首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arabidopsis IRT2 gene encodes a root-periphery iron transporter   总被引:19,自引:0,他引:19  
Iron uptake from the soil is a tightly controlled process in plant roots, involving specialized transporters. One such transporter, IRT1, was identified in Arabidopsis thaliana and shown to function as a broad-range metal ion transporter in yeast. Here we report the cloning and characterization of the IRT2 cDNA, a member of the ZIP family of metal transporters, highly similar to IRT1 at the amino-acid level. IRT2 expression in yeast suppresses the growth defect of iron and zinc transport yeast mutants and enhances iron uptake and accumulation. However, unlike IRT1, IRT2 does not transport manganese or cadmium in yeast. IRT2 expression is detected only in roots of A. thaliana plants, and is upregulated by iron deficiency. By fusing the IRT2 promoter to the uidA reporter gene, we show that the IRT2 promoter is mainly active in the external cell layers of the root subapical zone, and therefore provide the first tissue localization of a plant metal transporter. Altogether, these data support a role for the IRT2 transporter in iron and zinc uptake from the soil in response to iron-limited conditions.  相似文献   

2.
3.
Iron is an essential nutrient but in excess may damage cells by generating reactive oxygen species due to Fenton reaction or by substituting for other transition metals in essential proteins. The budding yeast Saccharomyces cerevisiae detoxifies cytosolic iron by storage in the vacuole. Deletion of CCC1, which encodes the vacuolar iron importer, results in high iron sensitivity due to increased cytosolic iron. We selected mutants that permitted Deltaccc1 cells to grow under high iron conditions by UV mutagenesis. We identified a mutation (N44I) in the vacuolar zinc transporter ZRC1 that changed the substrate specificity of the transporter from zinc to iron. COT1, a vacuolar zinc and cobalt transporter, is a homologue of ZRC1 and both are members of the cation diffusion facilitator family. Mutation of the homologous amino acid (N45I) in COT1 results in an increased ability to transport iron and decreased ability to transport cobalt. These mutations are within the second hydrophobic domain of the transporters and show the essential nature of this domain in the specificity of metal transport.  相似文献   

4.
5.
6.
Metal transporters regulated by iron can transport a variety of divalent metals, suggesting that iron regulation is important for specificity of iron transport. In plants, the iron-regulated broad-range metal transporter IRT1 is required for uptake of iron into the root epidermis. Functions of other iron-regulated plant metal transporters are not yet established. To deduce novel plant iron transport functions we studied the regulation of four tomato metal transporter genes belonging to the nramp and irt families with respect to environmental and genetic factors influencing iron uptake. We isolated Lenramp1 and Lenramp3 from tomato and demonstrate that these genes encode functional NRAMP metal transporters in yeast, where they were iron-regulated and localized mainly to intracellular vesicles. Lenramp1 and Leirt1 revealed both root-specific expression and up-regulation by iron deficiency, respectively, in contrast to Leirt2 and Lenramp3. Lenramp1 and Leirt1, but not Lenramp3 and Leirt2, were down-regulated in the roots of fer mutant plants deficient in a bHLH gene regulating iron uptake. In chloronerva mutant plants lacking the functional enzyme for synthesis of the plant-specific metal chelator nicotianamine Leirt1 and Lenramp1 were up-regulated despite sufficient iron supply independent of a functional fer gene. Lenramp1 was expressed in the vascular root parenchyma in a similar cellular pattern as the fer gene. However, the fer gene was not sufficient for inducing Lenramp1 and Leirt1 when ectopically expressed. Based on our results, we suggest a novel function for NRAMP1 in mobilizing iron in the vascular parenchyma upon iron deficiency in plants. We discuss fer/nicotianamine synthase-dependent and -independent regulatory pathways for metal transporter gene regulation.  相似文献   

