首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
There are numerous examples of no-take marine reserves effectively conserving fish stocks within their boundaries. However, no-take reserves can be rendered ineffective and turned into ‘paper parks’ through poor compliance and weak enforcement of reserve regulations. Long-term monitoring is thus essential to assess the effectiveness of marine reserves in meeting conservation and management objectives. This study documents the present state of the 15-year old no-take zone (NTZ) of South El Ghargana within the Nabq Managed Resource Protected Area, South Sinai, Egyptian Red Sea. Previous studies credited willing compliance by the local fishing community for the increased abundances of targeted fish within the designated NTZ boundaries compared to adjacent fished or take-zones. We compared benthic habitat and fish abundance within the NTZ and the adjacent take sites open to fishing, but found no significant effect of the reserve. Instead, the strongest evidence was for a simple negative relationship between fishing pressure and distance from the closest fishing village. The abundance of targeted piscivorous fish increased significantly with increasing distance from the village, while herbivorous fish showed the opposite trend. This gradient was supported by a corresponding negative correlation between the amount of discarded fishing gear observed on the reef and increasing distance from the village. Discarded fishing gear within the NTZ suggested decreased compliance with the no-take regulations. Our findings indicate that due to non-compliance the no-take reserve is no longer functioning effectively, despite its apparent initial successes and instead a gradient of fishing pressure exists with distance from the nearest fishing community.  相似文献   

2.
Coral reef fishes differ in their intrinsic vulnerability to fishing and rates of population recovery after cessation of fishing. We reviewed life history-based predictions about the vulnerability of different groups of coral reef fish and examined the empirical evidence for different rates of population recovery inside no-take marine reserves to (1) determine if the empirical data agree with predictions about vulnerability and (2) show plausible scenarios of recovery within fully protected reserves and periodically-harvested fishery closures. In general, larger-bodied carnivorous reef fishes are predicted to be more vulnerable to fishing while smaller-bodied species lower in the food web (e.g., some herbivores) are predicted to be less vulnerable. However, this prediction does not always hold true because of the considerable diversity of life history strategies in reef fishes. Long-term trends in reef fish population recovery inside no-take reserves are consistent with broad predictions about vulnerability, suggesting that moderately to highly vulnerable species will require a significantly longer time (decades) to attain local carrying capacity than less vulnerable species. We recommend: (1) expanding age-based demographic studies of economically and ecologically important reef fishes to improve estimates of vulnerability; (2) long term (20–40 years), if not permanent, protection of no-take reserves to allow full population recovery and maximum biomass export; (3) strict compliance to no-take reserves to avoid considerable delays in recovery; (4) carefully controlling the timing and intensity of harvesting periodic closures to ensure long-term fishery benefits; (5) the use of periodically-harvested closures together with, rather than instead of, permanent no-take reserves.  相似文献   

3.
Many comparisons have been made between sanctuary (no-fishing) and fished areas, where fishing pressure is exerted by artisanal or commercial fishers, but few have examined the effect of recreational fishing on fish assemblages in coral reef habitats. In this study, we compared assemblages of targeted fish from coral reef habitats in sanctuary (no-fishing) and recreationally fished zones of a marine protected area (MPA). Surface visual census (SVC) transects were conducted two times, at three regions, to compare the composition of predatory fish assemblages and the abundance, biomass, and size of the most commonly targeted fish. Baited remote underwater video (BRUV) was used to make relative counts of fish between zones. We also measured benthic cover and rugosity, which may influence fish assemblages. Analysis of similarity (ANOSIM) revealed significant differences in the composition of fish families/genera targeted by fishers (Lethrinidae, Lutjanidae, Haemulidae, Serranidae, and the genus Choerodon of the family Labridae) in terms of biomass (P<0.01) and abundance (P<0.05). The most consistent trends were recorded for biomass and this was supported by clustering of replicates in nonmetric multidimensional scaling (nMDS) ordinations. Similarity percentages (SIMPER) analysis indicated that the family Lethrinidae accounted for 73% (as abundance), and up to 69% (as biomass), of the dissimilarity between zones. Three-factor ANOVA highlighted significantly greater biomass, size, and abundance of legal-sized lethrinids (the most targeted family in the region) in sanctuary zones, but no differences in other families/genera. Results of BRUV supported SVC with greater relative counts of lethrinids (P<0.01) in sanctuaries, but no significant differences for other families. Cover of Acropora coral and hard substrate differed between zones at some regions but differences were inconsistent. There were no significant differences in algal cover or rugosity between zones. Given the inconsistency in benthic cover, the similarity of rugosity between zones, the consistently greater biomass of lethrinids in sanctuaries, and the abundance of large lethrinids in sanctuaries, the cessation of fishing in sanctuary zones appears responsible for observed differences in the populations of these fish. These results demonstrate that recreational fishing pressure may be sufficient to deplete fish populations below that of adjacent protected areas and that the effect of recreational fishing in coral reef habitats may be greater than previously thought.  相似文献   

