首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sliding clamps are loaded onto DNA by ATP-driven clamp loader complexes. The structure of the E. coli clamp loader in a nucleotide-free state has been determined previously. We now report crystal structures of a truncated form of the isolated gamma-ATPase subunit, gamma(1-243), of the E. coli clamp loader, in nucleotide-free and bound forms. The gamma subunit adopts a defined conformation when empty, in which the nucleotide binding site is blocked. The binding of either ATPgammaS or ADP, which are shown to bind with equal affinity to gamma(1-243), induces a change in the relative orientation of the two domains such that nucleotides can be accommodated. This change would break one of the gamma:gamma interfaces seen in the empty clamp loader complex, and may represent one step in the activation process.  相似文献   

2.
The Escherichia coli beta dimer is a ring-shaped protein that encircles DNA and acts as a sliding clamp to tether the replicase, DNA polymerase III holoenzyme, to DNA. The gamma complex (gammadeltadelta'chipsi) clamp loader couples ATP to the opening and closing of beta in assembly of the ring onto DNA. These proteins are functionally and structurally conserved in all cells. The eukaryotic equivalents are the replication factor C (RFC) clamp loader and the proliferating cell nuclear antigen (PCNA) clamp. The delta subunit of the E. coli gamma complex clamp loader is known to bind beta and open it by parting one of the dimer interfaces. This study demonstrates that other subunits of gamma complex also bind beta, although weaker than delta. The gamma subunit like delta, affects the opening of beta, but with a lower efficiency than delta. The delta' subunit regulates both gamma and delta ring opening activities in a fashion that is modulated by ATP interaction with gamma. The implications of these actions for the workings of the E. coli clamp loading machinery and for eukaryotic RFC and PCNA are discussed.  相似文献   

3.
Sliding clamps are ring-shaped proteins that tether DNA polymerases to their templates during processive DNA replication. The action of ATP-dependent clamp loader complexes is required to open the circular clamps and to load them onto DNA. The crystal structure of the pentameric clamp loader complex from Escherichia coli (the gamma complex), determined in the absence of nucleotides, revealed a highly asymmetric and extended form of the clamp loader. Consideration of this structure suggested that a compact and more symmetrical inactive form may predominate in solution in the absence of crystal packing forces. This model has the N-terminal domains of the delta and delta' subunits of the clamp loader close to each other in the inactive state, with the clamp loader opening in a crab-claw-like fashion upon ATP-binding. We have used fluorescence resonance energy transfer (FRET) to investigate the structural changes in the E.coli clamp loader complex that result from ATP-binding and interactions between the clamp loader and the beta clamp. FRET measurements using fluorophores placed in the N-terminal domains of the delta and delta' subunits indicate that the distances between these subunits in solution are consistent with the previously crystallized extended form of the clamp loader. Furthermore, the addition of nucleotide and clamp to the labeled clamp loader does not appreciably alter these FRET distances. Our results suggest that the changes that occur in the relative positioning of the delta and delta' subunits when ATP binds to and activates the complex are subtle, and that crab-claw-like movements are not a significant component of the clamp loader mechanism.  相似文献   

4.
Clamp loader proteins catalyze assembly of circular sliding clamps on DNA to enable processive DNA replication. During the reaction, the clamp loader binds primer-template DNA and positions it in the center of a clamp to form a topological link between the two. Clamp loaders are multi-protein complexes, such as the five protein Escherichia coli, Saccharomyces cerevisiae, and human clamp loaders, and the two protein Pyrococcus furiosus and Methanobacterium thermoautotrophicum clamp loaders, and thus far the site(s) responsible for binding and selecting primer-template DNA as the target for clamp assembly remain unknown. To address this issue, we analyzed the interaction between the E.coli gamma complex clamp loader and DNA using UV-induced protein-DNA cross-linking and mass spectrometry. The results show that the delta subunit in the gamma complex makes close contact with the primer-template junction. Tryptophan 279 in the delta C-terminal domain lies near the 3'-OH primer end and may play a key role in primer-template recognition. Previous studies have shown that delta also binds and opens the beta clamp (hydrophobic residues in the N-terminal domain of delta contact beta. The clamp-binding and DNA-binding sites on delta appear positioned for facile entry of primer-template into the center of the clamp and exit of the template strand from the complex. A similar analysis of the S.cerevisiae RFC complex suggests that the dual functionality observed for delta in the gamma complex may be true also for clamp loaders from other organisms.  相似文献   

