaction of CS protein with sulfated glycoconjugates on the surface of the hepatocytes may represent the first molecular event of sporozoite invasion of liver cells. Experimental evidence indicates that TRAP is localized both on the micronemes and on the surface of P. falciparum sporozoites implying that TRAP with its putative sulfated glycoconjugate binding motif may also be involved in recognition and/or entry of hepatocytes by the sporozoite. We show here that different TRAP constructs expressed in Escherichia coli bind to sulfogalactosyl-cerebrosides (sulfatides) and to the surface of HepG2 cells. These interactions are dependent on the presence of the conserved amino acid motif WSPCSVTCG within the sequences of the constructs and are completely inhibited by several sulfated glycoconjugates as well as by suramin, a polysulfonated drug with anti-protozoan activity. Moreover, sporozoite invasion of HepG2 cells is inhibited by antisera raised against these different TRAP constructs and by the presence of low concentrations of suramin. We concluded that TRAP may be one of the parasite encoded molecules in the host-parasite interaction that results in sporozoite invasion of hepatocytes.  相似文献   

2.
3.
Plasmodium sporozoites can enter host cells by two distinct pathways, either through disruption of the plasma membrane followed by parasite transmigration through cells, or by formation of a parasitophorous vacuole (PV) where the parasite further differentiates into a replicative exo-erythrocytic form (EEF). We now provide evidence that following invasion without PV formation, transmigrating Plasmodium falciparum and Plasmodium yoelii sporozoites can partially develop into EEFs inside hepatocarcinoma cell nuclei. We also found that rodent P. yoelii sporozoites can infect both mouse and human hepatocytes, while human P. falciparum sporozoites infect human but not mouse hepatocytes. We have previously reported that the host tetraspanin CD81 is required for PV formation by P. falciparum and P. yoelii sporozoites. Here we show that expression of human CD81 in CD81-knockout mouse hepatocytes is sufficient to confer susceptibility to P. yoelii but not P. falciparum sporozoite infection, showing that the narrow P. falciparum host tropism does not rely on CD81 only. Also, expression of CD81 in a human hepatocarcinoma cell line is sufficient to promote the formation of a PV by P. yoelii but not P. falciparum sporozoites. These results highlight critical differences between P. yoelii and P. falciparum sporozoite infection, and suggest that in addition to CD81, other molecules are specifically required for PV formation during infection by the human malaria parasite.  相似文献   

4.
Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and first invade the liver of the mammalian host, as an obligatory step of the life cycle of the malaria parasite. Within hepatocytes, Plasmodium sporozoites reside in a membrane-bound vacuole, where they differentiate into exoerythrocytic forms and merozoites that subsequently infect erythrocytes and cause the malaria disease. Plasmodium sporozoite targeting to the liver is mediated by the specific binding of major sporozoite surface proteins, the circumsporozoite protein and the thrombospondin-related anonymous protein, to glycosaminoglycans on the hepatocyte surface. Still, the molecular mechanisms underlying sporozoite entry and differentiation within hepatocytes are largely unknown. Here we show that the tetraspanin CD81, a putative receptor for hepatitis C virus, is required on hepatocytes for human Plasmodium falciparum and rodent Plasmodium yoelii sporozoite infectivity. P. yoelii sporozoites fail to infect CD81-deficient mouse hepatocytes, in vivo and in vitro, and antibodies against mouse and human CD81 inhibit in vitro the hepatic development of P. yoelii and P. falciparum, respectively. We further demonstrate that the requirement for CD81 is linked to sporozoite entry into hepatocytes by formation of a parasitophorous vacuole, which is essential for parasite differentiation into exoerythrocytic forms.  相似文献   

