首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B N Rao  C A Bush 《Biopolymers》1987,26(8):1227-1244
The antifreeze glycopeptide (AFGP-8) from polar cod, B. saida, is a 14-amino acid polypeptide having alternating glycotripeptide sequences of Ala-[Gal(β1 → 3)GalNAc(β1 → O)]-Thr-Pro and Ala-[Gal(β1 → 3)GalNAc(β1 → O)]-Thr-Ala, with alanyl residues at amino and carboxy terminals. Conformational studies of AFGP-8 have been carried out by 1H-nmr and empirical energy calculations to investigate the difference in its antifreeze behavior from that of the more active high-molecular weight AFGP 1-4 of P. borchgrevinki. The 1H-nmr spectra, including the resonances of the exchangeable amide protons, were assigned by two-dimensional correlated spectroscopy (COSY), one-dimensional difference decoupling, and nuclear Overhauser effect (NOE) measurements. For the four threonyl residues, the amide proton coupling constants and the small coupling constants between Hα and Hβ indicate similar conformations, despite significant chemical shift differences. The strong NOE between the α protons and the amide protons of the residue following together with large temperature coefficients of chemical shifts, indicate an extended conformation not consisting of α-helix, turns or bends. Energy computations indicate several low-energy conformations consistent with the observed coupling constants for ?. Among these, a left-handed helical conformation with three repeating residues per turn has been proposed, which is in accordance with the observed NOE between the methyl group of the α-GalNAc and Ala Hβs. While the observed Overhauser effects in the threonyl side chain suggest a certain amount of conformational averaging, the effect involving the acetmido methyl of α-GalNAc and Hβs of Ala indicate that it as is a major conformer. In view of the close similarity between the conformations of AFGP-8 and the more active antifreeze polymer, AFGP 1-4, we propose that the difference in their activities is due to the length of the regular repeating structure with glycosylation at every third amino acid residue, and not due to any fundamental difference in their conformations.  相似文献   

2.
2D 1H-NMR spectra of des-Gly9-[Arg8]vasopressin in dimethylsulfoxide have been taken and the 1H resonances have been assigned. The coupling constants and amide proton temperature coefficients (delta delta/delta T) have been measured and the NOE cross-peaks in the NOESY spectrum have been analyzed. The most essential information on the spatial structure of des-Gly9-[Arg8]vasopressin is extracted from the low delta delta/delta T value for Asn5 amide proton and from the NOE between the Cys1 and Cys6 alpha-protons. A diminished accessibility of the Asn5 NH proton for the solvent is ascribed to the presence of a beta-turn in the fragment 2-5. The distance between the Cys1 and Cys6 C alpha H protons seems to be less than 4 A. These constraints were taken into account in the conformational analysis of the title peptide. The derived set of the low-energy backbone conformations was analyzed against the background of the all available NMR data. The most probable conformation of the cyclic moiety in des-Gly9-[Arg8]vasopressin was found to be the type III beta-turn. The corner positions are occupied by the residues 3, 4, while the residues 1-2 and 5-6 are at the extended sites. Some NMR data indicate that this structure is in a dynamic equilibrium with other minor conformers.  相似文献   