5.
The dimeric ring-shaped sliding clamp of E. coli DNA polymerase III (beta subunit, homolog of eukaryotic PCNA) is loaded onto DNA by the clamp loader gamma complex (homolog of eukaryotic Replication Factor C, RFC). The delta subunit of the gamma complex binds to the beta ring and opens it. The crystal structure of a beta:delta complex shows that delta, which is structurally related to the delta' and gamma subunits of the gamma complex, is a molecular wrench that induces or traps a conformational change in beta such that one of its dimer interfaces is destabilized. Structural comparisons and molecular dynamics simulations suggest a spring-loaded mechanism in which the beta ring opens spontaneously once a dimer interface is perturbed by the delta wrench.  相似文献   

6.
The gamma complex couples ATP hydrolysis to the loading of beta sliding clamps onto DNA for processive replication. The gamma complex structure shows that the clamp loader subunits are arranged as a circular heteropentamer. The three gamma motor subunits bind ATP, the delta wrench opens the beta ring, and the delta' stator modulates the delta-beta interaction. Neither delta nor delta' bind ATP. This report demonstrates that the delta' stator contributes a catalytic arginine for hydrolysis of ATP bound to the adjacent gamma(1) subunit. Thus, the delta' stator contributes to the motor function of the gamma trimer. Mutation of arginine 169 of gamma, which removes the catalytic arginines from only the gamma(2) and gamma(3) ATP sites, abolishes ATPase activity even though ATP site 1 is intact and all three sites are filled. This result implies that hydrolysis of the three ATP molecules occurs in a particular order, the reverse of ATP binding, where ATP in site 1 is not hydrolyzed until ATP in sites 2 and/or 3 is hydrolyzed. Implications of these results to clamp loaders of other systems are discussed.  相似文献   

7.
The PolC holoenzyme replicase of the Gram-positive Staphylococcus aureus pathogen has been reconstituted from pure subunits. We compared individual S. aureus replicase subunits with subunits from the Gram-negative Escherichia coli polymerase III holoenzyme for activity and interchangeability. The central organizing subunit, tau, is smaller than its Gram-negative homolog, yet retains the ability to bind single-stranded DNA and contains DNA-stimulated ATPase activity comparable with E. coli tau. S. aureus tau also stimulates PolC, although they do not form as stabile a complex as E. coli polymerase III.tau. We demonstrate that the extreme C-terminal residues of PolC bind to and function with beta clamps from different bacteria. Hence, this polymerase-clamp interaction is highly conserved. Additionally, the S. aureus delta wrench of the clamp loader binds to E. coli beta. The S. aureus clamp loader is even capable of loading E. coli and Streptococcus pyogenes beta clamps onto DNA. Interestingly, S. aureus PolC lacks functionality with heterologous beta clamps when they are loaded onto DNA by the S. aureus clamp loader, suggesting that the S. aureus clamp loader may have difficulty ejecting from heterologous clamps. Nevertheless, these overall findings underscore the conservation in structure and function of Gram-positive and Gram-negative replicases despite >1 billion years of evolutionary distance between them.  相似文献   