5.
Liver infection is an obligatory step in malarial transmission, but it remains unclear how the sporozoites gain access to the hepatocytes, which are separated from the circulatory system by the liver sinusoidal cell layer. We found that a novel microneme protein, named sporozoite microneme protein essential for cell traversal (SPECT), is produced by the liver-infective sporozoite of the rodent malaria parasite, Plasmodium berghei. Targeted disruption of the spect gene greatly reduced sporozoite infectivity to the liver. In vitro cell invasion assays revealed that these disruptants can infect hepatocytes normally but completely lack their cell passage ability. Their apparent liver infectivity was, however, restored by depletion of Kupffer cells, hepatic macrophages included in the sinusoidal cell layer. These results show that malarial sporozoites access hepatocytes through the liver sinusoidal cell layer by cell traversal motility mediated by SPECT and strongly suggest that Kupffer cells are main routes for this passage. Our findings may open the way for novel malaria transmission-blocking strategies that target molecules involved in sporozoite migration to the hepatocyte.  相似文献   

6.
Plasmodium sporozoites collected from oocysts, haemocoel and salivary glands of the mosquito show profound differences in their biological properties such as motility, ability to induce protective immune response and infectivity for vertebrate host cells. Sporozoites from salivary glands are much more infectious than those from oocysts and haemocoel. Differential expression of proteins, such as the circumsporozoite (CS) protein and the thrombospondin-related adhesive protein (TRAP), implicated in sporozoite recognition and entry into hepatocytes may account for the development of infectivity during ontogeny. We have carried out a series of experiments to: (i) analyse the expression and localization of TRAP in P.falciparum sporozoites during development in the mosquito; and (ii) elucidate the biochemical and adhesive properties of recombinant TRAP. Our data indicate that TRAP is not expressed in oocysts, whereas variable amounts of CS protein are found in this parasite developmental stage. Hemocoel sporozoites display the distinct phenotypes TRAP- CS protein+ and TRAP+ CS protein+ at a frequency of 98.5 and 1.5% respectively. Salivary gland sporozoites are all TRAP+ CS protein+. We also provide experimental evidence showing that recombinant TRAP binds to the basolateral cell membrane of hepatocytes in the Disse's space and that sulfated glycoconjugates function as TRAP ligands on human hepatocytes.  相似文献   

7.
The circumsporozoite protein of Plasmodium falciparum contains two conserved motifs (regions I and II) that have been proposed to interact with mosquito and vertebrate host molecules in the process of sporozoite invasion of salivary glands and hepatocytes, respectively. To study the function of this protein we have replaced the endogenous circumsporozoite protein gene of Plasmodium berghei with that of P. falciparum and with versions lacking either region I or region II. We show here that P. falciparum circumsporozoite protein functions in rodent parasite and that P. berghei sporozoites carrying the P. falciparum CS gene develop normally, are motile, invade mosquito salivary glands, and infect the vertebrate host. Region I-deficient sporozoites showed no impairment of motility or infectivity in either vector or vertebrate host. Disruption of region II abolished sporozoite motility and dramatically impaired their ability to invade mosquito salivary glands and infect the vertebrate host. These data shed new light on the role of the CS protein in sporozoite motility and infectivity.  相似文献   

8.
Sporozoites from all Plasmodium species analysed so far express the thrombospondin-related adhesive protein (TRAP), which contains two distinct adhesive domains. These domains share sequence and structural homology with von Willebrand factor type A-domain and the type I repeat of human thrombospondin (TSP). Increasing experimental evidence indicates that the adhesive domains bind to vertebrate host ligands and that TRAP is involved, through an as yet unknown mechanism, in the process of sporozoite motility and invasion of both mosquito salivary gland and host hepatocytes. We have generated transgenic P.berghei parasites in which the endogenous TRAP gene has been replaced by either P.falciparum TRAP (PfTRAP) or mutated versions of PfTRAP carrying amino acid substitutions or deletions in the adhesive domains. Plasmodium berghei sporozoites carrying the PfTRAP gene develop normally, are motile, invade mosquito salivary glands and infect the vertebrate host. A substitution in a conserved residue of the A-domain or a deletion in the TSP motif of PfTRAP impairs the sporozoites' ability to invade mosquito salivary glands. Notably, midgut sporozoites from these transgenic parasites are still able to infect mice. Midgut sporozoites carrying a mutation in the A-domain of PfTRAP are motile, while no gliding motility could be detected in sporozoites with a TSP motif deletion.  相似文献   