7.
The molecular basis for the transport of manganese across membranes in plant cells is poorly understood. We have found that IRT1, an Arabidopsis thaliana metal ion transporter, can complement a mutant Saccharomyces cerevisiae strain defective in high-affinity manganese uptake (smf1). The IRT1 protein has previously been identified as an iron transporter. The current studies demonstrated that IRT1, when expressed in yeast, can transport manganese as well. This manganese uptake activity was inhibited by cadmium, iron(II) and zinc, suggesting that IRT1 can transport these metals. The IRT1 cDNA also complements a zinc uptake-deficient yeast mutant strain (zrt1zrt2), and IRT1-dependent zinc transport in yeast cells is inhibited by cadmium, copper, cobalt and iron(III). However, IRT1 did not complement a copper uptake-deficient yeast mutant (ctr1), implying that this transporter is not involved in the uptake of copper in plant cells. The expression of IRT1 is enhanced in A. thaliana plants grown under iron deficiency. Under these conditions, there were increased levels of root-associated manganese, zinc and cobalt, suggesting that, in addition to iron, IRT1 mediates uptake of these metals into plant cells. Taken together, these data indicate that the IRT1 protein is a broad-range metal ion transporter in plants.  相似文献   

8.
Zeroing in on zinc uptake in yeast and plants.   总被引:13,自引:0,他引:13  
Zinc is an essential micronutrient. Genes responsible for zinc uptake have now been identified from yeast and plants. These genes belong to an extended family of cation transporters called the ZIP gene family. Zinc efflux genes that belong to another transporter family, the CDF family, have also been identified in yeast and Arabidopsis. It is clear that studies in yeast can greatly aid our understanding of zinc metabolism in plants.  相似文献   

9.
Plants have developed sophisticated mechanisms to tightly control the acquisition and distribution of copper and iron in response to environmental fluctuations. Recent studies with Arabidopsis thaliana are allowing the characterization of the diverse families and components involved in metal uptake, such as metal-chelate reductases and plasma membrane transporters. In parallel, emerging data on both intra- and intercellular metal distribution, as well as on long-distance transport, are contributing to the understanding of metal homeostatic networks in plants. Furthermore, gene expression analyses are deciphering coordinated mechanisms of regulation and response to copper and iron limitation. Prioritizing the use of metals in essential versus dispensable processes, and substituting specific metalloproteins by other metal counterparts, are examples of plant strategies to optimize copper and iron utilization. The metabolic links between copper and iron homeostasis are well documented in yeast, algae and mammals. In contrast, interactions between both metals in vascular plants remain controversial, mainly owing to the absence of copper-dependent iron acquisition. This review describes putative interactions between both metals at different levels in plants. The characterization of plant copper and iron homeostasis should lead to biotechnological applications aimed at the alleviation of iron deficiency and copper contamination and, thus, have a beneficial impact on agricultural and human health problems.  相似文献   

10.
In chloroplasts, the transition metals iron and copper play an essential role in photosynthetic electron transport and act as cofactors for superoxide dismutases. Iron is essential for chlorophyll biosynthesis, and ferritin clusters in plastids store iron during germination, development, and iron stress. Thus, plastidic homeostasis of transition metals, in particular of iron, is crucial for chloroplast as well as plant development. However, very little is known about iron uptake by chloroplasts. Arabidopsis thaliana PERMEASE IN CHLOROPLASTS1 (PIC1), identified in a screen for metal transporters in plastids, contains four predicted alpha-helices, is targeted to the inner envelope, and displays homology with cyanobacterial permease-like proteins. Knockout mutants of PIC1 grew only heterotrophically and were characterized by a chlorotic and dwarfish phenotype reminiscent of iron-deficient plants. Ultrastructural analysis of plastids revealed severely impaired chloroplast development and a striking increase in ferritin clusters. Besides upregulation of ferritin, pic1 mutants showed differential regulation of genes and proteins related to iron stress or transport, photosynthesis, and Fe-S cluster biogenesis. Furthermore, PIC1 and its cyanobacterial homolog mediated iron accumulation in an iron uptake-defective yeast mutant. These observations suggest that PIC1 functions in iron transport across the inner envelope of chloroplasts and hence in cellular metal homeostasis.  相似文献   