8.
Replication and related processes in eukaryotic cells require replication factor C (RFC) to load a molecular clamp for DNA polymerase in an ATP-driven process, involving multiple molecular interactions. The detailed understanding of this mechanism is hindered by the lack of data regarding structure, mutual arrangement, and dynamics of the players involved. In this study, we analyzed interactions that take place during loading onto DNA of either the PCNA clamp or the Rad9-Rad1-Hus1 checkpoint complex, using computationally derived molecular models. Combining the modeled structures for each RFC subunit with known structural, biochemical, and genetic data, we propose detailed models of how two of the RFC subunits, RFC1 and RFC3, interact with the C-terminal regions of PCNA. RFC1 is predicted to bind PCNA similarly to the p21-PCNA interaction, while the RFC3-PCNA binding is proposed to be similar to the E. coli delta-beta interaction. Additional sequence and structure analysis, supported by experimental data, suggests that RFC5 might be the third clamp loader subunit to bind the equivalent PCNA region. We discuss functional implications stemming from the proposed model of the RFC1-PCNA interaction and compare putative clamp-interacting regions in RFC1 and its paralogs, Rad17 and Ctf18. Based on the individual intermolecular interactions, we propose RFC and PCNA arrangement that places three RFC subunits in association with each of the three C-terminal regions in PCNA. The two other RFC subunits are positioned at the two PCNA interfaces, with the third PCNA interface left unobstructed. In addition, we map interactions at the level of individual subunits between the alternative clamp loader/clamp system, Rad17-RFC(2-5)/Rad9-Rad1-Hus1. The proposed models of interaction between two clamp/clamp loader pairs provide both structural framework for interpretation of existing experimental data and a number of specific findings that can be subjected to direct experimental testing.  相似文献   

9.
Li F  Liu Q  Chen YY  Yu ZN  Zhang ZP  Zhou YF  Deng JY  Bi LJ  Zhang XE 《Mutation research》2008,637(1-2):101-110
It has been hypothesized that DNA mismatch repair (MMR) is coupled with DNA replication; however, the involvement of DNA polymerase III subunits in bacterial DNA MMR has not been clearly elucidated. In an effort to better understand the relationship between these 2 systems, the potential interactions between the Escherichia coli MMR protein and the clamp loader subunits of E. coli DNA polymerase III were analyzed by far western blotting and then confirmed and characterized by surface plasmon resonance (SPR) imaging. The results showed that the MMR key protein MutL could directly interact with both the individual subunits delta, delta', and gamma and the complex of these subunits (clamp loader). Kinetic parameters revealed that the interactions are strong and stable, suggesting that MutL might be involved in the recruitment of the clamp loader during the resynthesis step in MMR. The interactions between MutL, the delta and gamma subunits, and the clamp loader were observed to be modulated by ATP. Deletion analysis demonstrated that both the N-terminal residues (1-293) and C-terminal residues (556-613) of MutL are required for interacting with the subunits delta and delta'. Based on these findings and the available information, the network of interactions between the MMR components and the DNA polymerase III subunits was established; this network provides strong evidence to support the notion that DNA replication and MMR are highly associated with each other.  相似文献   

10.
The internal workings of a DNA polymerase clamp-loading machine.   总被引:14,自引:2,他引:12       下载免费PDF全文
Replicative DNA polymerases are multiprotein machines that are tethered to DNA during chain extension by sliding clamp proteins. The clamps are designed to encircle DNA completely, and they are manipulated rapidly onto DNA by the ATP-dependent activity of a clamp loader. We outline the detailed mechanism of gamma complex, a five-protein clamp loader that is part of the Escherichia coli replicase, DNA polymerase III holoenzyme. The gamma complex uses ATP to open the beta clamp and assemble it onto DNA. Surprisingly, ATP is not needed for gamma complex to crack open the beta clamp. The function of ATP is to regulate the activity of one subunit, delta, which opens the clamp simply by binding to it. The delta' subunit acts as a modulator of the interaction between delta and beta. On binding ATP, the gamma complex is activated such that the delta' subunit permits delta to bind beta and crack open the ring at one interface. The clamp loader-open clamp protein complex is now ready for an encounter with primed DNA to complete assembly of the clamp around DNA. Interaction with DNA stimulates ATP hydrolysis which ejects the gamma complex from DNA, leaving the ring to close around the duplex.  相似文献   

