首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
腈水合酶基因克隆与调控表达的研究进展   总被引:2,自引:1,他引:2  
微生物腈水合酶作为新型生物催化剂得到日益广泛的应用 ,但野生菌株本身存在的酶稳定性差等问题制约了这一绿色工艺的发展 ,基因工程菌为解决这个难题开辟了新的思路。总结了各种菌株中腈水合酶的序列研究进展 ,虽然基因序列和蛋白序列同源性不高 ,但它们都以基因簇的形式存在 ,并具有相同的活性中心序列。归纳了克隆并表达腈水合酶基因的基本步骤和方式 ,并提出几种有效增强重组腈水合酶活性表达的方法。  相似文献   

2.
腈类物降解菌多样性和产腈水合酶研究进展   总被引:1,自引:0,他引:1  
腈水合酶催化反应在有机合成领域已有广泛的应用。作为一类重要的催化剂,腈水合酶可以将腈类物质转化为相应的酰胺。由于这种酶具有固有的立体和区域选择性,在精细化工领域已成为绿色、温和、对同分异构体具有选择性的催化剂。同时腈水合酶在生物修复和环境保护中也起着重要作用。综述了目前国内外腈水合酶的研究进展,包括降解腈类的微生物多样性、腈水合酶的催化特性、产腈水合酶菌株的改造以及腈水合酶相关基因的克隆与研究。对固定化酶和腈水合酶的应用也进行了叙述。  相似文献   

3.
Bacterial nitrile hydratase (NHases) are important industrial catalysts and waste water remediation tools. In a global computational screening of conventional and metagenomic sequence data for NHases, we detected the two usually separated NHase subunits fused in one protein of the choanoflagellate Monosiga brevicollis, a recently sequenced unicellular model organism from the closest sister group of Metazoa. This is the first time that an NHase is found in eukaryotes and the first time it is observed as a fusion protein. The presence of an intron, subunit fusion and expressed sequence tags covering parts of the gene exclude contamination and suggest a functional gene. Phylogenetic analyses and genomic context imply a probable ancient horizontal gene transfer (HGT) from proteobacteria. The newly discovered NHase might open biotechnological routes due to its unconventional structure, its new type of host and its apparent integration into eukaryotic protein networks.  相似文献   

4.
Nitrile hydratase (NHase) was discovered in our laboratory. This enzyme was purified and characterized from various microorganisms. NHases are roughly classified into two groups according to the metal involved: Fe-type and Co-type. NHases are expected to have great potential as catalysts in organic chemical processing because they can convert nitriles to the corresponding higher-value amides under mild conditions. We have used microbial enzymes for the production of useful compounds; NHase has been used for the industrial production (production capacity: 30,000 tons/year) of acrylamide from acrylonitrile. This is the first successful example of a biotransformation process for the manufacture of a commodity chemical. This review summarizes the history of NHase studied not only from a basic standpoint but also from an applied point of view.  相似文献   

5.
腈水合酶(Nitirle hydratase, NHase)催化腈类物质转化为酰胺类物质,目前用于工业生产丙烯酰胺。但在催化过程中释放的热量易导致酶分子失活。研究通过蛋白质融合技术对腈水合酶进行分子改造,提高热稳定性。将2种双亲自组装肽(self-assembling peptides, SAPs)EAK16和ELK16分别融合至恶臭假单胞菌Pseudomonas putida NRRL-18668来源NHase非催化亚基β的N末端,构建出2种融合型NHase:EAK16-NHase和ELK16-NHase。经过表达、纯化后测定酶活力,发现EAK16-NHase和ELK16 NHase的酶活力分别为(426±14) U/mg和(372±12) U/mg,保留野生型酶活力的97%和85%。在50 ℃条件下孵育0~60 min,每5 min取样后测定残存酶活力,EAK16-NHase和ELK16-NHase酶活力半衰期(T50)分别为35 min和40 min,野生型NHase为20 min。说明融合EAK16和ELK16均能提高NHase的热稳定性。研究表明融合SAPs能在不显著影响酶活力的条件下提高酶的热稳定性。  相似文献   