3.
The type II and type III collagen α-1 chain N-telopeptides are a nonadecamer with the sequence pEMAGGFDEKAGGAQLGVMQ-NH2 and a tetradecamer with the sequence pEYEAYDVKSGVAGG-NH2, respectively. Their conformations have been studied in CD3OH/H2O (60/40) solution by means of two-dimensional proton nmr spectroscopy. Based on double quantum filtered correlation spectroscopy, total correlation spectroscopy, rotating frame nuclear Overhauser enhancement (ROE) spectroscopy, and nuclear Over-hauser enhancement (NOE) spectroscopy experiments, all resonances were assigned and the conformational properties were analyzed in terms of vicinal NH-Hα coupling constants, sequential and medium-range NOEs (ROEs), and amide proton temperature coefficients. The NOE distance constraints as well as dihedral constraints based on the vicinal NH-Hα coupling constants were used as input parameters for restrained molecular mechanics, consisting of restrained molecular dynamics and restrained energy minimization calculations. The type II N-telopeptide's conformation is dominated by a fused βγ-turn between Phe6 and Ala10, stabilized by three hydrogen bonds and a salt bridge between the side-chain end groups of Glu8 and Lys9. The first 5 amino acids are extended with a much higher degree of conformational freedom. The 2 Gly residues following the turns were found to be highly flexible (hinge-like), leaving the spatial position of the second half of the molecule relative to the fused βγ-turn undefined. In the type III telopeptide, a series of sequential NH(i)-NH(i + 1) ROEs were observed between the amino acids Tyr2 and Ser9, indicating that a fraction of the conformational space is helical. However, the absence of medium-range ROEs and the lack of regularity of the effects associated with α-helices suggest the presence of a nascent rather than a complete helix. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
With its simple glycotripeptide repeating structure the antifreeze glycoprotein of polar fish may be an especially simple conformational mode for mucin glycoproteins with similar but more complex structures. The fully assigned proton n.m.r. spectrum confirms the anomeric configurations of the hexapyranosidic sugars of the side chains and the coupling constants of the alpha GalNAc and the beta Gal residues show both to be in the expected 4C1 chair conformation. The assignment of a single resonance for each proton of the (Ala-Thr-Ala)n repeat unit coupled with the observation of long range nuclear Overhauser effects (n.O.e.) implies a three-fold repeating conformation. The resonances of the two alanines are distinct and can be assigned to their correct positions in the peptide sequence by n.O.e. observed at the amide proton resonances on saturation of the alpha proton signals. The amide proton coupling constants of all three peptide residues are similar and imply a limited range of peptide backbone torsion angles, phi CN. The large n.O.e. which has been observed between the amide proton and the alpha proton of the residue preceding it in the sequence implies large positive values for the peptide dihedral angle, psi CC. Limits are placed on possible values of side chain dihedral angles by the observation of the coupling constant between the alpha and beta protons of the threonyl residue. The observation of n.O.e. between the anomeric proton of GalNAc and the threonyl side chain protons gives information on the conformation of the alpha glycosidic linkage between the disaccharide and the peptide. n.O.e. observed between the protons of the beta glycosidic linkage indicates the conformation of the disaccharide and the large amide proton coupling constant of the GalNAc residue shows a trans proton relationship. The spectroscopically derived data have been combined with conformational energy calculations to give a conformational model for antifreeze glycoprotein in which the hydrophobic surfaces of the disaccharide side chains are wrapped closely against a three-fold left handed helical peptide backbone. The hydrophilic sides of the disaccharides are aligned so that they may bind to the ice crystal face, which is perpendicular to the fast growth axis inhibiting normal crystal growth.  相似文献   

5.
P Cagas  C A Bush 《Biopolymers》1992,32(3):277-292
To probe differences in conformation of the type 1 and type 2 linkages in blood group oligosaccharides, two-dimensional nuclear Overhauser effect spectroscopy (2D-NOESY) and 1H T1 data were obtained for two blood group A oligosaccharide alditols containing the type 1 and type 2 linkage. The NOE data were interpreted using a complete relaxation matrix approach. Simulations of NOE and T1 values were made using disaccharide and tetrasaccharide model conformations generated by a systemic variation of the glycosidic dihedral angles phi and psi. NOEs from the amide protons of GlcNAc and GalNAc in the type 1 pentasaccharide alditol were obtained, and simulated in a manner similar to those from carbon-bound protons. In addition to providing data for determining the conformation of the type 1 linkage from amide proton NOEs of GlcNAc and GalNAc to neighboring residues, amide proton NOEs also yield information on the orientation of the acetamido side chains. The amide NOE data indicated subtle differences in the orientation of the amide side chain of GlcNAc among the A type 1 pentasaccharide alditol and two previously studied blood group oligosaccharides, lacto-N-difucohexaose 1 and lacto-N-fucopentaose 1. From the NOE and 1H T1 data, and from simple rigid geometry energy calculations, it is concluded that the type 1 and type 2 linkages in the oligosaccharides studied have different conformations and that these conformations are relatively rigid in solution.  相似文献   