11.
Crystal structures of an Escherichia coli clamp loader have provided insight into the mechanism by which this molecular machine assembles ring-shaped sliding clamps onto DNA. The contributions made to the clamp loading reaction by two subunits, chi and psi, which are not present in the crystal structures, were determined by measuring the activities of three forms of the clamp loader, gamma(3)deltadelta', gamma(3)deltadelta'psi, and gamma(3)deltadelta'psichi. The psi subunit is important for stabilizing an ATP-induced conformational state with high affinity for DNA, whereas the chi subunit does not contribute directly to clamp loading in our assays lacking single-stranded DNA-binding protein. The psi subunit also increases the affinity of the clamp loader for the clamp in assays in which ATPgammaS is substituted for ATP. Interestingly, the affinity of the gamma(3)deltadelta' complex for beta is no greater in the presence than in the absence of ATPgammaS. A role for psi in stabilizing or promoting ATP- and ATPgammaS-induced conformational changes may explain why large conformational differences were not seen in gamma(3)deltadelta' structures with and without bound ATPgammaS. The beta clamp partially compensates for the activity of psi when this subunit is not present and possibly serves as a scaffold on which the clamp loader adopts the appropriate conformation for DNA binding and clamp loading. Results from our work and others suggest that the psi subunit may introduce a temporal order to the clamp loading reaction in which clamp binding precedes DNA binding.  相似文献   

12.
In Escherichia coli, the circular beta sliding clamp facilitates processive DNA replication by tethering the polymerase to primer-template DNA. When synthesis is complete, polymerase dissociates from beta and DNA and cycles to a new start site, a primed template loaded with beta. DNA polymerase cycles frequently during lagging strand replication while synthesizing 1-2-kilobase Okazaki fragments. The clamps left behind remain stable on DNA (t(12) approximately 115 min) and must be removed rapidly for reuse at numerous primed sites on the lagging strand. Here we show that delta, a single subunit of DNA polymerase III holoenzyme, opens beta and slips it off DNA (k(unloading) = 0.011 s(-)(1)) at a rate similar to that of the multisubunit gamma complex clamp loader by itself (0.015 s(-)(1)) or within polymerase (pol) III* (0.0065 s(-)(1)). Moreover, unlike gamma complex and pol III*, delta does not require ATP to catalyze clamp unloading. Quantitation of gamma complex subunits (gamma, delta, delta', chi, psi) in E. coli cells reveals an excess of delta, free from gamma complex and pol III*. Since pol III* and gamma complex occur in much lower quantities and perform several DNA metabolic functions in replication and repair, the delta subunit probably aids beta clamp recycling during DNA replication.  相似文献   

13.
In eukaryotic DNA replication, replication factor-C (RFC) acts as the clamp loader, which correctly installs the sliding clamp onto DNA strands at replication forks. The eukaryotic RFC is a complex consisting of one large and four small subunits. We have determined the crystal structure of the clamp loader small subunit (RFCS) from Pyrococcus furiosus. The six subunits, of which four bind ADP in their canonical nucleotide binding clefts, assemble into a dimer of semicircular trimers. The crescent-like architecture of each subunit formed by the three domains resembles that of the delta' subunit of the E. coli clamp loader. The trimeric architecture of archaeal RFCS, with its mobile N-terminal domains, involves intersubunit interactions that may be conserved in eukaryotic functional complexes.  相似文献   

14.
The Escherichia coli DNA polymerase III gamma complex clamp loader assembles the ring-shaped beta sliding clamp onto DNA. The core polymerase is tethered to the template by beta, enabling processive replication of the genome. Here we investigate the DNA substrate specificity of the clamp-loading reaction by measuring the pre-steady-state kinetics of DNA binding and ATP hydrolysis using elongation-proficient and deficient primer/template DNA. The ATP-bound clamp loader binds both elongation-proficient and deficient DNA substrates either in the presence or absence of beta. However, elongation-proficient DNA preferentially triggers gamma complex to release beta onto DNA with concomitant hydrolysis of ATP. Binding to elongation-proficient DNA converts the gamma complex from a high affinity ATP-bound state to an ADP-bound state having a 10(5)-fold lower affinity for DNA. Steady-state binding assays are misleading, suggesting that gamma complex binds much more avidly to non-extendable primer/template DNA because recycling to the high affinity binding state is rate-limiting. Pre-steady-state rotational anisotropy data reveal a dynamic association-dissociation of gamma complex with extendable primer/templates leading to the diametrically opposite conclusion. The strongly favored dynamic recognition of extendable DNA does not require the presence of beta. Thus, the gamma complex uses ATP binding and hydrolysis as a mechanism for modulating its interaction with DNA in which the ATP-bound form binds with high affinity to DNA but elongation-proficient DNA substrates preferentially trigger hydrolysis of ATP and conversion to a low affinity state.  相似文献   

