首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Jia J  Arif A  Ray PS  Fox PL 《Molecular cell》2008,29(6):679-690
The heterotetrameric GAIT complex suppresses translation of selected mRNAs in interferon-gamma-activated monocytic cells. Specificity is dictated by glutamyl-prolyl tRNA synthetase (EPRS) binding to a 3'UTR element in target mRNAs. EPRS consists of two synthetase cores joined by a linker containing three WHEP domains of unknown function. Here we show the critical role of EPRS WHEP domains in targeting and regulating GAIT complex binding to RNA. The upstream WHEP pair directs high-affinity binding to GAIT element-bearing mRNAs, while the overlapping, downstream pair binds NSAP1, which inhibits mRNA binding. Interaction of EPRS with ribosomal protein L13a and GAPDH induces a conformational switch that rescues mRNA binding and restores translational control. Total reconstitution from purified components indicates that the four GAIT proteins are necessary and sufficient for self-assembly of a functional complex. Our results establish the essentiality of WHEP domains in the noncanonical function of EPRS in regulating inflammatory gene expression.  相似文献   

2.
3.
4.
5.
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr69-phosphorylated alone, Thr69- and Thr36/Thr45-phosphorylated, all these plus Ser64 phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr36/Thr45 phosphorylation alone was detected without Thr69 phosphorylation, and neither was Ser64 phosphorylation without Thr36/Thr45/Thr69 phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr69, Thr36/Thr45, and Ser64 residues, with 4E-BP1 remaining phosphorylated at Thr69 alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr36/Thr45 and Ser64, in addition to Thr69. Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr69 is phosphorylated first followed by Thr36/Thr45 phosphorylation, and Ser64 is phosphorylated last. Thr69 phosphorylation alone allows binding to eIF4E, and subsequent Thr36/Thr45 phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis.  相似文献   

6.
Gu W  Li M  Zhao WM  Fang NX  Bu S  Frazer IH  Zhao KN 《Nucleic acids research》2004,32(15):4448-4461
Exogenous transfer RNAs (tRNAs) favor translation of bovine papillomavirus 1 wild-type (wt) L1 mRNA in in vitro translation systems (Zhou et al. 1999, J. Virol., 73, 4972–4982). We, therefore, investigated whether papillomavirus (PV) wt L1 protein expression could be enhanced in eukaryotic cells following exogenous tRNA supplementation. Both Chinese hamster ovary (CHO) and Cos1 cells, transfected with PV1 wt L1 genes, effectively transcribed the genes but did not translate them. However, L1 protein translation was demonstrated following co-transfection with the L1 gene and a gene expressing tRNASer(CGA). Cell lines, stably transfected with a bovine papillomavirus 1 (BPV1) wt L1 expression construct, produced L1 protein after the transfection of the tRNASer(CGA) gene, but not following the transfection with basal vectors, suggesting that tRNASer(CGA) gene enhanced wt L1 translation as a result of endogenous tRNA alterations and phosphorylation of translation initiation factors elF4E and elF2α in the tRNASer(CGA) transfected L1 cell lines. The tRNASer(CGA) gene expression significantly reduced translation of L1 proteins expressed from codon-modified (HB) PV L1 genes utilizing mammalian preferred codons, but had variable effects on translation of green fluorescent proteins (GFPs) expressed from six serine GFP variants. The changes of tRNA pools appear to match the codon composition of PV wt and HB L1 genes and serine GFP variants to regulate translation of their mRNAs. These findings demonstrate for the first time in eukaryotic cells that translation of the target genes can be differentially influenced by the provision of a single tRNA expression construct.  相似文献   

