首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Diversity of Bacterial Isolates from Commercial and Homemade Composts   总被引:1,自引:0,他引:1  
The diversity of heterotrophic bacterial isolates of three commercial and two homemade composts was studied. The commercial composts were produced from poultry litter (PC), sewage sludge (SC), municipal solid waste (MC), and homemade composts (thermal compost [DC] and vermicompost [VC]) from food wastes. The taxonomic and physiological diversity of the heterotrophic culturable bacteria was assessed using phenotypic and genotypic characterization and the analysis of the partial 16S rRNA gene sequence. Composts DC and SC presented the higher genotypic diversity, as could be inferred from the number of distinct genotypic patterns observed, 28 and 21, respectively. Gram-positive bacteria, mainly Firmicutes, were predominant in all the composts. Some organisms related with taxa rarely reported in composts, as Rhodanobacter spathiphylli, Moraxella osloensis, Lysobacter, Corynebacterium, Pigmentiphaga kullae, and new taxa were also isolated. The highest relative proportion of isolates able to degrade starch was found in compost SC (>70%), to degrade gelatine in compost DC (>70%), to degrade Tween 80 in compost PC (>90%), and to degrade poly-epsilon-caprolactones in compost DC (>80%). Compost MC presented the lowest relative proportions of isolates able to degrade starch (<25%), gelatine (<20%), and poly-epsilon-caprolactone (<40%). When compared with the others, the homemade composts presented higher relative proportions of Gram-positive isolates able to inhibit the target organisms Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, or Pseudomonas aeruginosa. In compost MC, none of the Gram-positive isolates was able to inhibit those targets.  相似文献   

2.
The dynamics of mesophilic and thermophilic bacterial population of compost was studied. The bacteria population in the compost ranged from 109 to 105 CFU g?1 and was found to be maximum during mesophilic phase, and then decreased during the thermophilic, the cooling and maturation phases. Assessment of culturable bacteria by 16S rDNA revealed phylogenetic lineage of different polymorphic class bacilli, γ, β-proteobacteria and actinobacteria. Bacterial isolates produced extracellular enzymes: proteases, cellulase, xylanase, pectinase, tannase and amylase. Among them, mesophilic bacteria exhibited xylanolytic (81.25 %) and cellulolytic (63 %) activity. Thermophilic bacteria showed cellulolytic (75 %) and xylanolytic (66.6 %) activity, but a few isolates also produced tannase and pectinase. All bacterial isolates were observed to cause inhibition of three isolates of Bacillus pumilus and one isolate each of Staphylococcus sciuri and Kocuria sp. The physiological effect of compost on shoot length, leaf size and fruit maturation of tomato have been evaluated; the compost (75 g/pot) improved these parameters as compared to known compost (SOM). The efficacy of compost and SOM on photochemistry of tomato leaves was studied, based on imaging-PAM of the chlorophyll fluorescence parameters. Fv/Fm and electron transport rate (ETR) were increased significantly in compost (75 g) amended pot within 30 days of growth. Likewise, highest Y (II) of photosystem II (PS II) yield was found in compost (75 g) pot in 15 days. The findings of this study proved that the compost comprising of various bacteria involved in degradation of substrates was found to be beneficial for enhancement of tomato growth and development.  相似文献   

3.
This study determined the potential of surfactant and sewage sludge in enhancing degradation of oil sludge. A mixture of oil sludge, surfactant, and sewage sludge was co-composted for 24 weeks in the laboratory. Physical and chemical parameters in the compost were measured every four weeks. Isolated microorganisms were characterized by molecular techniques. The pH in all experiments remained between 8 and 6.4. CO2 evolution reached 5503 µg/dwt/day by the twenty-fourth week. The dominant bacterial species were Acinectobacter, Rodococcus, mycobacterium, Pseudomonas, Bacillus, Arthrobacter, and Staphylococcus species and fungi were Pleurotus, Penicillium, and Aspergillus sp. TPH was reduced by 92% in the sewage sludge and surfactant treatment, 75 and 81% in other treatments, and 44.2% in the control. PAH concentrations were reduced by between 75 and 100%. The results indicate that a careful application of surfactant and sewage sludge could enhance oil sludge degradation in a compost system.  相似文献   

4.
The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species–area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored.  相似文献   

5.