15.
Sliding clamps are loaded onto DNA by ATP-dependent clamp loader complexes. A recent crystal structure of a clamp loader-clamp complex suggested an unexpected mechanism for DNA recognition, in which the ATPase subunits of the loader spiral around primed DNA. We report the results of fluorescence-based assays that probe the mechanism of the Escherichia coli clamp loader and show that conserved residues clustered within the inner surface of the modeled clamp loader spiral are critical for DNA recognition, DNA-dependent ATPase activity and clamp release. Duplex DNA with a 5'-overhang single-stranded region (corresponding to correctly primed DNA) stimulates clamp release, as does blunt-ended duplex DNA, whereas duplex DNA with a 3' overhang and single-stranded DNA are ineffective. These results provide evidence for the recognition of DNA within an inner chamber formed by the spiral organization of the ATPase domains of the clamp loader.  相似文献   

16.
The beta sliding clamp encircles DNA and enables processive replication of the Escherichia coli genome by DNA polymerase III holoenzyme. The clamp loader, gamma complex, assembles beta around DNA in an ATP-fueled reaction. Previous studies have shown that gamma complex opens the beta ring and also interacts with DNA on binding ATP. Here, a rapid kinetic analysis demonstrates that gamma complex hydrolyzes two ATP molecules sequentially when placing beta around DNA. The first ATP is hydrolyzed fast, at 25-30 s(-1), while the second ATP hydrolysis is limited to the steady-state rate of 2 s(-1). This step-wise reaction depends on both primed DNA and beta. DNA alone promotes rapid hydrolysis of two ATP molecules, while beta alone permits hydrolysis of only one ATP. These results suggest that beta inserts a slow step between the two ATP hydrolysis events in clamp assembly, during which the clamp loader may perform work on the clamp. Moreover, one ATP hydrolysis is sufficient for release of beta from the gamma complex. This implies that DNA-dependent hydrolysis of the other ATP is coupled to a separate function, perhaps involving work on DNA. A model is presented in which sequential ATP hydrolysis drives distinct events in the clamp-assembly pathway. We also discuss underlying principles of this step-wise mechanism that may apply to the workings of other ATP-fueled biological machines.  相似文献   

17.
Escherichia coli DNA polymerase III holoenzyme contains 10 different subunits which assort into three functional components: a core catalytic unit containing DNA polymerase activity, the beta sliding clamp that encircles DNA for processive replication, and a multisubunit clamp loader apparatus called gamma complex that uses ATP to assemble the beta clamp onto DNA. We examine here the function of the psi subunit of the gamma complex clamp loader. Omission of psi from the holoenzyme prevents contact with single-stranded DNA-binding protein (SSB) and lowers the efficiency of clamp loading and chain elongation under conditions of elevated salt. We also show that the product of a classic point mutant of SSB, SSB-113, lacks strong affinity for psi and is defective in promoting clamp loading and processive replication at elevated ionic strength. SSB-113 carries a single amino acid replacement at the penultimate residue of the C-terminus, indicating the C-terminus as a site of interaction with psi. Indeed, a peptide of the 15 C-terminal residues of SSB is sufficient to bind to psi. These results establish a role for the psi subunit in contacting SSB, thus enhancing the clamp loading and processivity of synthesis of the holoenzyme, presumably by helping to localize the holoenzyme to sites of SSB-coated ssDNA.  相似文献   

