首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Proline transport and osmotic stress response in Escherichia coli K-12.   总被引:25,自引:14,他引:11       下载免费PDF全文
Proline is accumulated in Escherichia coli via two active transport systems, proline porter I (PPI) and PPII. In our experiments, PPI was insensitive to catabolite repression and was reduced in activity twofold when bacteria were subjected to amino acid-limited growth. PPII, which has a lower affinity for proline than PPI, was induced by tryptophan-limited growth. PPII activity was elevated in bacteria that were subjected to osmotic stress during growth or the transport measurement. Neither PPI nor uptake of serine or glutamine was affected by osmotic stress. Mutation proU205, which was similar in genetic map location and phenotype to other proU mutations isolated in E. coli and Salmonella typhimurium, influenced the sensitivity of the bacteria to the toxic proline analogs azetidine-2-carboxylate and 3,4-dehydroproline, the proline requirements of auxotrophs, and the osmoprotective effect of proline. This mutation did not influence proline uptake via PPI or PPII. A very low uptake activity (6% of the PPII activity) observed in osmotically stressed bacteria lacking PPI and PPII was not observed when the proU205 lesion was introduced.  相似文献   

2.
Proline porter II is rapidly activated when nongrowing bacteria are subjected to a hyperosmotic shift (Grothe, S., Krogsrud, R. L., McClellan, D. J., Milner, J. L., and Wood, J. M. (1986) J. Bacteriol. 166, 253-259). Proline porter II was active in membrane vesicles prepared from bacteria grown under optimal conditions, nutritional stress, or osmotic stress. That activity was: (i) dependent on the presence of the energy sources phenazine methosulphate plus ascorbate or D-lactate; (ii) observed only when a hyperosmotic shift accompanied the transport measurement; (iii) inhibited by glycine betaine in a manner analogous to that observed in whole cells; and (iv) eliminated by lesions in proP. Membrane vesicles were able to transport serine but not glutamine and serine transport was reduced by the hyperosmotic shift. In whole cells, proline porter II activity was supported by glucose and by D-lactate in a strain defective for proline porters I and III and the F1F0-ATPase. Glucose energized proline uptake was eliminated by carbonyl cyanide m-chlorophenylhydrazone and KCN as was serine uptake. These results suggested that proline porter II was respiration-dependent and probably ion-linked. Activation of proline porter II in whole cells by sucrose or NaCl was sustained over 30 min, whereas activation by glycerol was transient. Proline porter II was activated by NaCl and sucrose with a half-time of approximately 1 min in both whole cells and membrane vesicles. Thus, activation of proline porter II was reversible. It occurred at a rate comparable to that of K+ influx and much more rapid than the genetic regulatory responses that follow a hyperosmotic shift.  相似文献   

3.
In order to adapt to the fluctuations in soil salinity/osmolarity the bacteria of the genusAzospirillum accumulate compatible solutes such as glutamate, proline, glycine betaine, trehalose, etc. Proline seems to play a major role in osmoadaptation. With increase in osmotic stress the dominant osmolyte inA. brasilense shifts from glutamate to proline. Accumulation of proline inA. brasilense occurs by both uptake and synthesis. At higher osmolarityA. brasilense Sp7 accumulates high intracellular concentration of glycine betaine which is taken up via a high affinity glycine betaine transport system. A salinity stress induced, periplasmically located, glycine betaine binding protein (GBBP) of ca. 32 kDa size is involved in glycine betaine uptake inA. brasilense Sp7. Although a similar protein is also present inA. brasilense Cd it does not help in osmoprotection. It is not known ifA. brasilense Cd can also accumulate glycine betaine under salinity stress and if the GBBP-like protein plays any role in glycine betaine uptake. This strain, under salt stress, seems to have inadequate levels of ATP to support growth and glycine betaine uptake simultaneously. ExceptA. halopraeferens, all other species ofAzospirillum lack the ability to convert choline into glycine betaine. Mobilization of thebet ABT genes ofE. coli intoA. brasilense enables it to use choline for osmoprotection. Recently, aproU-like locus fromA. lipoferum showing physical homology to theproU gene region ofE. coli has been cloned. Replacement of this locus, after inactivation by the insertion of kanamycin resistance gene cassette, inA. lipoferum genome results in the recovery of mutants which fail to use glycine betaine as osmoprotectant.  相似文献   

