首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
张玲  何建波 《遗传》2018,40(1):22-32
GATA6 (GATA binding protein 6)是GATA锌指转录因子家族成员之一,以其保守的结合基序(G/A)GATA(A/T) 而得名。GATA家族在脊椎动物细胞命运决定与分化、增殖和迁移以及内胚层和中胚层来源的器官发育中具有重要作用。GATA6作为谱系特化因子、染色质重塑因子、多能性因子和“先锋因子”,在内胚层肝脏谱系决定、肝脏特化、肝芽生长以及肝母细胞增殖分化等阶段发挥关键的调控作用。本文综述了GATA6在肝脏发育中的作用及其研究进展,以期为进一步研究 GATA6 等发育关键转录因子的功能及调控机制提供参考。  相似文献   

2.
GATA转录因子家族由6个成员组成(GATA1~GATA6),在参与调节多种细胞的生长和分化、细胞的存活以及机体功能的维持等方面具有着重要作用。转录因子GATA6属于GATA家族的一员,目前的研究已经证实GATA6在人类心脏分化发育过程中起着至关重要的作用。其基因突变不仅能引起多种先天性心脏疾病,还能干扰心脏传导系统而促发心律失常,同时也是扩张性、肥厚性心肌病发病的遗传因素。此外,转录因子GATA6与临床中最为常见的冠心病也有一定的关联性,由于体内存在多基因联合作用,使得两者之间的关系变得更为复杂。本文主要综述了转录因子GATA6在先天性心脏病、心脏传导系统、心肌病、心血管病相关危险因素以及其他类心血管疾病等方面的研究进展,以期为未来的个体化基因治疗提供遗传学基础,并能促进基础研究向临床医学转化的发展。  相似文献   

3.
李莉  杨杨  薛雷 《遗传》2010,32(2):115-121
Pax是一个在进化上相当保守的基因家族, 它们编码的产物是一组极为重要的转录调控因子, 并存在于从果蝇到人类的各种生物体中, 参与细胞内信号传导通路的调控, 在胚胎发育过程中对细胞分化、更新、凋亡起重要的调控作用, 影响器官和组织的形成。果蝇中已发现10个Pax基因家族成员, 它们对果蝇胚胎发育及成虫组织器官的分化有非常重要的调控作用。文章结合最新的研究进展, 就果蝇中Pax基因的结构、表达模式和主要功能做一简要综述。  相似文献   

4.
Prdm1(PR domain zinc finger protein 1),又称为Blimpl(B—lymphocyte-induced maturation protein-1),是一个具有锌指结构的转录因子,通过调控多个基因的表达影响哺乳动物多种类型细胞的发育分化。从1991年发现至今,有关Prdm1的研究进展迅速,Prdm1在促进B细胞向浆细胞终末分化过程中的作用已经得到共识。但是,在小鼠及其他哺乳动物的胚胎发育过程中,尤其是关于Prdm1在生殖细胞发育分化中的作用机理研究则起步相对较晚。近期发现,在哺乳动物胚胎发育过程中,Prdm1在原始生殖细胞的形成、干细胞全能性的维持以及其他组织器官的形成中都发挥了重要的作用。  相似文献   

5.
snail超家族基因作为一种锌指转录因子参与调控胚胎发育和肿瘤发生过程.不同的家族成员已显示在许多信号的级联放大过程中起作用,包括左右轴识别、附肢形成、神经分化和细胞命运决定等形成过程.  相似文献   

6.
在软骨发生过程中基因突变引起骨骼畸形躯干发育异常。在患者体内首次发现了转录因子Sox9。随着后续研究,在胚胎发育中证明了Sox9是细胞命运决定因子。胚胎发育时期,Sox9能使不同胚层的细胞向特定的组织分化。最新的研究发现,在一些由内胚层和外胚层发育而来的成体组织和成体干细胞中Sox9仍表达。这表明Sox9在成体细胞维持和特化中起作用。Sox9功能多样性应结合转录后调控、结合蛋白、所表达的组织类型来解释。因其在胚胎和成体中的重要作用,Sox9异常表达会引发多种疾病。这篇综述总结了Sox9在细胞命运决定、干细胞学和人类疾病中的多种不同功能,希望对今后Sox9在干细胞失调或器官损伤引起的疾病治疗研究提供思路和依据。  相似文献   

7.
锌指亚家族GATA-4、-5和-6的调控作用   总被引:1,自引:0,他引:1  
GATA蛋白是一类重要的转录调节因子,它们具有保守的DNA结合结构域,其中的GATA 4、 5和 6亚家族对组织特异性基因的表达起关键性的调控作用.综述了这3种因子的结构功能,在小鼠中的表达模式和基因定位,在组织特异性基因表达中的作用,对可诱导基因表达的调节以及与它们相互作用的有关因子等.  相似文献   