4.
Marine ecosystems are suffering severe depletion of apex predators worldwide; shark declines are principally due to conservative life-histories and fisheries overexploitation. On coral reefs, sharks are strongly interacting apex predators and play a key role in maintaining healthy reef ecosystems. Despite increasing fishing pressure, reef shark catches are rarely subject to specific limits, with management approaches typically depending upon no-take marine reserves to maintain populations. Here, we reveal that this approach is failing by documenting an ongoing collapse in two of the most abundant reef shark species on the Great Barrier Reef (Australia). We find an order of magnitude fewer sharks on fished reefs compared to no-entry management zones that encompass only 1% of reefs. No-take zones, which are more difficult to enforce than no-entry zones, offer almost no protection for shark populations. Population viability models of whitetip and gray reef sharks project ongoing steep declines in abundance of 7% and 17% per annum, respectively. These findings indicate that current management of no-take areas is inadequate for protecting reef sharks, even in one of the world's most-well-managed reef ecosystems. Further steps are urgently required for protecting this critical functional group from ecological extinction.  相似文献   

5.
Coral reef conservation strategies such as marine protected areas have met limited success in many developing countries. Some researchers attribute part of these shortcomings to inadequate attention to the social context of conserving marine resources. To gain insights into applying Western conservation theory more successfully in the socioeconomic context of developing countries, this study examines how long-enduring, customary reef closures appear to reflect local socioeconomic conditions in two Papua New Guinean communities. Attributes of the customary management (including size, shape, permanence, and gear restrictions) are examined in relation to prevailing socioeconomic conditions (including resource users’ ability to switch gears, fishing grounds, and occupations). Customary closures in the two communities appear to reflect local socioeconomic circumstances in three ways. First, in situations where people can readily switch between occupations, full closures are acceptable with periodic harvests to benefit from the closure. In comparison, communities with high dependence on the marine resources are more conducive to employing strategies that restrict certain gear types while still allowing others. Second, where there is multiple clan and family spatial ownership of resources, the communities have one closure per clan/family; one large no-take area would have disproportionate affect on those compared to the rest of the community. In contrast, communities that have joint ownership can establish one large closure as long as there are other areas available to harvest. Third, historical and trade relationships with neighboring communities can influence regulations by creating the need for occasional harvests to provide fish for feasts. This study further demonstrates the importance of understanding the socioeconomic context of factors such as community governance and levels of dependence for the conservation of marine resources.  相似文献   

6.
This study investigated body size to fecundity relationships of a reef fish species targeted by line fishing, and examines the potential benefits of increased batch fecundity in no-take reserves compared to fished areas around the Palm, Whitsunday and Keppel Island Groups, Great Barrier Reef, Australia. Lutjanus carponotatus batch fecundity increased with fork length in a non-linear relationship that was best described by a power function. Batch fecundity differed by more than 100-fold among individuals, with a range from 7,074 to 748,957 eggs in fish ranging from 184 to 305 mm fork length. Furthermore, egg diameter increased with fish size. Based on underwater visual census, the potential batch fecundity per unit area in all three island groups ranged from 1.0 to 4.2 times greater in the no-take reserves than in the fished areas between 2001 and 2004. In 2002, a mean 2.3-fold difference in biomass between no-take reserves and fished areas converted to a mean 2.5-fold difference in batch fecundity per unit area. Greater batch fecundity, longer spawning seasons and potentially greater larval survival due to larger egg size from bigger individuals might significantly enhance the potential benefits of no-take marine reserves on the Great Barrier Reef.  相似文献   

7.
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.  相似文献   

8.
The relationships between fish assemblages, their associated habitat, and degree of protection from fishing were evaluated over a broad spatial scale throughout the main Hawaiian islands. Most fish assemblage characteristics showed positive responses to protection whether it was physical (e.g. habitat complexity), biological (e.g. coral cover growth forms), or human-induced (e.g. marine reserves). Fish biomass was lowest in areas of direct wave exposure and highest in areas partially sheltered from swells. Higher values for fish species richness, number of individuals, biomass, and diversity were observed in locations with higher substrate complexity. Areas completely protected from fishing had distinct fish assemblages with higher standing stock and diversity than areas where fishing was permitted or areas that were partially protected from fishing. Locations influenced by customary stewardship harbored fish biomass that was equal to or greater than that of no-take protected areas. Marine protected areas in the main Hawaiian islands with high habitat complexity, moderate wave disturbance, a high percentage of branching and/or lobate coral coupled with legal protection from fishing pressure had higher values for most fish assemblage characteristics.  相似文献   