4.
Growth of Erwinia chrysanthemi in media of elevated osmolarity can be achieved by the uptake and accumulation of various osmoprotectants. This study deals with the cloning and sequencing of the ousA gene-encoded osmoprotectant uptake system A from E. chrysanthemi 3937. OusA belongs to the superfamily of solute ion cotransporters. This osmotically inducible system allows the uptake of glycine betaine, proline, ectoine, and pipecolic acid and presents strong similarities in nucleotide sequence and protein function with the proline/betaine porter of Escherichia coli encoded by proP. The control of ousA expression is clearly different from that of proP. It is induced by osmotic strength and repressed by osmoprotectants. Its expression in E. coli is controlled by H-NS and is rpoS dependent in the exponential phase but unaffected by the stationary phase.  相似文献   

5.
Lactococcus lactis subsp. lactis ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 microM is expressed constitutively. The activity of this system is not stimulated by high osmolarities of the growth or assay medium but varies strongly with the medium pH. A low-affinity proline uptake system (Km, > 5 mM) is expressed at high levels only in chemically defined medium (CDM) with high osmolarity. This transport system is also stimulated by high osmolarity. The expression of this proline uptake system is repressed in rich broth with low or high osmolarity and in CDM with low osmolarity. The accumulated proline can be exchanged for betaine. Proline uptake is also effectively inhibited by betaine (Ki of between 50 and 100 microM). The proline transport system therefore probably also transports betaine. The inhibition of proline transport by betaine results in low proline pools in cells grown in high-osmotic-strength, betaine-containing CDM. The energy and pH dependency and the influence of ionophores on the activity of both transport systems suggest that these systems are not proton motive force driven. At low osmolarities, proline uptake is low but significant. This low proline uptake is also inhibited by betaine, although to a lesser extent than in cells grown in high-osmotic-strength CDM. These data indicate that proline uptake in L. lactis is enzyme mediated and is not dependent on passive diffusion, as was previously believed.  相似文献   

6.
Exogenous proline betaine (N,N-dimethylproline or stachydrine) highly stimulated the growth rate of Rhizobium meliloti, in media of inhibitory concentration of NaCl whereas proline was ineffective. High levels of proline betaine uptake occurred in cells grown in media of elevated osmotic strength; on the contrary, only low activity was found in cells grown in minimal medium. The apparent K m was 10 M with a maximal transport rate of 25 nmol min-1 mg-1 of protein in 0.3 M NaCl-grown cells. The concentrative transport was totally abolished by KCN (2 mM), 2,4-dinitrophenol (2 mM), and carbonyl cyanide-m-chlorophenyl hydrazone (CCCP 10 M) but was insensitive to arsenate (5 mM). Glycine betaine was a very potent inhibitor of proline betaine uptake while proline was not. Proline betaine transport was not reduced in osmotically shocked cells and no proline betaine binding activity was detected in the crude periplasmic shock fluid. In the absence of salt stress, Rhizobium meliloti actively catabolized proline betaine but this catabolism was blocked by increasing the osmotic strength of the medium. The osmolarity in the growth medium regulates the use of proline betaine either as a carbon and nitrogen source or as an osmoprotectant.Abbreviations LAS lactate-aspartate-salts - MSY mannitol-salts-yeast - CCCP carbonyl cyanide-m-chlorophenyl hydrazone - DCCD dicyclohexylcarbodiimide - KCN potassium cyanide - Hepes 4-(2-hydroxyethyl)-1-piperzine-ethanesulphonic acid  相似文献   

