首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
Tongue samples from cattle on varied diets and ranging in age from 2 months to adult were studied by transmission and scanning electron microscopy to observe the in situ distribution and adhesion patterns of two readily identifiable genera of filamentous bacterial. The two, both members of the Simonsiellaceae, adhere to the epithelium by means of fibers which are produced on one side of the bacterial filaments and subsequently display a sidedness in their manner of adhesion to epithelial surfaces. Other bacterial populations found on the tongue were normally members of chains and seldom present as single cells. This suggests that filamentous or chain-forming bacteria may have a selective advantage over single bacteria in their ability to colonize and remain attached to the epithelium of the tongue.  相似文献   

2.
Ephemeral blooms of filamentous bacteria are a common phenomenon in the water column of oligo- to mesotrophic lakes. It is assumed that the appearance of such morphotypes is favored by selective predation of bacterivorous protists and that filter-feeding zooplankton plays a major role in suppressing these bacteria. The phylogenetic affiliation of the important bloom-forming filamentous bacteria in freshwaters is presently unknown. Here we report the identification of dominant members of a filamentous bacterial assemblage during a bloom of such morphotypes in a mesotrophic lake. By molecular cloning and fluorescence in situ hybridization with specific oligonucleotide probes, up to 98% of filamentous cells in lake water could be assigned to a clade of almost identical (99% similarity) 16S rRNA gene sequence types, the cosmopolitan freshwater LD2 cluster. For a period of less than 1 week, members of the LD2 clade constituted >40% of the total bacterial biomass, potentially favored by high grazing of planktivorous protists. This is probably the most pronounced case of dominance by a single bacterioplankton species ever observed in natural freshwaters. In enclosures artificially stocked with the metazoan filter feeder Daphnia, bacteria related to the LD2 clade formed a significantly larger fraction of filaments than in enclosures where Daphnia had been removed. However, in the presence of higher numbers of Daphnia individuals, the LD2 bacteria, like other filaments, were eventually eliminated both in enclosures and in the lake. This points at the potential importance of filter-feeding zooplankton in controlling the occurrence and species composition of filamentous bacterial morphotypes in freshwater plankton.  相似文献   

3.
The purpose of this study was to investigate, by electron microscopy, the type of bacterial attachment to the sulcular epithelium in periodontitis. Gingiva biopsies were observed in a transmission electron microscope using cytochemical staining with ruthenium red for glycocalyx visualisation. In addition, subgingival plaque samples and biopsies from the sulcular epithelium in periodontitis from the patients were estimated microbiologically. Aerobic bacteria only were estimated in the subgingival plaque and both aerobic and anaerobic bacteria in the gingival biopsies. No bacterial internalisation could be observed. Fimbria-mediated adhesion as the only type of bacterial attachment and a large diversity of bacterial glycocalyces were detected. As the fimbrial adhesins of putative periodontal pathogens are able in vitro to induce inflammation and bone resorption via stimulation of the proinflammatory cytokine production, the demonstrated fimbrial adhesins suggest the significant role of bacterial adhesion to sulcular epithelium in periodontitis.  相似文献   

4.
Ephemeral blooms of filamentous bacteria are a common phenomenon in the water column of oligo- to mesotrophic lakes. It is assumed that the appearance of such morphotypes is favored by selective predation of bacterivorous protists and that filter-feeding zooplankton plays a major role in suppressing these bacteria. The phylogenetic affiliation of the important bloom-forming filamentous bacteria in freshwaters is presently unknown. Here we report the identification of dominant members of a filamentous bacterial assemblage during a bloom of such morphotypes in a mesotrophic lake. By molecular cloning and fluorescence in situ hybridization with specific oligonucleotide probes, up to 98% of filamentous cells in lake water could be assigned to a clade of almost identical (99% similarity) 16S rRNA gene sequence types, the cosmopolitan freshwater LD2 cluster. For a period of less than 1 week, members of the LD2 clade constituted >40% of the total bacterial biomass, potentially favored by high grazing of planktivorous protists. This is probably the most pronounced case of dominance by a single bacterioplankton species ever observed in natural freshwaters. In enclosures artificially stocked with the metazoan filter feeder Daphnia, bacteria related to the LD2 clade formed a significantly larger fraction of filaments than in enclosures where Daphnia had been removed. However, in the presence of higher numbers of Daphnia individuals, the LD2 bacteria, like other filaments, were eventually eliminated both in enclosures and in the lake. This points at the potential importance of filter-feeding zooplankton in controlling the occurrence and species composition of filamentous bacterial morphotypes in freshwater plankton.  相似文献   