18.
The Escherichia coli chromosomal replicase, DNA polymerase III holoenzyme, is highly processive during DNA synthesis. Underlying high processivity is a ring-shaped protein, the beta clamp, that encircles DNA and slides along it, thereby tethering the enzyme to the template. The beta clamp is assembled onto DNA by the multiprotein gamma complex clamp loader that opens and closes the beta ring around DNA in an ATP-dependent manner. This study examines the DNA structure required for clamp loading action. We found that the gamma complex assembles beta onto supercoiled DNA (replicative form I), but only at very low ionic strength, where regions of unwound DNA may exist in the duplex. Consistent with this, the gamma complex does not assemble beta onto relaxed closed circular DNA even at low ionic strength. Hence, a 3'-end is not required for clamp loading, but a single-stranded DNA (ssDNA)/double-stranded DNA (dsDNA) junction can be utilized as a substrate, a result confirmed using synthetic oligonucleotides that form forked ssDNA/dsDNA junctions on M13 ssDNA. On a flush primed template, the gamma complex exhibits polarity; it acts specifically at the 3'-ssDNA/dsDNA junction to assemble beta onto the DNA. The gamma complex can assemble beta onto a primed site as short as 10 nucleotides, corresponding to the width of the beta ring. However, a protein block placed closer than 14 base pairs (bp) upstream from the primer 3' terminus prevents the clamp loading reaction, indicating that the gamma complex and its associated beta clamp interact with approximately 14-16 bp at a ssDNA/dsDNA junction during the clamp loading operation. A protein block positioned closer than 20-22 bp from the 3' terminus prevents use of the clamp by the polymerase in chain elongation, indicating that the polymerase has an even greater spatial requirement than the gamma complex on the duplex portion of the primed site for function with beta. Interestingly, DNA secondary structure elements placed near the 3' terminus impose similar steric limits on the gamma complex and polymerase action with beta. The possible biological significance of these structural constraints is discussed.  相似文献   

19.
This report outlines the protein requirements and subunit organization of the DNA replication apparatus of Streptococcus pyogenes, a Gram-positive organism. Five proteins coordinate their actions to achieve rapid and processive DNA synthesis. These proteins are: the PolC DNA polymerase, tau, delta, delta', and beta. S. pyogenes dnaX encodes only the full-length tau, unlike the Escherichia coli system in which dnaX encodes two proteins, tau and gamma. The S. pyogenes tau binds PolC, but the interaction is not as firm as the corresponding interaction in E. coli, underlying the inability to purify a PolC holoenzyme from Gram-positive cells. The tau also binds the delta and delta' subunits to form a taudeltadelta' "clamp loader." PolC can assemble with taudeltadelta' to form a PolC.taudeltadelta' complex. After PolC.taudeltadelta' clamps beta to a primed site, it extends DNA 700 nucleotides/second in a highly processive fashion. Gram-positive cells contain a second DNA polymerase, encoded by dnaE, that has homology to the E. coli alpha subunit of E. coli DNA polymerase III. We show here that the S. pyogenes DnaE polymerase also functions with the beta clamp.  相似文献   

20.
The beta sliding clamp encircles DNA and tethers DNA polymerase III holoenzyme to the template for high processivity. The clamp loader, gamma complex (gamma 3 delta delta'chi psi), assembles beta around DNA in an ATP-fueled reaction. The delta subunit of the clamp loader opens the beta ring and is referred to as the wrench; ATP modulates contact between beta and delta among other functions. Crystal structures of delta.beta and the gamma 3 delta delta' minimal clamp loader make predictions of the clamp loader mechanism, which are tested in this report by mutagenesis. The delta wrench contacts beta at two sites. One site is at the beta dimer interface, where delta appears to distort the interface by via a steric clash between a helix on delta and a loop near the beta interface. The energy for this steric clash is thought to derive from the other site of interaction, in which delta binds to a hydrophobic pocket in beta. The current study demonstrates that rather than a simple steric clash with beta, delta specifically contacts beta at this site, but not through amino acid side chains, and thus is presumably mediated by peptide backbone atoms. The results also imply that the interaction of delta at the hydrophobic site on beta contributes to destabilization of the beta dimer interface rather than acting solely as a grip of delta on beta. Within the gamma complex, delta' is proposed to prevent delta from binding to beta in the absence of ATP. This report demonstrates that one or more gamma subunits also contribute to this role. The results also indicate that delta' acts as a backboard upon which the gamma subunits push to attain the ATP induced change needed for the delta wrench to bind and open the beta ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号