7.
Chk1, one of the critical transducers in DNA damage/replication checkpoints, prevents entry into mitosis through inhibition of Cdk1 activity. However, it has remained unclear how this inhibition is cancelled at the G2/M transition. We reported recently that Chk1 is phosphorylated at Ser286 and Ser301 by Cdk1 during mitosis. Here, we show that mitotic Chk1 phosphorylation is accompanied by Chk1 translocation from the nucleus to the cytoplasm in prophase. This translocation advanced in accordance with prophase progression and was regulated by Crm-1-dependent nuclear export. Exogenous Chk1 mutated at Ser286 and Ser301 to Ala (S286A/S301A) was observed mainly in the nuclei of prophase cells, although such nuclear accumulation was hardly observed in wild-type Chk1. Induction of S286A/S301A resulted in the delay of mitotic entry. Biochemical analyses using immunoprecipitated cyclin B1-Cdk1 complexes revealed S286A/S301A expression to block the adequate activation of Cdk1. In support of this, S286A/S301A expression retained Wee1 at higher levels and Cdk1-induced phosphorylation of cyclin B1 and vimentin at lower levels. A kinase-dead version of S286A/S301A also localized predominantly in the nucleus but lost the ability to delay mitotic entry. These results indicate that Chk1 phosphorylation by Cdk1 participates in cytoplasmic sequestration of Chk1 activity, which releases Cdk1 inhibition in the nucleus and promotes mitotic entry.  相似文献   

8.
Ubc9 sumoylation regulates SUMO target discrimination   总被引:1,自引:0,他引:1  
  相似文献   

9.
The carboxyterminal domain of the epidermal growth factor receptor (EGFR) – a putative binding site for the ubiquitin ligase Cbl – is the site of serine phosphorylation events which are essential for ligand-dependent EGFR desensitization and degradation. Using a monoclonal antibody (aPS1113) which selectively recognizes the homologous phosphorylated domain in the ErbB2 oncoprotein, we show here that wild-type ErbB2 becomes Ser1113-phosphorylated following treatment of 3T3 cells with growth factors or tyrosine phosphatase inhibitors. In EGFR-overexpressing A431 cells, ligand-inducible aPS1113 immunoreactivity declines more rapidly than other detectable phosphorylation events and is followed by EGFR downregulation. Analysis of 65 ErbB2-expressing primary breast cancers reveals a highly significant relationship between Ser1113 phosphorylation and EGFR overexpression (p < 0.0001) as well as an association with poor prognosis (p = 0.005). We submit that ErbB2 Ser1113 phosphorylation status represents a novel and informative biomarker of cancer cell biology and tumor behavior.  相似文献   

10.
11.
Progression through mitosis requires the coordinated regulation of Cdk1 kinase activity. Activation of Cdk1 is a multistep process comprising binding of Cdk1 to cyclin B, relocation of cyclin-kinase complexes to the nucleus, activating phosphorylation of Cdk1 on Thr161 by the Cdk-activating kinase (CAK; Cdk7 in metazoans), and removal of inhibitory Thr14 and Tyr15 phosphorylations. This dephosphorylation is catalyzed by the dual specific Cdc25 phosphatases, which occur in three isoforms in mammalian cells, Cdc25A, -B, and -C. We find that expression of Cdc25A leads to an accelerated G2/M phase transition. In Cdc25A-overexpressing cells, Cdk1 exhibits high kinase activity despite being phosphorylated on Tyr15. In addition, Tyr15-phosphorylated Cdk1 binds more cyclin B in Cdc25A-overexpressing cells compared with control cells. Consistent with this observation, we demonstrate that in human transformed cells, Cdc25A and Cdc25B, but not Cdc25C phosphatases have an effect on timing and efficiency of cyclin-kinase complex formation. Overexpression of Cdc25A or Cdc25B promotes earlier assembly and activation of Cdk1-cyclin B complexes, whereas repression of these phosphatases by short hairpin RNA has a reverse effect, leading to a substantial decrease in amounts of cyclin B-bound Cdk1 in G2 and mitosis. Importantly, we find that Cdc25A overexpression leads to an activation of Cdk7 and increase in Thr161 phosphorylation of Cdk1. In conclusion, our data suggest that complex assembly and dephosphorylation of Cdk1 at G2/M is tightly coupled and regulated by Cdc25 phosphatases.  相似文献   

12.
Multiple eukaryotic ribosomal proteins (RPs) are co-opted for extraribosomal "moonlighting" activities, but paradoxically, RPs exhibit rapid turnover when not ribosome-bound. In one illustrative case of a functional extraribosomal RP, interferon (IFN)-γ induces ribosome release of L13a and assembly into the IFN-gamma-activated inhibitor of translation (GAIT) complex for translational control of a subset of?inflammation-related proteins. Here we show GAPDH functions as a chaperone, shielding newly released L13a from proteasomal degradation. However, GAPDH protective activity is lost following cell?treatment with oxidatively modified low density lipoprotein and IFN-γ. These agonists stimulate S-nitrosylation at Cys(247) of GAPDH, which fails to interact with L13a, causing proteasomal degradation of essentially the entire cell complement of L13a and defective translational control. Evolution of extraribosomal RP activities might require coevolution of?protective chaperones, and pathological disruption of either protein, or their interaction, presents an alternative mechanism of diseases due to RP defects, and targets for therapeutic intervention.  相似文献   