6.
7.
产腈水合酶重组大肠杆菌的质粒稳定性研究   总被引:7,自引:0,他引:7  
成功构建了腈水合酶(nitrile hydratase,NHase)高表达的重组大肠杆菌E.coliBL21(DE3)/pETNHM(Kanr),研究了重组质粒pETNHM在重组菌株中的质粒稳定性。结果表明,pETNHM具有较好的结构稳定性,连续传代60代后质粒的基因序列没有明显缺失,且能够正常表达腈水合酶。pETNHM具有分离不稳定性,在无抗生素选择压力下,连续传代48代后质粒丢失的无质粒细胞开始出现。琼脂糖凝胶电泳定量分析表明,2/3的质粒pETNHM以二聚体形式存在,导致质粒拷贝数的下降。进一步研究表明,重组细胞的连续高速分裂及腈水合酶的高表达也会造成质粒拷贝数的下降,从而降低其分离稳定性。反之,重组菌株相对于宿主菌株的较高比生长速率有利于保持含质粒细胞的生长优势,卡那霉素的选择压力则能够保证质粒的稳定遗传。  相似文献   

8.
Stopped-flow kinetic data were obtained for the iron-type nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase) using methacrylonitrile as the substrate. Multiple turnover experiments suggest a three-step kinetic model that allows for the reversible binding of substrate, the presence of an intermediate, and the formation of product. Microscopic rate constants determined from these data are in good agreement with steady state data confirming that the stopped-flow method used was appropriate for the reaction. Single turnover stopped-flow experiments were used to identify catalytic intermediates. These data were globally fit confirming a three-step kinetic model. Independent absorption spectra acquired between 0.005 and 0.5 s of the reaction reveal a significant increase in absorbance at 375, 460, and 550 nm along with the hypsochromic shift of an Fe3+←S ligand-to-metal charge transfer band from 700 to 650 nm. The observed UV-visible absorption bands for the Fe3+-nitrile intermediate species are similar to low spin Fe3+-enzyme and model complexes bound by NO or N3. These data provide spectroscopic evidence for the direct coordination of the nitrile substrate to the nitrile hydratase active site low spin Fe3+ center.  相似文献   

9.
腈水合酶由α亚基和β亚基组成,活化元件对其功能表达至关重要,研究腈水合酶基因簇中各元件的表达比例对酶重组表达的影响具有重要意义。以来源于Klebsiella oxytoca KCTC 1686的腈水合酶(NHaseK)为研究对象,构建了多种表达策略,以期实现α亚基、β亚基和活化元件17k差异表达。利用pETDuet-1质粒具有双T7启动子的特点,将上述基因以八种不同的组合方式分别插入于两个启动子之后。当将三段基因同时插入于第一个启动子之后时,亚基表达量均衡,比活力为0.78 U/mg蛋白,是亚基表达量比例为5:3时的124%。在此基础上,在第二个启动子之后插入活化元件基因,活化元件表达水平提升2倍,比活提升5%,为0.82 U/mg蛋白。当将α亚基和β亚基插入于不同启动子之后时,酶活仅为对照组的10%,说明NHaseK的亚基必须同时转录才可形成成熟蛋白。进一步考察质粒拷贝数对大肠杆菌表达NHaseK的影响,确定15~20的质粒拷贝数足够实现NHaseK的功能表达。结果表明,亚基的均衡表达以及活化元件的充分表达对NHaseK的重组表达具有积极作用。  相似文献   

10.
采用正交设计法对耐底物腈水合酶融合子的发酵条件进行优化,以发酵液起始pH,发酵周期,接种量,装料系数作为考察因素,最终确定最佳发酵条件为:起始pH8.0、发酵周期54h、接种量12%、装液系数12%.在此优化条件下融合子腈水合酶的活力达到1100万U/ml,较优化前提高了83.3%.通过响应面法对发酵培养基配方进行优化研究,采用Plackett-Burman法对8个因素进行了筛选,结果表明,葡萄糖、尿素、磷酸氢二钾、磷酸二氢钾是影响发酵液腈水合酶产量的主效应因子.用最陡爬坡试验及Central composite design设计进一步优化,利用Design-Expert软件进行二次回归分析,得到各因素的最佳浓度为:葡萄糖22.62g/L、尿素9.76g/L、K2HP04 1.22g/L、KH2PO41.268g/L.在此培养基优化配方下融合子腈水合酶的活力达到1280万U/ml,较原配方的酶活提高了16.4%.  相似文献   

11.
The conversion of 2,5-anhydro-d-allononitrile derivatives by a nitrile hydratase from Rhodococcus rhodochrous IFO 15564 was studied. The activity of the enzyme was strongly effected by the steric bulkiness of the substituents at the 3-position of the substrates, and the corresponding amides were obtained in high yields from the nitriles with free hydroxyl groups at the 3- and 4-positions.  相似文献   