5.
Desmosomes are cell-type-specific intercellular junctions found in epithelium, myocardium and certain other tissues. They consist of assemblies of molecules involved in the adhesion of specific cell types and in the anchorage of cell-type-specific cytoskeletal elements, the intermediate-size filaments, to the plasma membrane. To explore the individual desmosomal components and their functions we have isolated DNA clones encoding the desmosomal glycoprotein, desmocollin, using antibodies and a cDNA expression library from bovine muzzle epithelium. The cDNA-deduced amino-acid sequence of desmocollin (presently we cannot decide to which of the two desmocollins, DC I or DC II, this clone relates) defines a polypeptide with a calculated molecular weight of 85,000, with a single candidate sequence of 24 amino acids sufficiently long for a transmembrane arrangement, and an extracellular aminoterminal portion of 561 amino acid residues, compared to a cytoplasmic part of only 176 amino acids. Amino acid sequence comparisons have revealed that desmocollin is highly homologous to members of the cadherin family of cell adhesion molecules, including the previously sequenced desmoglein, another desmosome-specific cadherin. Using riboprobes derived from cDNAs for Northern-blot analyses, we have identified an mRNA of approximately 6 kb in stratified epithelia such as muzzle epithelium and tongue mucosa but not in two epithelial cell culture lines containing desmosomes and desmoplakins. The difference may indicate drastic differences in mRNA concentration or the existence of cell-type-specific desmocollin subforms. The molecular topology of desmocollin(s) is discussed in relation to possible functions of the individual molecular domains.  相似文献   

6.
Selective adhesion to only certain epithelia is particularly common among the bacterial members of the indigenous microflora of mammals. We have found that the stratified squamous epithelium of the nonsecreting area of horse stomach is colonized by gram-positive rods. The microscopic features of a dense layer of these bacteria on the epithelium were found to be similar to those reported in mice, rats, and swine. Adhering microorganisms were isolated and identified as Lactobacillus salivarius, L. crispatus, L. reuteri, and L. agilis by DNA-DNA hybridization and 16S rRNA gene sequencing techniques. These lactobacilli associated with the horse, except for L. reuteri, were found to adhere to horse epithelial cells in vitro but not to those of rats. A symbiotic relationship of these lactobacilli with the horse is suggested.  相似文献   

7.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

8.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

9.
Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria ( Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test.  相似文献   

10.
During the course of whooping cough, Bordetella pertussis interacts with alveolar macrophages and other leukocytes on the respiratory epithelium. We report here mechanisms by which these bacteria adhere to human macrophages in vitro. Whole bacteria adhere by means of two proteins, filamentous hemagglutinin (FHA) and pertussis toxin, either of which is sufficient to mediate adherence. FHA interacts with two classes of molecules on macrophages, galactose-containing glycoconjugates and the integrin CR3 (alpha M beta 2, CD11b/CD18). The interaction between CR3 and FHA involves recognition of the Arg-Gly-Asp (RGD) sequence at positions 1097-1099 in FHA. This study demonstrates that bacterial adherence can be based on the interaction of a bacterial adhesin RGD sequence with an integrin and that bacterial adhesins can have multiple binding sites characteristic of eukaryotic extracellular matrix proteins.  相似文献   

11.
Type 1 pili are filamentous protein complexes that are anchored to the outer membrane of uropathogenic Escherichia coli and mediate bacterial adhesion to the surface of urinary epithelium cells. We review here the current status of structural and functional studies on the assembly of type 1 pili.  相似文献   