6.
High resolution nuclear magnetic resonance spectra were recorded in a chloroform solution of six Lewis-active or Lewis-like glycosphingolipids in permethylated and permethylated-reduced (LiAlH4) form. The samples were selected to cover the presently known structural variants of α-fucose linked to galactose and N-acetylglucosamine. Fucα1 → 2Gal, Fucα1 → 3GlcNAc, and Fucα1 → 4GlcNAc gave characteristic and well-separated anomeric resonances. Furthermore, upon reduction there was a strong deshielding effect on Fucα1 → 3GlcNAc and Galβ1 → 3GlcNAc (linkage vicinal to reduced amide), which makes it possible to differentiate type 1 (Galβ1 → 3GlcNAc) and type 2 (Galβ1 → 4GlcNAc) saccharide chains. This improved method of nuclear magnetic resonance spectroscopy is discussed in relation to sequence analysis by mass spectrometry, two microscale structural methods using the same type of derivatives and needing no degradations before analysis.  相似文献   

7.
Proton nuclear magnetic resonance parameters are reported for DMSO-d6 solutions of the eosinophil chemotactic tetrapeptides, Val1-Gly2-Ser3-Glu4 and Ala1-Gly2-Ser3-Glu4, as well as three analogues of the Val1 tetrapeptide, D-Val1, Ala2 and Ala3. The synthesis of Val-(S)-[alpha-2 H1] Gly-Ala-Glu, in which the glycine has been stereospecifically deuterated in the H alpha 3 position, has allowed the assignment of the 1H resonances belonging to individual H alpha 2 and H alpha 3 glycine methylene protons. Simulation of the glycine ABX spin system yields two vicinal coupling constants which are consistent with a highly preferred conformation about the glycine HN-C alpha bond. The chemical shifts, coupling constants, temperature coefficients of amide proton chemical shifts and calculated side chain rotamer populations are reported for all peptides. The coupling constant analysis and temperature coefficients of amide proton chemical shifts together suggest that a type I beta-turn conformation is preferred by the Ala3 analogue. The 1H n.m.r. parameters of the other peptides suggest that these can also adopt a beta-turn conformation in DMSO. There are, however, considerable differences in the extent of conformational averaging undergone by the various peptides.  相似文献   

8.
Proton nmr parameters are reported for DMSO-d6 solutions of two receptor-selective substance P analogues: Ac[Arg6,Pro9]SP6-11, which is selective for the NK-1 (SP-P) receptor and [pGlu6,N-MePhe8]SP6-11, which selectively activates the NK-3 (SP-N) receptor. Full peak assignments of both analogues were obtained by COSY experiments. The chemical shifts, coupling constants, and temperature coefficients of amide proton chemical shifts as well as NOESY effects and calculated side-chain rotamer populations of Phe side chains are reported for both peptides. Analysis of coupling constants and temperature coefficients together with the nuclear Overhauser enhancement spectroscopy effects suggest that Ac[Arg6,Pro9]SP6-11 has a trans configuration about the Phe8-Pro9 amide bond and the preferred conformation of this analogue has a type I beta-turn. The nmr data for [pGlu6,N-MePhe8]SP6-11 suggest that this peptide exists as a mixture of cis-trans isomers in which the cis isomer can preferably adopt a type VI beta-turn conformation, and the trans isomer can adopt a gamma-turn conformation. There are indications that the two last turns are stabilized by a hydrogen bond between the syn carboxamide proton and the pGlu ring carbonyl.  相似文献   

9.
Abstract

The type II and type III collagen α-1 chain C-telopeptides are a 27 mer with the sequence NAc- GPGIDMSAFAGLGPREKGPDPLQYMRA and a 22mer, NAc-GGGVASLGAGEKGPVG- YGYEYR, respectively. Their conformations have been studied in CD3OH/H2O (80/20) solution by means of two-dimensional proton NMR and CD spectroscopy. Based on TOCSY and NOESY experiments, all resonances were assigned and the conformational properties were analyzed in terms of vicinal NH-Hα coupling constants, sequential and medium range NOEs and amide proton temperature coefficients.