13.
Cdc25B is a key regulator of entry into mitosis, and its activity and localization are regulated by binding of the 14-3-3 dimer. There are three 14-3-3 binding sites on Cdc25B, with Ser323 being the highest affinity binding and is highly homologous to the Ser216 14-3-3 binding site on Cdc25C. Loss of 14-3-3 binding to Ser323 increases cyclin/Cdk substrate access to the catalytic site, thereby increasing its activity. It also affects the localization of Cdc25B. Thus, phosphorylation and 14-3-3 binding to this site is essential for down-regulating Cdc25B activity, blocking its mitosis promoting function. The question of how this inhibitory signal is relieved to allow Cdc25B activation and entry into mitosis is yet to be resolved. Here, we show that Ser323 phosphorylation is maintained into mitosis, but phosphorylation of Ser321 disrupts 14-3-3 binding to Ser323, mimicking the effect of inhibiting Ser323 phosphorylation on both Cdc25B activity and localization. The unphosphorylated Ser321 appears to have a role in stabilizing 14-3-3 binding to Ser323, and loss of the Ser hydroxyl group appears to be sufficient to significantly reduce 14-3-3 binding. A consequence of loss of 14-3-3 binding is dephosphorylation of Ser323. Ser321 is phosphorylated in mitosis by Cdk1. The mitotic phosphorylation of Ser321 acts to maintain full activation of Cdc25B by disrupting 14-3-3 binding to Ser323 and enhancing the dephosphorylation of Ser323 to block 14-3-3 binding to this site.  相似文献   

14.
Toxoplasma gondii motility is powered by the myosin XIV motor complex, which consists of the myosin XIV heavy chain (MyoA), the myosin light chain (MLC1), GAP45, and GAP50, the membrane anchor of the complex. MyoA, MLC1, and GAP45 are initially assembled into a soluble complex, which then associates with GAP50, an integral membrane protein of the parasite inner membrane complex. While all proteins in the myosin XIV motor complex are essential for parasite survival, the specific role of GAP45 remains unclear. We demonstrate here that final assembly of the motor complex is controlled by phosphorylation of GAP45. This protein is phosphorylated on multiple residues, and by using mass spectroscopy, we have identified two of these, Ser163 and Ser167. The importance of these phosphorylation events was determined by mutation of Ser163 and Ser167 to Glu and Ala residues to mimic phosphorylated and nonphosphorylated residues, respectively. Mutation of Ser163 and Ser167 to either Ala or Glu residues does not affect targeting of GAP45 to the inner membrane complex or its association with MyoA and MLC1. Mutation of Ser163 and Ser167 to Ala residues also does not affect assembly of the mutant GAP45 protein into the myosin motor complex. Mutation of Ser163 and Ser167 to Glu residues, however, prevents association of the MyoA-MLC1-GAP45 complex with GAP50. These observations indicate that phosphorylation of Ser163 and Ser167 in GAP45 controls the final step in assembly of the myosin XIV motor complex.  相似文献   