9.
Plasmodium falciparum apical membrane antigen 1 (AMA-1) is expressed during both the sporozoite and merozoite stage of the parasite's life cycle. The role placed by AMA-1 during sporozoite invasion of hepatocytes has not been made sufficiently clear to date. Identifying the sequences involved in binding to hepatocytes is an important step towards understanding the structural basis for sporozoite-hepatocyte interaction. Binding assays between P. falciparum AMA-1 peptides and HepG2 cell were performed in this study to identify possible AMA-1 functional regions. Four AMA-1 high activity binding peptides (HABPs) bound specifically to hepatocytes: 4310 ((74)QHAYPIDHEGAEPAPQEQNL(93)), 4316 ((194)TLDEMRHFYKDNKYVKNLDE(213)), 4321 ((294)VVDNWEKVCPRKNLQNAKFGY(313)) and 4332 ((514)AEVTSNNEVVVKEEYKDEYA(533)). Their binding to these cells became saturable and resistant to treatment with neuraminidase. Most of these peptides were located in AMA-1 domains I and III, these being target regions for protective antibody responses. These peptides interacted with 36 and 58 kDa proteins on the erythrocyte surface. Some of the peptides were found in exposed regions of the AMA-1 protein, thereby facilitating their interaction with host cells. It is thus probable that AMA-1 regions defined by the four peptides mentioned above are involved in sporozoite-hepatocyte interaction.  相似文献   

10.
Micronemes are specialised secretory organelles that release their proteins by a stimulus-coupled exocytosis that occurs when apicomplexan parasites make contact with target host cells. These proteins play crucial roles in motility and invasion, most likely by mediating adhesion between parasite and host cell surfaces and facilitating the transmission of dynamic forces generated by the parasite actinomyosin cytoskeleton. Members of the TRAP family of microneme proteins are characterised by having extracellular domains containing one or more types of cysteine-rich, adhesive modules, highly-conserved transmembrane regions and cytosolic tails that contain one or more tyrosines, stretches of acidic residues and a single tryptophan. In this paper, we describe a novel member of the TRAP family, EtMIC4, a 218 kDa microneme protein from Eimeria tenella. EtMIC4 contains 31 epidermal growth factor (EGF) modules, 12 thrombospondin type-1 (TSP-1) modules and a highly acidic, proline and glycine-rich region in its extracellular region, plus the conserved transmembrane and cytosolic tail. Like EtMIC1, another TRAP family member from E. tenella, EtMIC4 is expressed in sporozoites and all the merozoite stages of the parasite, suggesting that this parasite has a strong requirement for TSP-1 modules. Unlike the other microneme proteins so far studied in E. tenella, EtMIC4 appears to be found constitutively on the sporozoite surface as well as within the micronemes.  相似文献   

11.
Malaria is transmitted through the bite of an infected mosquito, which introduces Plasmodium sporozoites into the mammalian host. Sporozoites rapidly reach the liver of the host where they are sequestered, a process probably mediated by circumsporozoite (CS) protein. Once in the liver, sporozoites migrate through several hepatocytes by breaching their plasma membranes before infecting a final hepatocyte with formation of a vacuole around the sporozoite, where development occurs into blood stage parasites. We propose that migration through several host cells activates sporozoites for ultimate productive invasion. This migration triggers sporozoite exocytosis, which is necessary for hepatocyte invasion, probably because it provides molecules, such as thrombospondin-related anonymous protein (TRAP), likely required for sporozoite invasion with the formation of a vacuole. How sporozoites migrate from the skin to the liver and invade hepatocytes remains unclear. Understanding this initial stage of malaria is crucial for the development of new approaches against the disease.  相似文献   