The conformation of the type II C-telopeptide is essentially extended. Evidence from CD spectroscopy suggests that a very minor proportion of the peptide might be helical (ca. 8%), but the NMR data show no evidence for a non-linear structure. The observation of reduced amide proton temperature dependence coefficients in certain sections of the molecule can, in view of the absence of any other supporting evidence, only be interpreted in terms of local shielding from solvent for sterical reasons (large hydrophobic side-chains).

The conformation of the type III C-telopeptide is mostly extended except for a β-turn ranging from Gly8 to Glu11, which is stabilized by a hydrogen-bond between NH of Glu11 and the carbonyl group of Gly8. The low temperature coefficient of NH(Glu11) and, in particular, the observation of a medium range NOE between Hα (A9) and NH(E11) corroborate the existence of a β-turn in this region. Although spectral overlap prevents a precise conclusion with regard to the type of β-turn present, there is some evidence that it might be type II.  相似文献   

10.
The sterically acceptable structures of cyclo(2 delta----5)[D-Orn2, Pro5]- and cyclo(2 delta----5)[D-Orn2, Leu5]enkephalin (CE1 and CE2) consistent with NMR data including coupling constants, temperature dependencies of chemical shifts for amide protons and NOE values have been found by use of energy calculations in terms of rigid valence geometry and refined by the MM2 procedure. It has been shown that the major trans-isomer (with respect to Phe4-Pro5 bond) of CE1 in solution corresponds only to the FD*F*AA type of peptide backbone, and the minor cis-isomer of CE1 corresponds only to the FE*D*DF type. The less conformationally rigid CE2 analogue apparently exists in solution in the dynamic conformational equilibrium with preference of FD*C*AA type of the backbone structure. The obtained data on CE1 and CE2 space structures have been used for interpretating results of their biological testing.  相似文献   

11.
The molecular conformations of salmon calcitonin in aqueous solution have been investigated by exploiting the different influences of excitonic coupling on the amide I band profile in the isotropic and anisotropic Raman, FTIR, and vibrational circular dichroism spectra of a polypeptide. The N-terminal loop, caused by a disulfide bridge between cysteines at positions 1 and 7, was modeled by performing a conformational search by molecular mechanics calculations. The remaining part of the peptide chain was modeled as a mixture of three sequences containing different fractions of residues adopting poly-l-proline II (PPII), extended beta-strand, and alpha-helix-like conformations. This yielded an excellent reproduction of the experimentally observed amide I' band profiles. A comparison with recent data on the beta-amyloid fragment Abeta(1)(-)(28) revealed a lower PPII content and more conformational heterogeneity for calcitonin. Thus, our results underscore the notion that individual structural propensities of amino acid residues give rise to structural differences between the unfolded states of even long peptide chains, at variance with expectations based on a random or statistical coil model.  相似文献   

12.
The possible conformations of SMS 201-995, an active analogue of somastostatin, have been studied in dimethylsulfoxide solution by 500 MHz proton n.m.r. spectroscopy. The assignments have been made by use of 2D-correlated methods to detect long-range coupling connectivities in aromatic residues and between the alpha protons of consecutive residues. NOESY experiments enabled us to correlate amide and alpha protons of neighbouring amino acid residues, which indicate a less flexible situation than in water. Measurements of temperature coefficients of the amide protons, of NH-C alpha H coupling constants and NOE effects are in favour of one predominant conformation with a beta turn, of type II', involving amino acids Phe3 to Thr6.  相似文献   