Hypersaline ecosystems offer unique habitats to microbial populations capable of withstanding extreme stress conditions and producing novel metabolites of commercial importance. Herein, we have characterized for the first time the production of bioactive pigments from newly isolated halophilic bacterial species. Halophilic bacteria were isolated from Khewra Salt Range of Pakistan. Three distinctly colored isolates were selected for pigment production. Selected colonies were identified as Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 based on morphological, biochemical, and physiological evidences as well as 16S rRNA analysis. The optimum pigment production observed at mesophilic condition, nearly neutral pH, and moderate salinity was validated using response surface methodology. Different analytical techniques (UV spectroscopy, infrared spectroscopy, and HPLC) characterized these purified pigments as derivatives of bacterioruberin carotenoids. Antioxidant activity of pigments revealed up to 85% free-radical scavenging activity at the concentration of 30 µg ml−1. Pigments also showed significant antimicrobial activity against Bacillus subtilis, Bacillus pumilus, Enterococcus faecalis, Bacillus cereus, Klebsiella pneumoniae, Alcaligenes faecalis, Pseudomonas geniculata, Enterococcus faecium, Aspergillus fumigatus, Aspergillus flavus, Fusarium solani, and Mucor spp., suggesting potential biomedical applications.

  相似文献   

6.
Thirty mesophilic and thermophilic bacteria were isolated from thermobiotically digested sewage sludge in culture medium supplemented with poly-ε-caprolactone (PCL). The ability of each purified isolate to degrade PCL and to produce polymer-degrading extracellular enzymes was assessed. Isolates were characterized based on random amplified polymorphic DNA (RAPD), 16S rDNA sequence-based phylogenetic affiliation and carbohydrate-based nutritional versatility. Mesophilic isolates with ability to degrade PCL were attributed to the genera Acinetobacter, Burkholderia, Pseudomonas, and Staphylococcus. Thermophilic isolates were members of the genus Bacillus. Despite the restricted phylogenetic and genotypic diversity observed for thermophiles, their metabolic versatility and wide range of growth temperatures suggest an important activity of these organisms during the whole composting process.  相似文献   

7.
The use of microorganisms with hydrocarbon degrading capability and biosurfactant producers have emerged as an alternative for sustainable treatment of environmental passives. In this study 45 bacteria were isolated from samples contaminated with petrochemical residues, from which 21 were obtained from Landfarming soil contaminated with oily sludge, 11 were obtained from petrochemical industry effluents and 13 were originated directly from oily sludge. The metabolization capability of different carbon sources, growth capacity and tolerance, biosurfactant production and enzymes detection were determined. A preliminary selection carried out through the analysis of capability for degrading hydrocarbons showed that 22% of the isolates were able to degrade all carbon sources employed. On the other hand, in 36% of the isolates, the degradation of the oily sludge started within 18–48 h. Those isolates were considered as the most efficient ones. Twenty isolates, identified based on partial sequencing of the 16S rRNA gene, were pre-selected. These isolates showed ability for growing in a medium containing 1% of oily sludge as the sole carbon source, tolerance in a medium containing up to 30% of oily sludge, ability for biosurfactant production, and expression of enzymes involved in degradation of aliphatic and aromatic compounds. Five bacteria, identified as Stenotrophomonas acidaminiphila BB5, Bacillus megaterium BB6, Bacillus cibi, Pseudomonas aeruginosa, and Bacillus cereus BS20 were shown to be promising for use as inoculum in bioremediation processes (bioaugmentation) of areas contaminated with petrochemical residues since they can use oily sludge as the sole carbon source and produce biosurfactants.  相似文献   