12.
Marine invertebrates hosting chemosynthetic bacterial symbionts are known from multiple phyla and represent remarkable diversity in form and function. The deep-sea hydrothermal vent limpet Lepetodrilus fucensis from the Juan de Fuca Ridge complex hosts a gill symbiosis of particular interest because it displays a morphology unique among molluscs: filamentous bacteria are found partially embedded in the host's gill epithelium and extend into the fluids circulating across the lamellae. Our objective was to investigate the phylogenetic affiliation of the limpet's primary gill symbionts for comparison with previously characterized bacteria. Comparative 16S rRNA sequence analysis identified one γ- and three ε-Proteobacteria as candidate symbionts. We used fluorescence in situ hybridization (FISH) to test which of these four candidates occur with the limpet's symbiotic gill bacteria. The γ-proteobacterial probes consistently hybridized to the entire area where symbiotic bacteria were found, but fluorescence signal from the ε-proteobacterial probes was generally absent. Amplification of the γ-proteobacterial 16S rRNA gene using a specific forward primer yielded a sequence similar to that of limpets collected from different ridge sections. In total, direct amplification or FISH identified a single γ-proteobacterial lineage from the gills of 23 specimens from vents separated by a distance up to about 200 km and collected over the course of 2 years, suggesting a highly specific and widespread symbiosis. Thus, we report the first filamentous γ-proteobacterial gill symbiont hosted by a mollusc.  相似文献   

13.
A white, filamentous microbial mat at the Milano mud volcano in the Eastern Mediterranean Sea was sampled during the Medinaut cruise of the R/V Nadir in 1998. The composition of the mat community was characterized using a combination of phylogenetic and lipid biomarker methods. The mat sample was filtered through 0.2 and 5-microm filters to coarsely separate unicellular and filamentous bacteria. Analyses of 16S rRNA gene sequences amplified from the total community DNA from these fractions showed that similar archaeal populations were present in both fractions. However, the bacterial populations in the fractions differed from one another, and were more diverse than the archaeal ones. Lipid analysis showed that bacteria were the dominant members of the mat microbial community and the relatively low delta(13)C carbon isotope values of bulk bacterial lipids suggested the occurrence of methane- and sulfide-based chemo(auto)trophy. Consistent with this, the bacterial populations in the fractions were related to Alpha-, Gamma- and Epsilonproteobacteria, most of which were chemoautotrophic bacteria that utilize hydrogen sulfide (or reduced sulfur compounds) and/or methane. The most common archaeal 16S rRNA gene sequences were related to those of previously identified Archaea capable of anaerobic methane oxidation. Although the filamentous organisms observed in the mat were not conclusively identified, our results indicated that the Eastern Mediterranean deep-sea microbial mat community might be sustained on a combination of methane- and sulfide-driven chemotrophy.  相似文献   

14.
Short-term and spatial fluctuations in specific biovolumes (volume x cell−1) of different morphological categories of planktonic bacteria were estimated microscopically. Samples were taken from two lakes occurring in two different climatic systems: Lake Aydat (France) and Lake Cromwell (Canada). The study was done in summer, using 24-hour cycles of sampling. Due to their large size, the specific volume of filamentous bacteria constituted, on average, the major part (>70%) of the total specific volume of all bacterial forms considered. Greatest variations in specific biovolumes were recorded for filamentous bacteria (coefficients of variation ranged from 16 to 109%). These variations were more pronounced in the oxygenated and microaerophilic strata (DOC ≈1.5 mg liter−1). Fluctuations in cell volume were high (coefficients of variation =12–80%) for coccal bacteria, whereas no marked fluctuations were found for the rod and vibrio bacteria (coefficients of variation =4–10%). Evidence of diel patterns of cell volume of filamentous bacteria is provided. These cells displayed their maximum size during the day until early night, indicating cell division was occurring at night. Homogeneous circadian patterns were not provided by specific volume variations of coccal, rod, and vibrio bacteria. Statistical relationships between bacterial specific biovolumes and the biotic and abiotic parameters considered are discussed.  相似文献   