13.
In the preceding paper, we found that ensembles of tripeptides with long or bulky chains can include up to 20% of various turns. Here, we determine the structural and thermodynamic characteristics of GxG peptides with short polar and/or ionizable central residues (D, N, C), whose conformational distributions exhibit higher than average percentage (>20%) of turn conformations. To probe the side‐chain conformations of these peptides, we determined the 3J(Hα,Hβ) coupling constants and derived the population of three rotamers with χ1‐angles of ?60°, 180° and 60°, which were correlated with residue propensities by DFT‐calculations. For protonated GDG, the rotamer distribution provides additional evidence for asx‐turns. A comparison of vibrational spectra and NMR coupling constants of protonated GDG, ionized GDG, and the protonated aspartic acid dipeptide revealed that side chain protonation increases the pPII content at the expense of turn populations. The charged terminal groups, however, have negligible influence on the conformational properties of the central residue. Like protonated GDG, cationic GCG samples asx‐turns to a significant extent. The temperature dependence of the UVCD spectra and 3J(HNHα) constants suggest that the turn populations of GDG and GNG are practically temperature‐independent, indicating enthalpic and entropic stabilization. The temperature‐independent J‐coupling and UVCD spectra of GNG require a three‐state model. Our results indicate that short side chains with hydrogen bonding capability in GxG segments of proteins may serve as hinge regions for establishing compact structures of unfolded proteins and peptides. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
U Schmitz  G Zon  T L James 《Biochemistry》1990,29(9):2357-2368
Exchangeable and nonexchangeable proton and phosphorus resonances (11.75 T) of [d(GTATATAC)]2 in aqueous solution were assigned by using proton two-dimensional nuclear Overhauser effect (2D NOE) spectra, homonuclear proton double-quantum-filtered COSY (2QF-COSY) spectra, proton spin-lattice relaxation time measurements, and 31P1H heteronuclear shift correlation spectra. Due to the large line widths, it was not possible to directly extract vicinal proton coupling constant values from any spectrum including ECOSY or 2QF-COSY. However, comparison of quantitative 2QF-COSY spectral simulations with experimental spectra enabled elucidation of coupling constants. The scope and limitations of this approach were explored by computation and by use of experimental data. It was found that proton line widths exhibit some variability from one residue to the next as well as from one proton to the next within a residue and the exact line width is critical to accurate evaluation of coupling constants. Experimental 2QF-COSY spectra were not consistent with a rigid deoxyribose conformation for any of the nucleotide residues. A classical two-state model, with rapid jumps between C2'-endo (pseudorotation angle P = 162 degrees) and C3'-endo (P = 9 degrees) conformations, was able to account for the spectral characteristics of terminal residue sugars: 60% C2'-endo and 40% C3'-endo. However, the 2QF-COSY cross-peaks from the -TATATA- core could be simulated only if the classical two-state model was altered such that the dominant conformer had a pseudorotation angle at 144 degrees instead of 162 degrees. In this case, the major conformer amounted to 80-85%. Alternatively, the spectral data were consistent with a three-state model in which C2'-endo and C3'-endo conformations had the largest and smallest populations, respectively, but a third conformer corresponding to C1'-exo (P = 126 degrees) was present, consistent with recent molecular dynamics calculations. This alternative yielded populations of 50% (P = 162 degrees), 35% (P = 126 degrees), and 15% (P = 9 degrees) for the -TATATA- sugars. The spectral results indicate little variation of sugar pucker between T and A. Small differences in cross-peak component intensities and characteristic spectral distortions, however, do suggest some unquantified variation. 31P1H heteronuclear chemical shift correlation spectra manifested alternating chemical shifts and coupling constants suggestive of phosphodiester backbone conformational differences between TA and AT junctions.  相似文献   