8.
Canola meal that contains a high level of protein (40% crude protein) was used as compost material for the isolation of feather-degrading bacteria. After 7 and 14 days, bacteria were isolated from compost amended and unamended with soil. Eighty bacterial isolates from canola meal compost were then grown on milk-agar and isolates that produced proteolytic enzymes were identified by the formation of clear haloes around the colonies. A feather medium was chosen for a secondary selection of feather-degrading isolates. Of the eight isolates that hydrolyzed milk protein, five isolates hydrolyzed feathers. Their keratinolytic activities were subsequently confirmed by an assay using azo-keratin as substrate. Seven of the eight bacteria that hydrolyzed milk protein were Bacillus spp, and all five isolates that hydrolyzed feathers were strains of Bacillus licheniformis. Protease inhibition studies indicated that serine proteases are the predominant proteolytic enzymes produced by these feather-degrading isolates. Received 02 April 1999/ Accepted in revised form 17 June 1999  相似文献   

9.
Three 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)-mineralizing bacteria were isolated from the secondary sludge of a pulp and paper industry. The isolates used 2,3,4,6-TeCP as a source of carbon and energy and were capable of degrading this compound, as indicated by stoichiometric release of chloride and biomass formation. Based on 16S rRNA gene sequence analysis, the bacteria were identified as Bacillus megaterium (CL3), Staphylococcus suciri (CL10), and Bacillus thuringensis (CL11). High-performance liquid chromatography (HPLC) analysis revealed that these isolates were able to degrade 2,3,4,6-TeCP at higher concentrations (600 mg/L or 2.5 mM). A consortia of the isolates completely removed 2,3,4,6-TeCP from the sludge obtained from a pulp and paper mill within 2 weeks when supplemented at a rate of 100 mg/L or 0.43 mM. A bacterial consortium also significantly reduced absorbable organic halogen (AOX) and extractable organic halogen (EOX) by 63% and 68%, respectively, from the sludge. These isolates have a high potential to remove 2,3,4,6-TeCP and may be used for remediation of pulp paper mill waste containing 2,3,4,6-TeCP.  相似文献   

10.
The biodegradation capacity of aliphatic and aromatic hydrocarbons of petrochemical oily sludge in liquid medium by a bacterial consortium and five pure bacterial cultures was analyzed. Three bacteria isolated from petrochemical oily sludge, identified as Stenotrophomonas acidaminiphila, Bacillus megaterium and Bacillus cibi, and two bacteria isolated from a soil contaminated by petrochemical waste, identified as Pseudomonas aeruginosa and Bacillus cereus demonstrated efficiency in oily sludge degradation when cultivated during 40 days. The bacterial consortium demonstrated an excellent oily sludge degradation capacity, reducing 90.7% of the aliphatic fraction and 51.8% of the aromatic fraction, as well as biosurfactant production capacity, achieving 39.4% reduction of surface tension of the culture medium and an emulsifying activity of 55.1%. The results indicated that the bacterial consortium has potential to be applied in bioremediation of petrochemical oily sludge contaminated environments, favoring the reduction of environmental passives and increasing industrial productivity.  相似文献   

11.
Aiming at learning the functional bacterial community in the high humus content, saline-alkaline soils of chinampas, the cellulolytic bacteria were quantified and 100 bacterial isolates were isolated and characterized in the present study. Analysis of 16S-23S IGS (intergenic spacer) RFLP (restriction fragment length polymorphism) grouped the isolates into 48 IGS types and phylogenetic analysis of 16S rRNA genes identified them into 42 phylospecies within 29 genera and higher taxa belonging to the phyla Actinobacteria, Firmicutes and Proteobacteria, dominated by the genera Arthrobacter, Streptomyces, Bacillus, Pseudomonas, Pseudoxanthomonas and Stenotrophomonas. Among these bacteria, 63 isolates represent 26 novel putative species or higher taxa, while 37 were members of 17 defined species according to the phylogenetic relationships of 16S rRNA gene. Except for the novel species, the cellulolytic activity was not reported previously in 9 of the 17 species. They degraded cellulose in medium at pH?4.5–10.0 or supplied with NaCl up to 9 %. In addition, 84.8 and 71.7 % of them degraded xylan and Avicel, respectively. These results greatly improved the knowledge about the diversity of cellulolytic bacteria and demonstrated that the chinampa soils contain diverse and novel cellulolytic bacteria functioning at a wide range of pH and salinity levels, which might be a valuable biotechnological resource for biotransformation of cellulose.  相似文献   