12.
A molecular screening approach was developed in order to amplify the genomic region that codes for the α- and β-subunits of the nitrile hydratase (NHase) enzyme in rhodococci. Specific PCR primers were designed for the NHase genes from a collection of nitrile-degrading actinomycetes, but amplification was successful only with strains identified as Rhodococcus erythropolis. A hydratase PCR product was also obtained from R. erythropolis DSM 43066T, which did not grow on nitriles. Southern hybridization of other members of the nitrile-degrading bacterial collection resulted in no positive signals other than those for the R. erythropolis strains used as positive controls. PCR-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS) analysis of the hydratases in the R. erythropolis strains revealed unique patterns that mostly correlated with distinct geographical sites of origin. Representative NHases were sequenced, and they exhibited more than 92.4% similarity to previously described NHases. The phylogenetic analysis and deduced amino acid sequences suggested that the novel R. erythropolis enzymes belonged to the iron-type NHase family. Some different residues in the translated sequences were located near the residues involved in the stabilization of the NHase active site, suggesting that the substitutions could be responsible for the different enzyme activities and substrate specificities observed previously in this group of actinomycetes. A similar molecular screening analysis of the amidase gene was performed, and a correlation between the PRS patterns and the geographical origins identical to the correlation found for the NHase gene was obtained, suggesting that there was coevolution of the two enzymes in R. erythropolis. Our findings indicate that the NHase and amidase genes present in geographically distinct R. erythropolis strains are not globally mixed.  相似文献   

13.
Optimum culture conditions of Brevibacterium sp. A4 for production of nitrile hydratase were determined by two mathematical methods: the Hadamard method and graphic analysis of response areas. A minimal medium was optimized and the basic roles of Fe2+ and Mg2+ were clearly shown. The influence of physico-chemical factors (pH, temperature and light conditions) on the culture and on nitrile hydratase were also studied. Various results permit the production of Brevibacterium sp. A4 cells with low protease and high nitrile hydratase contents.  相似文献   

14.
Optimum culture conditions of Brevibacterium sp. A4 for production of nitrile hydratase were determined by two mathematical methods: the Hadamard method and graphic analysis of response areas. A minimal medium was optimized and the basic roles of Fe2+ and Mg2+ were clearly shown. The influence of physico-chemical factors (pH, temperature and light conditions) on the culture and on nitrile hydratase were also studied. Various results permit the production of Brevibacterium sp. A4 cells with low protease and high nitrile hydratase contents.  相似文献   

15.
Rhodococcus ruber CGMCC309菌株为酰胺酶及腈水解酶双重缺陷菌株,研究表明该菌能产宽泛底物特异性的腈水合酶。对该菌株产生的新型腈水合酶(NHase-3090)进行纯化和结晶,并研究了其酶学性质。采用疏水、离子交换及凝胶过滤3种层析方法,使该酶纯化倍数达到17.14,得率高达26.2%。电泳分析表明,全酶分子量为105 kDa,由α(24.3 k Da)和β(28.0k Da)2个亚基组成,并构成α2β2四聚体。酶的最适p H和温度分别为7.5和30℃。该酶明显受不同金属离子影响。动力学研究表明,Km为178.8 m M;Vmax为209.1μmol/L·min·mg。研究发现3种金属离子Zn~(2+),CO~(2+)和Cd~(2+)有利于酶蛋白结晶。结晶最佳条件是:采用112-34#试剂(0.05mol/L水合硫酸镉、0.1mol/L HEPS和1.0mol/L三水醋酸钠),蛋白质浓度为15 mg/ml,结晶温度为16℃,p H为7.5,结晶时间为30 d。腈水合酶蛋白单晶经X射线衍射,分辨率达到了3.7。该腈水合酶的纯化和结晶为进一步深入研究其结构和功能奠定了基础。  相似文献   

16.
Effects of some nitriles and amides, as well as glucose and ammonium, on the growth and the nitrile hydratase (EC 4.2.1.84) activity of the Rhodococcus sp. strain gt1 isolated from soil were studied. The activity of nitrile hydratase mainly depended on the carbon and nitrogen supply to cells. The activity of nitrile hydratase was high in the presence of glucose and ammonium at medium concentrations and decreased at concentrations of glucose of more than 0.3%. Saturated unsubstituted aliphatic nitriles and amides were found to be a good source of nitrogen and carbon. However, the presence of nitriles and amides in the medium was not absolutely necessary for the expression of the activity of nitrile hydratase of the Rhodococcus sp. strain gt1.  相似文献   