15.
The novel amide linked Angiotensin II potent cyclic analogue, c-[Sar1,Lys3,Glu5] ANG II 19 has been designed and synthesized in an attempt to test the aromatic ring clustering and the charge relay bioactive conformation we have recently suggested for ANG II. This constrained cyclic analogue was synthesized by connecting the Lys3 amino and Glu5 carboxyl side chain groups, and it was found to be potent in the rat uterus assay and in anesthetized rabbits. The central part of the molecule is fixed covalently in the conformation predicted according to the backbone bend conformational model proposed for Angiotensin II. The obtained results using a combination of 2D NMR, 1D NOE spectroscopy and molecular modeling revealed a similar Tyr4-Ile5-His6 bend, a His6-Pro7 trans configuration and a side chain aromatic ring cluster of the key aminoacids Tyr4, His6, Phe8 for c-[Sar1,Lys3,Glu5] ANG II as it has been found for ANG II (Matsoukas, J. H.; Hondrelis, J.; Keramida, M.; Mavromoustakos, T.; Markriyannis, A.; Yamdagni, R.; Wu, Q.; Moore, G. J. J. Biol. Chem. 1994, 269, 5303). Previous study of the conformational properties of the Angiotensin II type I antagonist [Hser(gamma-OMe)8] ANG II (Matsoukas, J. M.; Agelis, G.; Wahhab, A.; Hondrelis, J.; Panagiotopoulos. D.; Yamdagni, R.; Wu, Q.; Mavromoustakos, T.; Maia, H.; Ganter, R.; Moore, G. J. J. Med. Chem. 1995, 38, 4660) using 1-D NOE spectroscopy coupled with the present study of the same type of lead antagonist Sarilesin revealed that the Tyr4-Ile5-His6 bend, a conformational property found in Angiotensin II is not present in type I antagonists. The obtained results provide an important conformational difference between Angiotensin II agonists and type I antagonists. It appears that our synthetic attempt to further support our proposed model was successful and points out that the charge relay system and aromatic ring cluster are essential stereoelectronic features for Angiotensin II to exert its biological activity.  相似文献   

16.
The coupling of N-acyl-α-amino-acids with α-hydroxyacid-methyl amides results in depsipeptide molecules containing two chiral centers and one ester function inserted between two amide functions. Their conformational features have been investigated by IR spectroscopy, proton magnetic resonance, X-ray diffraction, and theoretical P.C.I.L.O. calculations. It is shown that most of these molecules are folded by an intramolecular 4 → 1 hydrogen bonding. Two folded conformations, similar to the well known β turn in peptides, are described, the stability of which depends on the configurational sequence in the investigated molecule. LL and LD species are folded in two different ways whereas LG sequences containing an achiral hydroxy-acid residue accommodate both of them. The presence of a N-terminal achiral amino acid noticeably decreases the folding ratio. The above conclusions are then compared with the conformational features of homologous tripeptide molecules.  相似文献   

17.
K H Mayo 《Biochemistry》1985,24(14):3783-3794
When H2O-exchanged, lyophilized mouse epidermal growth factor (mEGF) is dissolved in deuterium oxide at low pH (i.e., below approximately 6.0), 13 well-resolved, amide proton resonances are observed in the downfield region of an NMR spectrum (500 MHz). Under the conditions of these experiments, the lifetimes of these amide protons in exchange for deuterons of the deuterium oxide solvent suggest that these amide protons are hydrogen-bonded, backbone amide protons. Several of these amide proton resonances show splittings (i.e., JNH alpha-CH) of approximately 8-10 Hz, indicating that their associated amide protons are in some type of beta-structure. Selective nuclear Overhauser effect (NOE) experiments performed on all amide proton resonances strongly suggest that all 13 of these backbone amide protons are part of a single-tiered beta-sheet structural domain in mEGF. Correlation of 2D NMR correlated spectroscopy data, identifying scaler coupled protons, with NOE data, identifying protons close to the irradiated amide protons, allows tentative assignment of some resonances in the NOE difference spectra to specific amino acid residues. These data allow a partial structural model of the tiered beta-sheet domain in mEGF to be postulated.  相似文献   