15.
16.
Pancreatic cancer is a deadly disease and has the worst prognosis among almost all cancers and is in dire need of new and improved therapeutic strategies. Conditioning of tumor cells with chemotherapeutic drug has been shown to enhance the anti-tumor effects of cancer vaccines and adoptive cell therapy. In this study, we investigated the immunomodulatory effects of pan-Bcl-2 inhibitor AT-101 on pancreatic cancer (PC) cell cytotoxicity by activated T cells (ATC). The effects of AT-101 on cytotoxicity, early apoptosis, and Granzyme B (GrzB) and IFN-γ signaling pathways were evaluated during EGFR bispecific antibody armed ATC (aATC)-mediated killing of L3.6pl and MiaPaCa-2 PC cells pre-sensitized with AT-101. We found that pretreatment of tumor cells with AT-101 enhanced susceptibility of L3.6pl and MiaPaCa-2 tumor cells to ATC and aATC-mediated cytotoxicity, which was in part mediated via enhanced release of cytolytic granule GrzB from ATC and aATC. AT-101-sensitized L3.6pl cells showed up-regulation of IFN-γ-mediated induction in the phosphorylation of Ser727-Stat1 (pS727-Stat1), and IFN-γ induced dephosphorylation of phospho-Tyr705-Stat3 (pY705-Stat3). Priming (conditioning) of PC cells with AT-101 can significantly enhance the anti-tumor activity of EGFRBi armed ATC through increased IFN-γ induced activation of pS727-Stat1 and inhibition of pY705-Stat3 phosphorylation, and resulting in increased ratio of pro-apoptotic to anti-apoptotic proteins. Our results verify enhanced cytotoxicity after a novel chemotherapy conditioning strategy against PC that warrants further in vivo and clinical investigations.  相似文献   

17.
Maize eukaryotic translation initiation factor 5A (ZmeIF5A) co-purifies with the catalytic α subunit of protein kinase CK2 and is phosphorylated by this enzyme. Phosphorylated ZmeIF5A was also identified after separation of maize leaf proteins by two-dimensional electrophoresis. Multiple sequence alignment of eIF5A proteins showed that in monocots, in contrast to other eukaryotes, there are two serine/threonine residues that could potentially be phosphorylated by CK2. To identify the phosphorylation site(s) of ZmeIF5A, the serine residues potentially phosphorylated by CK2 were mutated. ZmeIF5A and its mutated variants S2A and S4A were expressed in Escherichia coli and purified. Of these recombinant proteins, only ZmeIF5A-S2A was not phosphorylated by maize CK2. Also, Arabidopsis thaliana and Saccharomyces cerevisiae eIF5A-S2A mutants were not phosphorylated despite effective phosphorylation of wild-type variants. A newly developed method exploiting the specificity of thrombin cleavage was used to confirm that Ser2 in ZmeIF5A is indeed phosphorylated. To find a role of the Ser2 phosphorylation, ZmeIF5A and its variants mutated at Ser2 (S2A and S2D) were transiently expressed in maize protoplasts. The expressed fluorescence labeled proteins were visualized by confocal microscopy. Although wild-type ZmeIF5A and its S2A variant were distributed evenly between the nucleus and cytoplasm, the variant with Ser2 replaced by aspartic acid, which mimics a phosphorylated serine, was sequestered in the nucleus. These results suggests that phosphorylation of Ser2 plays a role in regulation of nucleocytoplasmic shuttling of eIF5A in plant cells.  相似文献   

18.
The diverse roles of protein kinase C-δ (PKCδ) in cellular growth, survival, and injury have been attributed to stimulus-specific differences in PKCδ signaling responses. PKCδ exerts membrane-delimited actions in cells activated by agonists that stimulate phosphoinositide hydrolysis. PKCδ is released from membranes as a Tyr313-phosphorylated enzyme that displays a high level of lipid-independent activity and altered substrate specificity during oxidative stress. This study identifies an interaction between PKCδ''s Tyr313-phosphorylated hinge region and its phosphotyrosine-binding C2 domain that controls PKCδ''s enzymology indirectly by decreasing phosphorylation in the kinase domain ATP-positioning loop at Ser359. We show that wild-type (WT) PKCδ displays a strong preference for substrates with serine as the phosphoacceptor residue at the active site when it harbors phosphomimetic or bulky substitutions at Ser359. In contrast, PKCδ-S359A displays lipid-independent activity toward substrates with either a serine or threonine as the phosphoacceptor residue. Additional studies in cardiomyocytes show that oxidative stress decreases Ser359 phosphorylation on native PKCδ and that PKCδ-S359A overexpression increases basal levels of phosphorylation on substrates with both phosphoacceptor site serine and threonine residues. Collectively, these studies identify a C2 domain-pTyr313 docking interaction that controls ATP-positioning loop phosphorylation as a novel, dynamically regulated, and physiologically relevant structural determinant of PKCδ catalytic activity.  相似文献   

19.
20.
Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson''s disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser111) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser111 of each of the Rabs, we demonstrate that Rab Ser111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser65. We further show mechanistically that phosphorylation at Ser111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson''s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号