17.
Borderline personality disorder (BPD) is a complex psychiatric disease with an increased impact in the last years. While the diagnosis and therapy are well established, little is known on the pathogenesis of borderline personality disorder. Previously, a significant increase in DNA methylation of relevant neuropsychiatric genes in BPD patients has been reported. In our study we performed genome wide methylation analysis and revealed specific CpG sites that exhibited increased methylation in 24 female BPD patients compared to 11 female healthy controls. Bead chip technology and quantitative bisulfite pyrosequencing showed a significantly increased methylation at CpG sites of APBA2 (1.1 fold) and APBA3 (1.1 fold), KCNQ1 (1.5 fold), MCF2 (1.1 fold) and NINJ2 (1.2 fold) in BPD patients. For the CpG sites of GATA4 and HLCS an increase in DNA methylation was observed, but was only significant in the bead chip assay. Moreover genome wide methylation levels of blood samples of BPD patients and control samples are similar. In summary, our results show a significant 1.26 fold average increase in methylation at the analyzed gene associated CpG sites in the blood of BPD patients compared to controls samples (p<0.001). This data may provide new insights into epigenetic mechanisms underlying the pathogenesis of BPD.  相似文献   

18.
Site-directed mutagenesis on a recombinant plasmid, pUC8, that contained the cah gene, was conducted and confirmed by sequence analysis. Single base substitution, G to A at nucleotide position 81 or T to C at nucleotide position 84 of cah gene does not change the amino acid sequence of cah enzyme but eliminates the HindIII site. The wild-type cah and its mutants were cloned and overexpressed in pQE-60 Escherichia coli expression system. Western blot analysis confirmed the production of 27.7-kDa cah enzyme by all the recombinants. The mutated cah gene devoid of HindIII site was used to generate a recombinant plant transformation vector (pCAMBIA-cah). Agrobacterium-mediated transformation was performed in Nicotiana tabaccum cv. Samsun plants by employing the leaf-disc method. The integration and expression of cah gene in transgenic plants were confirmed by polymerase chain reaction, Southern and Western blot analyses. Antimicrobial activity of cyanamide against phytopathogenic fungi and bacteria was determined. Cyanamide can be used as fertilizer as well as an antimicrobial salt against phytopathogenic fungi and bacteria. The present investigation reports the heterologous expression of the cah marker gene. Due to its innate ability to convert cyanamide to urea and the broad-spectrum antimicrobial activity of cyanamide, the cah gene can be used to facilitate plant growth promotion and biocontrol of phytopathogens.  相似文献   

19.
20.
Thiocyanate hydrolase is a newly found enzyme from Thiobacillus thioparus THI 115 that converts thiocyanate to carbonyl sulfide and ammonia (Y. Katayama, Y. Narahara, Y. Inoue, F. Amano, T. Kanagawa, and H. Kuraishi, J. Biol. Chem. 267:9170–9175, 1992). We have cloned and sequenced the scn genes that encode the three subunits of the enzyme. The scnB, scnA, and scnC genes, arrayed in this order, contained open reading frames encoding sequences of 157, 126, and 243 amino acid residues, respectively, for the β, α, and γ subunits, respectively. Each open reading frame was preceded by a typical Shine-Dalgarno sequence. The deduced amino-terminal peptide sequences for the three subunits were in fair agreement with the chemically determined sequences. The protein molecular mass calculated for each subunit was compatible with that determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. From a computer analysis, thiocyanate hydrolase showed significant homologies to bacterial nitrile hydratases known to convert nitrile to the corresponding amide, which is further hydrolyzed by amidase to form acid and ammonia. The two enzymes were homologous over regions corresponding to almost the entire coding regions of the genes: the β and α subunits of thiocyanate hydrolase were homologous to the amino- and carboxyl-terminal halves of the β subunit of nitrile hydratase, and the γ subunit of thiocyanate hydrolase was homologous to the α subunit of nitrile hydratase. Comparisons of the catalytic properties of the two homologous enzymes support the model for the reaction steps of thiocyanate hydrolase that was previously presented on the basis of biochemical analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号