15.
Pili in gram-positive pathogens   总被引:1,自引:0,他引:1  
Most bacterial pathogens have long filamentous structures known as pili or fimbriae extending from their surface. These structures are often involved in the initial adhesion of the bacteria to host tissues during colonization. In gram-negative bacteria, pili are typically formed by non-covalent interactions between pilin subunits. By contrast, the recently discovered pili in gram-positive pathogens are formed by covalent polymerization of adhesive pilin subunits. Evidence from studies of pili in the three principal streptococcal pathogens of humans indicates that the genes that encode the pilin subunits and the enzymes that are required for the assembly of these subunits into pili have been acquired en bloc by the horizontal transfer of a pathogenicity island.  相似文献   

16.
Selective adhesion to only certain epithelia is particularly common among the bacterial members of the indigenous microflora of mammals. We have found that the stratified squamous epithelium of the nonsecreting area of horse stomach is colonized by gram-positive rods. The microscopic features of a dense layer of these bacteria on the epithelium were found to be similar to those reported in mice, rats, and swine. Adhering microorganisms were isolated and identified as Lactobacillus salivarius, L. crispatus, L. reuteri, and L. agilis by DNA-DNA hybridization and 16S rRNA gene sequencing techniques. These lactobacilli associated with the horse, except for L. reuteri, were found to adhere to horse epithelial cells in vitro but not to those of rats. A symbiotic relationship of these lactobacilli with the horse is suggested.  相似文献   

17.
Fourteen tissue sites from the bovine reticulo-rumen were examined by scanning electron microscopy to determine the distribution patterns of bacterial populations adhering to the epithelium. Although diet variations did not appear to influence the total number of tissue-adherent bacteria present in adult Herefords, diet affected their distribution. It appeared that the distribution of the bacterial populations may be directly affected by the physical state of the digesta. The digesta may be mechanically removing adherent bacteria from the tissue surface by abrasive action. The total adherent population consisted of subpopulations with separate distribution patterns, and macropopulations of morphologically similar bacteria were occasionally observed at specific sites on the epithelial surface. Ureolytic organisms on the epithelium followed a distribution pattern considerably different from the general bacterial distribution.  相似文献   

18.
Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub‐membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus.  相似文献   

19.
Attempts are described to 'normalize' germfree mice by association with 3, 21 and 71 different intestinal bacterial cultures isolated from mice with an SPF flora. Germfree mice associated naturally with an SPF flora served as controls. Vital bacterial counts were determined by aerobic and anaerobic culture. Stomach and small intestine contained fewer bacteria per gram than caecum and large intestine. Aerobic vital counts from caecum and large intestine were higher in the experimental groups than in control mice. The aerobic and anaerobic flora in stomach and small intestine comprised mainly Gram-positive non-fusiform shaped rods. In the caecum and colon Gram-positive cocci predominated in the aerobic culture while in the anaerobic culture fusiform-shaped rods were prominent. Scanning electron microscopy of oesophagus, ileum, caecum and faeces demonstrated colonization of the oesophageal epithelium only after association with 71 bacterial strains; the filamentous bacteria present in the ileum of SPF mice were not found in the experimental groups and caecum and faeces contained mainly fusiform-shaped bacteria. Non-bacterial matter decreased in the caecum and faeces with increase in the complexity of the flora.  相似文献   

20.
The sugarcane weevil, Sphenophorus levis, is a wide-spread sugarcane pest in Brazil. Sphenophorus levis may depend on microorganisms that inhabit its intestinal tract. We examined the diversity of the gut microbiota of S. levis, which was characterized using culture-dependent and culture-independent methods. Analysis of 16S rRNA amplified directly from the gut community revealed the presence of 14 genera, one group from the Candidatus category, one uncultured group assigned to the family Flavobacteriaceae, and one uncultured group assigned to the family Enterobacteriaceae; all of them are members of the Alpha-Proteobacteria, Beta-Proteobacteria, Gamma-Proteobacteria, Firmicutes, and Bacteroidetes phyla. Microorganisms isolated through culture-dependent methods were classified according to morphological parameters and by 16S rRNA gene sequences. In addition to bacteria, four filamentous fungi were isolated. A higher bacterial diversity was observed in field populations of larvae than in laboratory populations, according to the Shannon index (Field H' = 3.36; Laboratory H' = 3.26). Five genera of bacteria and two filamentous fungi were found to have cellulolytic activity. This is the first report of S. levis gut microbiota; it may contribute to development of strategies for controlling this sugarcane pest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号