12.
13.
Apical membrane antigen-1 (AMA-1) is a target of antibodies that inhibit invasion of Plasmodium falciparum into human erythrocytes and is a candidate for inclusion in a malaria vaccine. We have identified a line of P. falciparum (W2mef) less susceptible to anti-AMA1 antibodies raised to the protein from a heterologous parasite line (3D7). We have constructed transgenic P. falciparum expressing heterologous AMA-1 alleles. In vitro invasion assays show that these transgenic parasites differ from parental lines in susceptibility to inhibitory antibodies, providing direct evidence that sequence polymorphisms within AMA-1 are responsible for evasion of immune responses that inhibit parasite invasion. We also generated a parasite line that would express a chimeric AMA-1 protein, in which highly polymorphic residues within domain 1 were exchanged. Inhibition assays suggest that these residues are not sufficient for inhibition by invasion-blocking antibodies. This study is the first to use P. falciparum allelic exchange to examine the relationship between genetic diversity and susceptibility to protective antibodies. The findings have important implications for the development of an AMA-1-based malaria vaccine.  相似文献   

14.
Invasion of hepatocytes by Plasmodium sporozoites is a prerequisite for establishment of a natural malaria infection. The molecular mechanisms underlying sporozoite invasion are largely unknown. We have previously reported that infection by Plasmodium falciparum and Plasmodium yoelii sporozoites depends on CD81 and cholesterol-dependent tetraspanin-enriched microdomains (TEMs) on the hepatocyte surface. Here we have analyzed the role of CD81 and TEMs during infection by sporozoites from the rodent parasite Plasmodium berghei. We found that depending on the host cell type, P. berghei sporozoites can use several distinct pathways for invasion. Infection of human HepG2, HuH7 and HeLa cells by P. berghei does not depend on CD81 or host membrane cholesterol, whereas both CD81 and cholesterol are required for infection of mouse hepatoma Hepa1-6 cells. In primary mouse hepatocytes, both CD81-dependent and -independent mechanisms participate in P. berghei infection and the relative contribution of the different pathways varies, depending on mouse genetic background. The existence of distinct invasion pathways may explain why P. berghei sporozoites are capable of infecting a wide range of host cell types in vitro. It could also provide a means for human parasites to escape immune responses and face polymorphisms of host receptors. This may have implications for the development of an anti-malarial vaccine targeting sporozoites.  相似文献   

15.
16.
Plasmodium falciparum sporozoites invade liver cells in humans and set the stage for malaria infection. Circumsporozoite protein (CSP), a predominant surface antigen on sporozoite surface, has been associated with the binding and invasion of liver cells by the sporozoites. Although CSP across the Plasmodium genus has homology and conserved structural organization, infection of a non-natural host by a species is rare. We investigated the role of CSP in providing the host specificity in P. falciparum infection. CSP from P. falciparum, P. gallinaceum, P. knowlesi, and P. yoelii species representing human, avian, simian, and rodent malaria species were recombinantly expressed, and the proteins were purified to homogeneity. The recombinant proteins were evaluated for their capacity to bind to human liver cell line HepG2 and to prevent P. falciparum sporozoites from invading these cells. The proteins showed significant differences in the binding and sporozoite invasion inhibition activity. Differences among proteins directly correlate with changes in the binding affinity to the sporozoite receptor on liver cells. P. knowlesi CSP (PkCSP) and P. yoelii CSP (PyCSP) had 4,790- and 17,800-fold lower affinity for heparin in comparison to P. falciparum CSP (PfCSP). We suggest that a difference in the binding affinity for the liver cell receptor is a mechanism involved in maintaining the host specificity by the malaria parasite.  相似文献   

17.
Malaria vaccines containing the Plasmodium falciparum Circumsporozoite protein repeat domain are undergoing human trials. There is no simple method to evaluate the effect of vaccine-induced responses on P. falciparum sporozoite infectivity. Unlike the rodent malaria Plasmodium berghei, P. falciparum sporozoites do not infect common laboratory animals and only develop in vitro in human hepatocyte cultures. We generated a recombinant P. berghei parasite bearing P. falciparum Circumsporozoite protein repeats. These hybrid sporozoites are fully infective in vivo and in vitro. Monoclonal and polyclonal Abs to P. falciparum repeats neutralize hybrid parasite infectivity, and mice immunized with a P. falciparum vaccine are protected against challenge with hybrid sporozoites.  相似文献   