12.
A stepwise screening strategy made it possible to identify five new Bacillus spp. strains for biocontrol of Rhizoctonia solani, Sclerotinia minor and Fusarium solani. In vitro and in vivo biocontrol activity and M13-PCR DNA-fingerprinting led to the selection of these valuable biological control agents (BCAs) from a wide collection of over 250 candidates. At the end of this selection, the highest potential antagonists were identified at species level by 16S-rRNA gene sequence analysis, and results assigned them to Bacillus subtilis group as Bacillus amyloliquefaciens- and Bacillus methylotrophicus-related strains. In the current study, spore-forming bacteria provided substantial biocontrol of telluric diseases on cress and other different host plants. The strains named 15S and 09C were effective in disease control on Brassica oleracea/R. solani pathosystem, whereas Sclerotinia drop of lettuce was reduced by treatments with the strains 17S and 08C. Finally, the strains 17S and 12S were equally effective to control potato Fusarium rot. The evident zone of inhibition seen in dual culture plates suggested antibiosis-like antagonisms as the main mechanisms used by these bacterial isolates in interaction with the pathogens. Additionally, the API-ZYM method revealed constitutive activity of certain extracellular enzymes that could be involved in plant fortification. Bacillus strains isolated from compost and compost-amended soils are promising BCAs that have potential for practical application as biofungicides.  相似文献   

13.
The aim of this study was to characterize the actinobacterial population present in pulps and boards containing recycled fibres. A total of 107 isolates was identified on the basis of their pigmentation, morphological properties, fatty acid profiles and growth temperature. Of the wet pulp and water sample isolates (n=87), 74.7% belonged to the genus Streptomyces, 17.2% to Nocardiopsis and 8.0% to thermoactinomycetes, whereas all the board sample isolates (n=20) were thermoactinomycetes. The identification of 53 isolates was continued by molecular methods. Partial 16S rDNA sequencing and automated ribotyping divided the Streptomyces isolates (n=31) into 14 different taxa. The most common streptomycetes were the mesophilic S. albidoflavus and moderately thermophilic S. thermocarboxydus. The Nocardiopsis isolates (n=11) belonged to six different taxa, whereas the thermoactinomycetes were mainly members of the species Laceyella sacchari (formerly Thermoactinomyces sacchari). The results indicated the probable presence of one or more new species within each of these genera. Obviously, the drying stage used in the board making processes had eliminated all members of the species Streptomyces and Nocardiopsis present in the wet recycled fibre pulp samples. Only the thermotolerant endospores of L. sacchari were still present in the final products. The potential of automated ribotyping for identifying actinobacteria was indicated, as soon as comprehensive identification libraries became available.  相似文献   

14.
Lee C  Kim J  Chang J  Hwang S 《Biodegradation》2003,14(3):183-188
A mixed bacterial culture capable of growing in potassium-thiocyanatecontaining medium (200 mg KSCN) has been isolated from bacterial suspensions of soilsamples collected near gold mines in Kumjung (Korea). The isolates were initially characterized by metabolic profile analysis and were identified as Bacillus thermoglucosidasius,Bacillus cereus, Bacillus licheniformis, Bacillus mycoides, Brevibacteriumepidermidis, Brevibacterium otitidis, and Corynebacterium nitrilophilus.One of the seven isolates was initially characterized as Brevibacterium epidermidis,which is not known to degrade thiocyanate. However, using 16S rDNA sequencing, thisstrain was identified as a member of Klebsiella. The strain shows high similarityvalues (95.8 to 96.4%) with Klebsiella species, and the closest known relative was foundto be K. ornithinolytica ATCC 31898. The result indicates that species of the genusKlebsiella were the closest phylogenetic relatives of the investigated strain. This isthe first known report of a member of Klebsiella that is capable of utilizing thiocyanate assole source of carbon and nitrogen.  相似文献   