7.
M Farwick  R M Siewe    R Krmer 《Journal of bacteriology》1995,177(16):4690-4695
Osmoregulatory uptake of glycine betaine in whole cells of Corynebacterium glutamicum ATCC 13032 (wild type) was studied. The cells actively take up glycine betaine when they are osmotically shocked. The total accumulation and uptake rate were dependent on the osmotic strength of the medium. Kinetic analysis revealed a high-affinity transport system (Km, 8.6 +/- 0.4 microM) with high maximum velocity (110 nmol.min-1.mg [dry weight]-1). Glycine betaine functioned as a compatible solute when added to the medium and allowed growth at an otherwise inhibitory osmotic strength of 1.5 M NaCl. Proline and ectoine could also be used as osmoprotectants. Glycine betaine is neither synthesized nor metabolized by C. glutamicum. The glycine betaine transport system is constitutively expressed at a basal level of activity. It can be induced up to eightfold by osmotic stress and is strongly regulated at the level of activity. The transport system is highly specific and has its pH optimum in the slightly alkaline range at about pH 8. The uptake of the zwitterionic glycine betaine is mediated by a secondary symport system coupled to cotransport of at least two Na+ ions. It is thus driven both by the membrane potential and the Na+ gradient. An extremely high accumulation (internal/external) ratio of up to 4 x 10(6) was measured, which represents the highest accumulation ratio observed for any transport system.  相似文献   

8.
Osmoregulation was examined in members of the Enterobacteriaceae. Exogenous glycine betaine at a concentration as low as 1 mM was found to stimulate the growth rate of Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae in media of inhibitory osmotic strength. The stimulation was shown to be independent of any specific solutes, electrolytes, or nonelectrolytes. Therefore, the stimulatory effect of glycine betaine was a consequence of high osmotic potential. This effect was found to be far greater than the proline effect previously observed in S. typhimurium. Whereas nitrogen fixation by K. pneumoniae is completely inhibited under conditions of osmotic stress, nitrogenase activity could be partially restored by the addition of exogenous glycine betaine to the culture medium. Furthermore, glycine betaine in combination with proline, especially proline produced internally at a high level because of regulatory mutations affecting proline biosynthesis, strongly stimulated nitrogen fixation activity during osmotic stress. Glycine betaine was accumulated by the cells, and the amount taken up was correlated with the osmolarity of the medium. These findings are discussed in relation to the possible mechanisms by which glycine betaine might cause enhanced osmotolerance.  相似文献   

9.
Osmoregulation was examined in members of the Enterobacteriaceae. Exogenous glycine betaine at a concentration as low as 1 mM was found to stimulate the growth rate of Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae in media of inhibitory osmotic strength. The stimulation was shown to be independent of any specific solutes, electrolytes, or nonelectrolytes. Therefore, the stimulatory effect of glycine betaine was a consequence of high osmotic potential. This effect was found to be far greater than the proline effect previously observed in S. typhimurium. Whereas nitrogen fixation by K. pneumoniae is completely inhibited under conditions of osmotic stress, nitrogenase activity could be partially restored by the addition of exogenous glycine betaine to the culture medium. Furthermore, glycine betaine in combination with proline, especially proline produced internally at a high level because of regulatory mutations affecting proline biosynthesis, strongly stimulated nitrogen fixation activity during osmotic stress. Glycine betaine was accumulated by the cells, and the amount taken up was correlated with the osmolarity of the medium. These findings are discussed in relation to the possible mechanisms by which glycine betaine might cause enhanced osmotolerance.  相似文献   

10.
A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased.  相似文献   

11.
Listeria monocytogenes is a pathogenic bacterium that can grow at low temperatures and elevated osmolarity. The organism survives these stresses by the intracellular accumulation of osmolytes: low-molecular-weight organic compounds which exert a counterbalancing force. The primary osmolyte in L. monocytogenes is glycine betaine, which is accumulated from the environment via two transport systems: glycine betaine porter I, an Na(+)-glycine betaine symporter; and glycine betaine porter II, an ATP-dependent transporter. The biochemical characteristics of glycine betaine porter I were investigated in a mutant strain (LTG59) lacking the ATP-dependent transporter. At 4% NaCl, glycine betaine uptake in LTG59 was about fivefold lower than in strain DP-L1044, which has both transporters, indicating that the ATP-dependent transporter is the primary means by which glycine betaine enters the cell. In the absence of osmotic stress, cold-activated uptake by both transporters was most rapid between 7 and 12 degrees C, but a larger fraction of the total uptake was via the ATP-dependent transporter than was observed under salt-stressed conditions. Twelve glycine betaine analogs were tested for their ability to inhibit glycine betaine uptake and growth of stressed cultures. Carnitine, dimethylglycine, and gamma-butyrobetaine appear to inhibit the ATP-dependent transporter, while trigonelline and triethylglycine primarily inhibit glycine betaine porter I. Triethylglycine was also able to retard the growth of osmotically stressed L. monocytogenes grown in the presence of glycine betaine.  相似文献   