11.
The ZIP family of metal transporters   总被引:52,自引:0,他引:52  
Members of the ZIP gene family, a novel metal transporter family first identified in plants, are capable of transporting a variety of cations, including cadmium, iron, manganese and zinc. Information on where in the plant each of the ZIP transporters functions and how each is controlled in response to nutrient availability may allow the manipulation of plant mineral status with an eye to (1) creating food crops with enhanced mineral content, and (2) developing crops that bioaccumulate or exclude toxic metals.  相似文献   

12.
13.
Neurospora crassa has been the model filamentous fungus for the study of many fundamental cellular mechanisms of transport and metabolism. The recently completed genome sequence of N. crassa has over 10,000 genes without significant matches for a large number of genes (41%) in the sequence databases, indeed presents many challenges for new discoveries. Using transporter database and BLAST searches a total of 65 open reading frames for putative cation transporter genes have been identified in N. crassa. These were further confirmed by characteristic features of the family like transmembrane domains (TOPPRED 2), conserved motifs (Clustal W) and phylogenetic analysis (TREETOP). In Neurospora cation transporter genes constitute nearly 18.3% of the total membrane transport systems, which is higher than E. coli (8.8%), S. cerevisiae (13.7%), S. pombe (17.2%), A. fumigatus (10.1%), A. thaliana (16.8%) and H. sapiens (15.6%). We refer to the complete complement of metal ion transporter genes as "Metal Transportome". There are a total of 33 putative transporters for alkali and alkaline earth metals constituting 18 for calcium (P-ATPase, VIC, CaCA, Mid1), 7 for sodium (P-ATPase, CPA1, CPA2), 4 for potassium (Trk, VIC, KUP), and 4 for magnesium (MIT). Transition metal ion transporters account for 32 transporters including 7 for zinc (ZIP), 6 for copper (Ctr2, Ctr1), 2 each for manganese (Nramp), iron (OFeT), arsenite (ArsAB, ACR3) and other metal ions (ABC and P-ATPase) and 1 each for nickel (NiCoT) and chromate (CHR). N. crassa has 7 linkage groups of which LGI harbors 21 of metal ion transporters and in contrast LGVII has only 2. Studies on metal transportomes of different organisms will help to unravel the role of metal ion transporters in homeostasis.  相似文献   

14.
Among higher plants graminaceous species have the unique ability to efficiently acquire iron from alkaline soils with low iron solubility by secreting phytosiderophores, which are hexadentate metal chelators with high affinity for Fe(III). Iron(III)-phytosiderophores are subsequently taken up by roots via YS1 transporters, that belong to the OPT oligopeptide transporter family. Despite its physiological importance at alkaline pH, uptake of Fe-phytosiderophores into roots of wild-type maize plants was greater at acidic pH and sensitive to the proton uncoupler CCCP. To access the mechanism of Fe-phytosiderophore acquisition, ZmYS1 was expressed in an iron uptake-defective yeast mutant and in Xenopus oocytes, where ZmYS1-dependent Fe-phytosiderophore transport was stimulated at acidic pH and sensitive to CCCP. Electrophysiological analysis in oocytes demonstrated that Fephytosiderophore transport depends on proton cotransport and on the membrane potential, which allows ZmYS1-mediated transport even at alkaline pH. We further investigated substrate specificity and observed that ZmYS1 complemented the growth defect of the zinc uptake-defective yeast mutant zap1 and transported various phytosiderophore-bound metals into oocytes, including zinc, copper, nickel, and, at a lower rate, also manganese and cadmium. Unexpectedly, ZmYS1 also transported Ni(II), Fe(II), and Fe(III) complexes with nicotianamine, a structural analog of phytosiderophores, which has been shown to act as an intracellular metal chelator in all higher plants. Our results show that ZmYS1 encodes a proton-coupled broad-range metal-phytosiderophore transporter that additionally transports Fe- and Ni-nicotianamine. These biochemical properties indicate a novel role of YS1 transporters for heavy metal homeostasis in plants.  相似文献   