15.
The aim of this work was to characterize the cultivable obligate anaerobic bacterial population in paper mill environments. A total of 177 anaerobically grown bacterial isolates were screened for aerotolerance, from which 67 obligate anaerobes were characterized by automated ribotyping and 41 were further identified by partial 16S rDNA sequencing. The mesophilic isolates indicated 11 different taxa (species) within the genus Clostridium and the thermophilic isolates four taxa within the genus Thermoanaerobacterium and one within Thermoanaerobacter (both formerly Clostridium). The most widespread mesophilic bacterium was closely related to C. magnum and occurred in three of four mills. One mill was contaminated with a novel mesophilic bacterium most closely related to C. thiosulfatireducens. The most common thermophile was T. thermosaccharolyticum, occurring in all four mills. The genetic relationships of the mill isolates to described species indicated that most of them are potential members of new species. On the basis of identical ribotypes clay could be identified to be the contamination source of thermophilic bacteria. Automated ribotyping can be a useful tool for the identification of clostridia as soon as comprehensive identification libraries are available.  相似文献   

16.
AIMS: To isolate aerobic mesophilic bacilli and thermophilic bacteria from different paper mill samples and to evaluate their potential harmfulness. METHODS AND RESULTS: A total of 109 mesophilic and 68 thermophilic isolates were purified and characterized by automated ribotyping and partial 16S rDNA sequencing. The mesophilic isolates belonged to the genera Bacillus (13 taxa), Brevibacillus (three taxa) and Paenibacillus (five taxa). The thermophilic bacteria represented seven taxa of Bacillus, Geobacillus or Paenibacillus, four of proteobacteria and one of actinobacteria. The most frequently occurring bacteria were Bacillus cereus, B. licheniformis, Pseudoxanthomonas taiwanensis and bacteria closely related to Paenibacillus stellifer, P. turicensis or Leptothrix sp. One mill was contaminated throughout with bacteria of a novel mesophilic genus most closely related to Brevibacillus centrosporus and another with bacteria of a novel thermophilic genus most closely related to Hydrogenophilus thermoluteolus. One B. cereus isolate producing haemolytic diarrhoeal enterotoxin was detected and all the tested B. licheniformis isolates produced a metabolite toxic to boar sperm cells. CONCLUSIONS: The bacilli and thermophilic bacteria isolated represent species which should not present occupational hazards in paper mill environments. The most harmful bacterium detected was B. licheniformis and potentially also B. cereus. SIGNIFICANCE AND IMPACT OF THE STUDY: Knowledge of the microbial diversity in a paper mill provides a rational basis for development of an effective controlling programme. A database constructed from the fingerprints generated using automated ribotyping helps to identify and trace the contamination routes of bacteria occurring in paper mills.  相似文献   

17.
We previously reported that the thermophilic filamentous anaerobe Anaerolinea thermophila, which is the first cultured representative of subphylum I of the bacterial phylum Chloroflexi, not only was one of the predominant constituents of thermophilic sludge granules but also was a causative agent of filamentous sludge bulking in a thermophilic (55°C) upflow anaerobic sludge blanket (UASB) reactor in which high-strength organic wastewater was treated (Y. Sekiguchi, H. Takahashi, Y. Kamagata, A. Ohashi, and H. Harada, Appl. Environ. Microbiol. 67:5740-5749, 2001). To further elucidate the ecology and function of Anaerolinea-type filamentous microbes in UASB sludge granules, we surveyed the diversity, distribution, and physiological properties of Chloroflexi subphylum I microbes residing in UASB granules. Five different types of mesophilic and thermophilic UASB sludge were used to analyze the Chloroflexi subphylum I populations. 16S rRNA gene cloning-based analyses using a 16S rRNA gene-targeted Chloroflexi-specific PCR primer set revealed that all clonal sequences were affiliated with the Chloroflexi subphylum I group and that a number of different phylotypes were present in each clone library, suggesting the ubiquity and vast genetic diversity of these populations in UASB sludge granules. Subsequent fluorescence in situ hybridization (FISH) of the three different types of mesophilic sludge granules using a Chloroflexi-specific probe suggested that all probe-reactive cells had a filamentous morphology and were widely distributed within the sludge granules. The FISH observations also indicated that the Chloroflexi subphylum I bacteria were not always the predominant populations within mesophilic sludge granules, in contrast to thermophilic sludge granules. We isolated two mesophilic strains and one thermophilic strain belonging to the Chloroflexi subphylum I group. The physiological properties of these isolates suggested that these populations may contribute to the degradation of carbohydrates and other cellular components, such as amino acids, in the bioreactors.  相似文献   