12.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.  相似文献   

13.
Listeria monocytogenes is a pathogenic bacterium that can grow at low temperatures and elevated osmolarity. The organism survives these stresses by the intracellular accumulation of osmolytes: low-molecular-weight organic compounds which exert a counterbalancing force. The primary osmolyte in L. monocytogenes is glycine betaine, which is accumulated from the environment via two transport systems: glycine betaine porter I, an Na+-glycine betaine symporter; and glycine betaine porter II, an ATP-dependent transporter. The biochemical characteristics of glycine betaine porter I were investigated in a mutant strain (LTG59) lacking the ATP-dependent transporter. At 4% NaCl, glycine betaine uptake in LTG59 was about fivefold lower than in strain DP-L1044, which has both transporters, indicating that the ATP-dependent transporter is the primary means by which glycine betaine enters the cell. In the absence of osmotic stress, cold-activated uptake by both transporters was most rapid between 7 and 12°C, but a larger fraction of the total uptake was via the ATP-dependent transporter than was observed under salt-stressed conditions. Twelve glycine betaine analogs were tested for their ability to inhibit glycine betaine uptake and growth of stressed cultures. Carnitine, dimethylglycine, and γ-butyrobetaine appear to inhibit the ATP-dependent transporter, while trigonelline and triethylglycine primarily inhibit glycine betaine porter I. Triethylglycine was also able to retard the growth of osmotically stressed L. monocytogenes grown in the presence of glycine betaine.  相似文献   

14.
Listeria monocytogenes is a foodborne pathogen known for its tolerance to conditions of osmotic and chill stress. Accumulation of glycine betaine has been found to be important in the organism's tolerance to both of these stresses. A procedure was developed for the purification of membranes from L. monocytogenes cells in which the putative ATP-driven glycine betaine permease glycine betaine porter II (Gbu) is functional. As is the case for the L. monocytogenes sodium-driven glycine betaine uptake system (glycine betaine porter I), uptake in this vesicle system was dependent on energization by ascorbate-phenazine methosulfate. Vesicles lacking the gbu gene product had no uptake activity. Transport by this porter did not require sodium ion and could be driven only weakly by artificial gradients. Uptake rates could be manipulated under conditions not affecting secondary transport but known to affect ATPase activity. The system was shown to be both osmotically activated and cryoactivated. Under conditions of osmotic activation, the system exhibited Arrhenius-type behavior although the uptake rates were profoundly affected by the physical state of the membrane, with breaks in Arrhenius curves at approximately 10 and 18 degrees C. In the absence of osmotic activation, the permease could be activated by decreasing temperature within the range of 15 to 4 degrees C. Kinetic analyses of the permease at 30 degrees C revealed K(m) values for glycine betaine of 1.2 and 2.9 microM with V(max) values of 2,200 and 3,700 pmol/min. mg of protein under conditions of optimal osmotic activation as mediated by KCl and sucrose, respectively.  相似文献   

15.
The symbiotic soil bacterium Sinorhizobium meliloti uses the compatible solutes glycine betaine and proline betaine for both protection against osmotic stress and, at low osmolarities, as an energy source. A PCR strategy based on conserved domains in components of the glycine betaine uptake systems from Escherichia coli (ProU) and Bacillus subtilis (OpuA and OpuC) allowed us to identify a highly homologous ATP-binding cassette (ABC) binding protein-dependent transporter in S. meliloti. This system was encoded by three genes (hutXWV) of an operon which also contained a fourth gene (hutH2) encoding a putative histidase, which is an enzyme involved in the first step of histidine catabolism. Site-directed mutagenesis of the gene encoding the periplasmic binding protein (hutX) and of the gene encoding the cytoplasmic ATPase (hutV) was done to study the substrate specificity of this transporter and its contribution in betaine uptake. These mutants showed a 50% reduction in high-affinity uptake of histidine, proline, and proline betaine and about a 30% reduction in low-affinity glycine betaine transport. When histidine was used as a nitrogen source, a 30% inhibition of growth was observed in hut mutants (hutX and hutH2). Expression analysis of the hut operon determined using a hutX-lacZ fusion revealed induction by histidine, but not by salt stress, suggesting this uptake system has a catabolic role rather than being involved in osmoprotection. To our knowledge, Hut is the first characterized histidine ABC transporter also involved in proline and betaine uptake.  相似文献   