18.
Invasion of hepatocytes by Plasmodium sporozoites deposited by Anopheles mosquitoes, and their subsequent transformation into infective merozoites is an obligatory step in the initiation of malaria. Interactions between the sporozoites and hepatocytes lead to a distinct, complex and coordinated cellular and systemic host response. Little is known about host liver cell response to sporozoite invasion, or whether it is primarily adaptive for the parasite, for the host, or for both. Our present study used gene expression profiling of human HepG2-A16 liver cells infected with Plasmodium falciparum sporozoites to understand the host early cellular events and factors influencing parasite infectivity and sporozoite development. Our results show that as early as 30 min following wild-type, non-irradiated sporozoite exposure, the expressions of at least 742 genes was selectively altered. These genes regulate diverse biological functions, such as immune processes, cell adhesion and communications, metabolism pathways, cell cycle regulation, and signal transduction. These functions reflect cellular events consistent with initial host cell defense responses, as well as alterations in host cells to sustain sporozoites growth and survival. Irradiated sporozoites gave very similar gene expression pattern changes, but direct comparative analysis between liver gene expression profiles caused by irradiated and non-irradiated sporozoites identified 29 genes, including glypican-3, that were specifically up-regulated only in irradiated sporozoites. Elucidating the role of this subset of genes may help identify the molecular basis for the irradiated sporozoites inability to develop intrahepatically, and their usefulness as an immunogen for developing protective immunity against pre-erythrocytic stage malaria.  相似文献   

19.
The malaria sporozoite injected by a mosquito migrates to the liver by traversing host cells. The sporozoite also traverses hepatocytes before invading a terminal hepatocyte and developing into exoerythrocytic forms. Hepatocyte infection is critical for parasite development into merozoites that infect erythrocytes, and the sporozoite is thus an important target for antimalarial intervention. Here, we investigated two abundant sporozoite proteins of the most virulent malaria parasite Plasmodium falciparum and show that they play important roles during cell traversal and invasion of human hepatocytes. Incubation of P. falciparum sporozoites with R1 peptide, an inhibitor of apical merozoite antigen 1 (AMA1) that blocks merozoite invasion of erythrocytes, strongly reduced cell traversal activity. Consistent with its inhibitory effect on merozoites, R1 peptide also reduced sporozoite entry into human hepatocytes. The strong but incomplete inhibition prompted us to study the AMA‐like protein, merozoite apical erythrocyte‐binding ligand (MAEBL). MAEBL‐deficient P. falciparum sporozoites were severely attenuated for cell traversal activity and hepatocyte entry in vitro and for liver infection in humanized chimeric liver mice. This study shows that AMA1 and MAEBL are important for P. falciparum sporozoites to perform typical functions necessary for infection of human hepatocytes. These two proteins therefore have important roles during infection at distinct points in the life cycle, including the blood, mosquito, and liver stages.  相似文献   

20.
Infection of hepatocytes by Plasmodium falciparum sporozoites requires the host tetraspanin CD81. CD81 is also predicted to be a coreceptor, along with scavenger receptor BI (SR-BI), for hepatitis C virus. Using SR-BI-knockout, SR-BI-hypomorphic and SR-BI-transgenic primary hepatocytes, as well as specific SR-BI-blocking antibodies, we demonstrate that SR-BI significantly boosts hepatocyte permissiveness to P. falciparum, P. yoelii, and P. berghei entry and promotes parasite development. We show that SR-BI, but not the low-density lipoprotein receptor, acts as a major cholesterol provider that enhances Plasmodium infection. SR-BI regulates the organization of CD81 at the plasma membrane, mediating an arrangement that is highly permissive to penetration by sporozoites. Concomitantly, SR-BI upregulates the expression of the liver fatty-acid carrier L-FABP, a protein implicated in Plasmodium liver-stage maturation. These findings establish the mechanistic basis of the CD81-dependent Plasmodium sporozoite invasion pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号