9.
To provide more information about whether sharks benefit from no-take marine reserves, we quantified the relative abundance and biomass of reef sharks inside and outside of Namena, Fiji’s largest reserve (60.6 km2). Using stereo baited remote underwater video systems (stereo-BRUVs), we found that the abundance and biomass of sharks was approximately two and four times greater in shallow and deep locations, respectively, within the Namena reserve compared to adjacent fished areas. The greater abundance and biomass of reef sharks inside Namena is likely a result of greater prey availability rather than protection from fishing. This study demonstrates that marine reserves can benefit sharks.  相似文献   

10.
Marine no-take zones can have positive impacts for target species and are increasingly important management tools. However, whether they indirectly benefit higher order predators remains unclear. The endangered African penguin (Spheniscus demersus) depends on commercially exploited forage fish. We examined how chick survival responded to an experimental 3-year fishery closure around Robben Island, South Africa, controlling for variation in prey biomass and fishery catches. Chick survival increased by 18% when the closure was initiated, which alone led to a predicted 27% higher population compared with continued fishing. However, the modelled population continued to decline, probably because of high adult mortality linked to poor prey availability over larger spatial scales. Our results illustrate that small no-take zones can have bottom-up benefits for highly mobile marine predators, but are only one component of holistic, ecosystem-based management regimes.  相似文献   

11.
Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world’s small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.  相似文献   

12.
The land-sparing versus land-sharing debate centers around how different intensities of habitat use can be coordinated to satisfy competing demands for biodiversity persistence and food production in agricultural landscapes. We apply the broad concepts from this debate to the sea and propose it as a framework to inform marine zoning based on three possible management strategies, establishing: no-take marine reserves, regulated fishing zones, and unregulated open-access areas. We develop a general model that maximizes standing fish biomass, given a fixed management budget while maintaining a minimum harvest level. We find that when management budgets are small, sea-sparing is the optimal management strategy because for all parameters tested, reserves are more cost-effective at increasing standing biomass than traditional fisheries management. For larger budgets, the optimal strategy switches to sea-sharing because, at a certain point, further investing to grow the no-take marine reserves reduces catch below the minimum harvest constraint. Our intention is to illustrate how general rules of thumb derived from plausible, single-purpose models can help guide marine protected area policy under our novel sparing and sharing framework. This work is the beginning of a basic theory for optimal zoning allocations and should be considered complementary to the more specific spatial planning literature for marine reserve as nations expand their marine protected area estates.  相似文献   

13.
The coral reefs of Tanga, Tanzania were recognized as a national conservation priority in the early 1970s, but the lack of a management response led to damage by dynamite, beach seines, and high numbers of fishers until the mid 1990s. Subsequently, an Irish Aid funded IUCN Eastern Africa program operated from 1994 to mid 2007 to implement increased management aimed at reducing these impacts. The main effects of this management were to establish collaborative management areas, reduce dynamite and seine net fishing, and establish small community fisheries closures beginning in 1996. The ecology of the coral reefs was studied just prior to the initiation of this management in 1996, during, 2004, and a few years after the project ended in 2010. The perceptions of resource users towards management options were evaluated in 2010. The ecological studies indicated that the biomass of fish rose continuously during this period from 260 to 770 kg/ha but the small closures were no different from the non-closure areas. The benthic community studies indicate stability in the coral cover and community composition and an increase in coralline algae and topographic complexity over time. The lack of change in the coral community suggests resilience to various disturbances including fisheries management and the warm temperature anomaly of 1998. These results indicate that some aspects of the management program had been ecologically successful even after the donor program ended. Moreover, the increased compliance with seine net use and dynamite restrictions were the most likely factors causing this increase in fish biomass and not the closures. Resource users interviewed in 2010 were supportive of gear restrictions but there was considerable between-community disagreement over the value of specific restrictions. The social-ecological results suggest that increased compliance with gear restrictions is largely responsible for the improvements in reef ecology and is a high priority for future management programs.  相似文献   

14.

Small-scale reef fisheries are important commercial and subsistence activities that support the livelihoods of millions of people in tropical regions. Tropical marine fisheries typically target a diversity of species caught with a matching diversity of fishing gears and practices. Here, we explored how multiple fishing gears select for distinct functional traits of fish assemblages inside a large multiple use marine environmental protected area off northeastern Brazil. In 1833 landing interviews with local fishers, we identified 101 species, which were categorized according to six traits: body size, schooling behavior, mobility, position in the water column, diet and period of activity. Our research is the first to explore the broad patterns of gear selectivity with regards to fish functional traits for different habitat types. While gears used in reef habitats were highly selective of sedentary and benthic species that form schools with few individuals, gears used in coastal lagoons were selective of highly mobile pelagic species that form large schools. We found a low competitive interaction between different gear types, meaning there was a low overlap in trait selectivity between fishing gears. We also found direct associations between gears and fish functional traits: hooks and line targeted species that exhibit limited mobility capabilities, making these species more vulnerable to local levels of fishing effort. In contrast, nets and fish corrals targeted mobile species that exhibited a greater diversity of functional traits. Some of our results contrasted with the current literature on the topic, with differences highlighting the need for more research to clarify global patterns of trait selectivity by gear type. Our results have implications for fisheries management in northeastern Brazil: gear bans and effort caps are commonly used management measures that can foster fisheries sustainability by minimizing impacts to fish assemblage functions.