18.
Marine bacteria from the hull of a ship in the form of biofilms or microfouling were isolated, cultured, and identified by phylogenetic analysis using 16S rDNA sequences. With an average length of 946 bp, all the 16 sequences were classified using the Ribosomal database project (RDP) and were submitted to the National Center for Biotechnology Information. Phylogenetic analysis using 16S rDNA sequences indicated that the 16 strains belonged to the Firmicutes (IK-MB6 Exiguobacterium aurantiacum, IK-MB7 Exiguobacterium arabatum, IK-MB8 Exiguobacterium arabatum, IK-MB9 Jeotgalibacillus alimentarius, IK-MB10 Bacillus megaterium, IK-MB11 Bacillus pumilus, IK-MB12 Bacillus pumilus, IK-MB13 Bacillus pumilus, IK-MB14 Bacillus megaterium), High GC, Gram-positive bacteria (IK-MB2 Micrococcus luteus, IK-MB5 Micrococcus luteus, IK-MB16 Arthrobacter mysorens), G-Proteobacteria (IK-MB3 Halomonas aquamarina, IK-MB15 Halotalea alkalilenta), CFB group bacteria (IK-MB1 Myroides odoratimimus), and Enterobacteria (IK-MB4 Proteus mirabilis). Among the 16 strains, representatives of the Firmicutes were dominant (56.25%) compared to the high GC, Gram-positive bacteria (18.75%), G-Proteobacteria (12.5%), CFB group bacteria (6.25%), and Enterobacteria (6.25%). Analysis revealed that majority of marine species found in marine biofilm are of anthropogenic origin.  相似文献   

19.
The regulatory function of extracellular ATP (exATP) in bacteria is unknown, but recent studies have demonstrated exATP induced enhanced secondary metabolite production and morphological differentiation in Streptomyces coelicolor. The growth of Streptomyces coelicolor, however, was unaffected by exATP, although changes in growth are common phenotypes. To identify bacteria whose growth is altered by exATP, we measured exATP-induced population changes in fast-growing microbes and actinomycetes in compost. Compared with the water-treated control, the addition of 10 ml 100 μM ATP to 10 g of compost enhanced the actinomycetes population by 30% and decreased fast-growing microbial numbers by 20%. Eight microbes from each group were selected from the most populated colony, based on appearance. Of the eight isolated fast-growing microbes, the 16S rRNA sequences of three isolates were similar to the plant pathogens Serratia proteamaculans and Sphingomonas melonis, and one was close to a human pathogen, Elizabethkingia meningoseptica. The growth of all fast-growing microbes was inhibited by ATP, which was confirmed in Pseudomonas syringae DC3000, a pathogenic plant bacterium. The growth of six of eight isolated actinomycetes strains, all of which were identified as close to Streptomyces neyagawaensis, was enhanced by ATP treatment. This study suggests that exATP regulates bacterial physiology and that the exATP response system is a target for the control of bacterial ecology.  相似文献   

20.
Badab-e Surt spring is a travertine spring that has low to moderate levels of salt, so it is a good model for isolating moderately halophilic bacteria and investigating the relationship between microbe and environment. For isolating bacterial strains, water and sediment samples were collected from different springheads of the Badab-e Surt spring. Among the 171 bacterial isolates, 110 strains were halophiles. According to comparative partial 16S rRNA sequence analysis, the selected halophilic gram-positive and gram-negative strains were identified as members of the genera: Roseovarius, Labrenzia, Erythrobacter, Erythromicrobium, Massilia, Marinobacter, Halomonas, Shewanella, Pseudomonas, Flavobacterium, Bacillus, Brevibacterium, Staphylococcus, Microbacterium, Kocuria, and Streptomyces. To investigate mineralization, potential strains were screened by the culturing method, and then analyzed with a polarizing and scanning microscope. Five strains, Bss-11a, Bss-3, Bsw-1c1, Bsw-28d, and Bsw-39b, had potential for the mineralization of calcite that very closely resembled species Bacillus cohenii DSM 6307T, Labrenzia aggregate IAM 12614T, Bacillus safensis FO-036bT, Marinobacter flavimaris SW-145T, and Marinobater adhaerens HP15T, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号