16.
Bacteroids isolated from alfalfa nodules induced by Rhizobium meliloti 102F34 transported glycine betaine at a constant rate for up to 30 min. Addition of sodium salts greatly increased the uptake activity, whereas other salts or non-electrolytes had less effect. The apparent Km for glycine betaine uptake was 8.3 microM and V was about 0.84 nmol min-1 (mg protein)-1 in the presence of 200 mM-NaCl which gave maximum stimulation of the transport. Supplementing bacteroid suspensions with various energy-yielding substrates, or ATP, did not increase glycine betaine uptake rates. The uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), and the respiratory inhibitor potassium cyanide strongly inhibited glycine betaine uptake, but arsenate was totally inactive. Glycine betaine transport showed considerable structural specificity: choline, proline betaine, gamma-butyrobetaine and trigonelline did not competitively inhibit the system, although choline and proline betaine were transported by bacteroids. Both a high-affinity activity and a low-affinity activity were found for choline uptake. These osmoprotective compounds might have a significant role in the maintenance of nitrogenase activity in bacteroids subjected to salt stress.  相似文献   

17.
Glycine betaine strongly stimulated the growth rate of five strains of Erwinia chrysanthemi when grown in a synthetic medium at 0·986, 0·983 and 0·980 a w (NaCl) whereas in four strains, little effect was observed compared with the control. Proline, dimethyl glycine, carnitine and pipecolic acid also actedas osmoprotectants. Glutamate and trehalose, commonly accumulated by enteric bacteria in response to osmotic stress, failed to act as osmoprotectants when supplied exogenously. Glycine betaine and pipecolic acid partially overcame the inhibition of pectate lyase release by NaCl in strain ECC. 13C NMR spectroscopy of two osmotically-stressed strains showed that glycine betaine was accumulated intracellularly from synthetic media containing the exogenous osmoprotectant. However, both strains also synthesized and accumulated trehalose in addition to glycine betaine in response to osmotic stress in complex media containing glycine betaine.  相似文献   

18.
Summary Osmoregulation of Brevibacterium lactofermentum was examined. Exogenous glycine betaine was found to stimulate the growth rate of the bacterium in media of inhibitory osmotic strength. The stimulation was independent of any specific solute, electrolyte, or non-electrolyte. The bacterium did not utilize glycine betaine as a sole carbon source or nitrogen source, or degrade it even in complete medium. The changes in intracellular proline and glycine betaine concentrations were measured in media of different osmolarity. Brevibacterium lactofermentum grown in media without glycine betaine did not accumulate it, but synthesized several hyndred millimoles of proline inside the cells. On the other hand, when glycine betaine was added to the growth media, it accumulated in the cell instead of proline. These data indicate that glycine betaine is an osmoprotective compound for B. lactofermentum. Offprint requests to: Yoshio Kawahara  相似文献   

19.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.  相似文献   

20.
The effects of hypersaline treatment (osmotic upshock) on solute accumulation have been studied in the Gram-positive bacterium Bacillus subtilis. Natural abundance 13C NMR spectroscopy studies revealed only proline as a major organic osmoticum in cells grown in defined medium (no exogenous organic solutes) and this finding was confirmed by amino acid analysis. Intracellular concentrations of both K+ and proline rose markedly after osmotic upshock. K+ influx from the medium was rapid (less than 1 h) but proline synthesis was a slower process (5-9 h). Proline synthesis appeared to be dependent on the prior accumulation of K+ and it is possible that K+ serves in some manner as the signal for increased proline synthesis. In cells upshocked in medium enriched in glycine betaine the endogenous synthesis of proline was repressed and glycine betaine served as the sole organic osmoticum. K+ was also accumulated under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号