18.
The conformational behaviour of pepstatin (Iva-Val-Val-Sta-Ala-Sta) and of two derived renin inhibitors, Boc-Phe-Nle-Sta-Ala-Sta-OMe, 1, and Boc-Phe-Nle-X-Ala-Sta-OMe, 2 (X = -NH-CH(iPr)-CHOH-CH2-CO-) was assessed in DMSO-d6 at various temperatures and in deuteriopyridine at -35 degrees. Complete assignment of almost all proton signals was achieved by 2D COSY, 2D NOESY and selective NOE experiments. The three compounds show similar extended conformations in both solvents, with the hydrophobic lateral chains extending away from the peptide backbone. In the case of pepstatin the solvated conformation is closely related to the structure found in the crystal of the pepstatin-Rhizopus chinensis complex. Strong NOE effects and precise determination of vicinal coupling constants show the lack of large structural differences between 1 and 2 at the level of the internal Sta or X residues, which are assumed to interact with the aspartyl residues of the renin active-site. This suggests that the 100-fold lower inhibitory potency of 2 is mainly due to unfavorable close contacts of the beta-branched residue X with constituent amino acids of the enzyme.  相似文献   

19.
M M Dhingra  A Saran 《Biopolymers》1989,28(7):1271-1285
The solution conformation of [D-Ala2]-leucine enkephalin in its zwitterionic form in DMSO-d6 has been monitored by one- and two-dimensional proton magnetic resonance spectroscopy at 500 MHz. The resonances from the labile amide protons and the nonlabile protons have been assigned from the shift correlated spectroscopy. The chemical shift of the amide and C-alpha protons are found to vary with temperature but in opposite directions, except the C-alpha proton of the terminal tyrosine residue. This behavior has been explained by the shifting of equilibrium between the zwitterionic and neutral forms of the [D-Ala2]-leucine enkephalin and probably conformational changes accompanying temperature variation. The low values of the temperature coefficients of leucine and glycine amide protons indicate that these protons are either intramolecularly hydrogen bonded or solvent shielded. The observation of sequential cross peaks in the nuclear Overhauser effect spectra obtained at various mixing times, tau m (200-900 ms), indicate an extended backbone, which does not corroborate with the presence of a folded structure, i.e., beta-bend type structure. The estimate of interproton distances in conjunction with the low values of temperature coefficients of the leucine and glycine amide protons and vicinal coupling constants 3JHN-C alpha H have been rationalized by the predominance of two gamma-bends in the backbone conformation of [D-Ala2]-leucine enkephalin. The gamma-bend around the D-Ala residue has phi = 80 degrees and psi = 270 degrees, while the one around Phe it has phi = 285 degrees and psi = 90 degrees.  相似文献   

20.
The rebinding of CO to cytochrome c oxidase from Paracoccus denitrificans in the fully reduced and in the half-reduced (mixed valence) form as a function of temperature was investigated using time-resolved rapid-scan FT-IR spectroscopy in the mid-IR (1200-2100 cm-1). For the fully reduced enzyme, rebinding was complete in approximately 2 s at 268 K and showed a biphasic reaction. At 84 K, nonreversible transfer of CO from heme a3 to CuB was observed. Both photolysis at 84 K and photolysis at 268 K result in FT-IR difference spectra which show similarities in the amide I, amide II, and heme modes. Both processes, however, differ in spectral features characteristic for amino acid side chain modes and may thus be indicative for the motional constraint of CO at low temperature. Rebinding of photodissociated CO for the mixed-valence enzyme at 268 K is also biphasic, but much slower as compared to the fully reduced enzyme. FT-IR difference spectra show band features similar to those for the fully reduced enzyme. Additional strong bands in the amide I and amide II range indicate local conformational changes induced by electron and coupled proton transfer. These signals disappear when the temperature is lowered to 84 K. At 268 K, a difference signal at 1746 cm-1 is observed which is shifted by 6 cm-1 to 1740 cm-1 in 2H2O. The absence of this signal for the mutant Glu 278 Gln allows assignment to the COOH stretching mode of Glu 278, and indicates changes of the conformation, proton position, or protonation of this residue upon electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号