  相似文献   

15.
Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability.  相似文献   

16.
Networks of no-take marine reserves and partially-protected areas (with limited fishing) are being increasingly promoted as a means of conserving biodiversity. We examined changes in fish assemblages across a network of marine reserves and two different types of partially-protected areas within a marine park over the first 5 years of its establishment. We used Baited Remote Underwater Video (BRUV) to quantify fish communities on rocky reefs at 20–40 m depth between 2008–2011. Each year, we sampled 12 sites in 6 no-take marine reserves and 12 sites in two types of partially-protected areas with contrasting levels of protection (n = 4 BRUV stations per site). Fish abundances were 38% greater across the network of marine reserves compared to the partially-protected areas, although not all individual reserves performed equally. Compliance actions were positively associated with marine reserve responses, while reserve size had no apparent relationship with reserve performance after 5 years. The richness and abundance of fishes did not consistently differ between the two types of partially-protected areas. There was, therefore, no evidence that the more regulated partially-protected areas had additional conservation benefits for reef fish assemblages. Overall, our results demonstrate conservation benefits to fish assemblages from a newly established network of temperate marine reserves. They also show that ecological monitoring can contribute to adaptive management of newly established marine reserve networks, but the extent of this contribution is limited by the rate of change in marine communities in response to protection.  相似文献   

17.
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.  相似文献   

18.

Tropical coral reefs are subject to multiple pressures from both natural and anthropogenic sources. These pressures have caused widespread declines in reef health, resulting in the increased use of spatial management tools such as marine protected areas (MPAs). MPAs have proven generally effective if well designed and enforced, but there are limited long-term studies investigating how the presence of small-scale MPAs affects fish populations and reef communities. Using a 12-year time series, we found that small-scale (10–50 ha) community-managed MPAs along the Danajon Bank of the Philippines preserved average fish biomass within their boundaries over time relative to surrounding fished reefs. Unprotected areas are, however, showing significant long-term biomass decline. MPAs were also found to preserve more key trophic groups and larger-bodied commercially targeted reef fish families. Fish biomass of piscivore, scavenger and invertivore trophic groups inside individual MPAs is, however, still declining at a similar rate as outside. Surprisingly, long-term benthic cover and growth form composition were not significantly affected overall by MPA presence, despite the sporadic use of highly destructive dynamite fishing in this region. Coral cover has remained historically low (21–28%) throughout the study, following widespread bleaching mortality. While management tempered overall abundance declines, we found that irrespective of MPA presence, there was a generalised decline of both large- and small-bodied fish size groups across the study region, most steeply within the 20–30 cm length fish, and a shift towards proportionally higher abundances of small (5–10 cm) fish. This indicates a combination of over-exploitation, inadequate MPA size and coverage for larger fish, and the lingering effects of the 1998 bleaching event. Generalised shifts in body size and trophic structure reported here could lead to future reductions in fishery productivity and stability and will be further exacerbated unless broader fishery regulations and enforcement is instated.

  相似文献   

19.
Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.  相似文献   

20.
Degraded coral reef ecosystems yield limited goods and services, which is expected to have significant socio-economic impacts on isolated tropical island communities with strong reliance on coral reefs. This study investigates socio-economic changes, specifically in fresh fish consumption and fishing activities, associated with environmental degradation at five fishing grounds (qoliqoli) in the Lau Islands (Fiji). Semi-structured interviews with fishers and senior household members revealed that the importance of fishing was low relative to other occupations, and consumption of fresh fish has declined over the last decade. Reduced fishing and choice of fresh fish is largely attributable to an increased need to derive income as well as new income-generating opportunities. A possible consequence of reduced reliance on marine resources was limited awareness of recent environmental degradation caused by climate-induced coral bleaching and outbreaks of coral-feeding crown-of-thorns starfish. Limited use and reduced awareness of the local marine environment in the short term may erode social memory and local ecological knowledge, reducing opportunities to fall back on marine resources. This may also compromise long-term economic and social stability. Conversely, low reliance on marine resources may confer greater flexibility to adapt to future ecological change in the marine environment. Importantly, changes in fish consumption and exploitation of marine resources were linked to socio-economic factors rather than a consequence of recent degradation of marine environments. Greater knowledge of the dynamics driving change in marine resource use is necessary to understand how societies respond to ecological and socio-economic change, and to identify opportunities for adaptive sustainable ecosystem management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号