15.
16.
Eukaryotic zinc transporters and their regulation   总被引:49,自引:0,他引:49  
  相似文献   

17.
植物ZIP基因家族铁载体蛋白基因研究进展   总被引:4,自引:0,他引:4  
主要概述了植物ZIP基因家族铁载体蛋白基因研究的最新进展。从结构和功能上介绍了铁载体蛋白基因IRT1、IRT2、LeIRT1、LeIRT2、P5RIT1和O5IRT1。应用Clustal X序列分析软件,对6个铁载体蛋白基因在蛋白质水平上比较后发现,与IRT1基因蛋白质序列有较高的同源性。植物ZIP基因家族铁载体蛋白基因主要受缺铁胁迫条件的诱导,在根部表达。表达的量与环境中的铁含量、时间、温度、光照等因素有关。铁载体蛋白基因在转录和转录后水平上被环境中的铁含量和植物体内的铁营养水平综合调控。转铁载体蛋白基因植物表现出较强的抗缺铁能力,预示其在农业生产上有广阔的应用前景。  相似文献   

18.
Manganese (Mn) is an essential metal nutrient for plants. Recently, some of the genes responsible for transition metal transport in plants have been identified; however, only relatively recently have Mn2+ transport pathways begun to be identified at the molecular level. These include transporters responsible for Mn accumulation into the cell and release from various organelles, and for active sequestration into endomembrane compartments, particularly the vacuole and the endoplasmic reticulum. Several transporter gene families have been implicated in Mn2+ transport, including cation/H+ antiporters, natural resistance-associated macrophage protein (Nramp) transporters, zinc-regulated transporter/iron-regulated transporter (ZRT/IRT1)-related protein (ZIP) transporters, the cation diffusion facilitator (CDF) transporter family, and P-type ATPases. The identification of mutants with altered Mn phenotypes can allow the identification of novel components in Mn homeostasis. In addition, the characterization of Mn hyperaccumulator plants can increase our understanding of how plants can adapt to excess Mn, and ultimately allow the identification of genes that confer this stress tolerance. The identification of genes responsible for Mn2+ transport has substantially improved our understanding of plant Mn homeostasis.  相似文献   

19.
20.
Metal ions are vital for all organisms, and metal ion transporters play a crucial role in maintaining their homeostasis. The yeast (Saccharomyces cerevisiae) Smf transporters and their homologs in other organisms have a central role in the accumulation of metal ions and their distribution in different tissues and cellular organelles. In this work we generated null mutations in each individual SMF gene in yeast as well as in all combinations of the genes. Each null mutation exhibited sensitivity to metal ion chelators at different concentrations. The combination of null mutants DeltaSMF1 + DeltaSMF2 and the triple null mutant Delta3SMF failed to grow on medium buffered at pH 8 and 7.5, respectively. Addition of 5 microm copper or 25 microm manganese alleviated the growth arrest at the high pH or in the presence of the chelating agent. The transport of manganese was analyzed in the triple null mutant and in this mutant expressing each Smf protein. Although overexpression of Smf1p and Smf2p resulted in uptake that was higher than wild type cells, the expression of Smf3p gave no significant uptake above that of the triple mutant Delta3SMF. Western analysis with antibody against Smf3p indicated that this transporter does not reach the plasma membrane and may function at the Golgi or post-Golgi complexes. The iron uptake resulting from expression of Smf1p and Smf2p was analyzed in a mutant in which its iron transporters FET3 and FET4 were inactivated. Overexpression of Smf1p gave rise to a significant iron uptake that was sensitive to the sodium concentrations in the medium. We conclude that the Smf proteins play a major role in copper and manganese homeostasis and, under certain circumstances, Smf1p may function in iron transport into the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号