8.
GATA-2是对外胚层和中胚层发育至关重要的转录因子,它属于具有保守锌指结构的GATA转录因子家族.GATA家族包括6个成员:分别命名为GATA-1~GATA-6.最新研究表明,GATA-2不仅存在于胚胎器官,还对成体造血细胞系、神经系统、垂体和泌尿生殖系统中细胞的功能和维持都必不可少.本文旨在通过对GATA-2的功能研究进展进行综述,探讨GATA-2在生殖系统中的作用机制,以期更广泛地了解GATA-2基因在生物发育过程中的作用及对相关基因的调控机制,从而为攻克人类相关疾病提供理论依据.  相似文献   

9.
周一叶  曾凡一 《遗传》2008,30(5):529-536
Oct-4和Nanog是两种维持干细胞多能性和自我更新的转录因子, 它们通过结合靶基因调控区, 选择性地抑制分化基因表达或促进多能性基因表达。它们通常只在多能干细胞中表达, 在分化细胞中不表达。在不同的发育阶段, 它们的表达量受到特异调控, 并且分别与Sox-2、FoxD3等其他转录因子以及LIF、BMP等胞外信号通路互相作用, 形成一个复杂的转录调节crosstalk网络, 在特异时空激活或抑制靶基因的转录; 通过互相制约最终决定干细胞是保持多能性还是分化, 以及向哪个方向分化。此外, Oct-4和Nanog对体细胞重编程为多能细胞也有重要作用。  相似文献   

10.
TFIID在配子发生和早期胚胎发育过程中的作用   总被引:1,自引:0,他引:1  
配子发生以及胚胎早期发育过程受严格且有序的基因表达调控。多种转录因子与靶基因结合,激活基因的时空特异性表达,实现受精卵全能性的获得,完成母型基因组转录调控向合子基因组转录调控的转变以及随后胚胎细胞的分化调节。研究表明,TFIID转录因子家族在这些关键阶段起重要作用,在基因转录调节的起始阶段,TFIID转录因子家族成员作为通用转录因子被招募到靶基因的启动子上,与其他转录因子共同形成转录前起始复合物,起始转录。该文总结了TFIID转录因子的结构、作用方式,以及在配子发生和早期胚胎发育中的调控作用。  相似文献   

11.
12.
The use of embryonic stem (ES) cells for generating healthy tissues has the potential to revolutionize therapies for human disease or injury, for which there are currently no effective treatments. Strategies for manipulating stem cell differentiation should be based on knowledge of the mechanisms by which lineage decisions are made during early embryogenesis. Here, we review current research into the factors influencing lineage differentiation in the mouse embryo and the application of this knowledge to in vitro differentiation of ES cells. In the mouse embryo, specification of tissue lineages requires cell-cell interactions that are influenced by coordinated cell migration and cellular neighborhood mediated by the key WNT, FGF, and TGFbeta signaling pathways. Mimicking the cellular interactions of the embryo by providing appropriate signaling molecules in culture has enabled the differentiation of ES cells to be directed predominately toward particular lineages. Multistep strategies incorporating the provision of soluble factors known to influence lineage choices in the embryo, coculture with other cells or tissues, genetic modification, and selection for desirable cell types have allowed the production of ES cell derivatives that produce beneficial effects in animal models. Increasing the efficiency of this process can only result from a better understanding of the molecular control of cell lineage determination in the embryo.  相似文献   

13.
14.
15.
16.
17.
The establishment of efficient methods for promoting stem cell differentiation into target cells is important not only in regenerative medicine, but also in drug discovery. In addition to embryonic stem (ES) cells and various somatic stem cells, such as mesenchymal stem cells derived from bone marrow, adipose tissue, and umbilical cord blood, a novel dedifferentiation technology that allows the generation of induced pluripotent stem (iPS) cells has been recently developed. Although an increasing number of stem cell populations are being described, there remains a lack of protocols for driving the differentiation of these cells. Regeneration of organs from stem cells in vitro requires precise blueprints for each differentiation step. To date, studies using various model organisms, such as zebrafish, Xenopus laevis , and gene-targeted mice, have uncovered several factors that are critical for the development of organs. We have been using X. laevis , the African clawed frog, which has developmental patterns similar to those seen in humans. Moreover, Xenopus embryos are excellent research tools for the development of differentiation protocols, since they are available in high numbers and are sufficiently large and robust for culturing after simple microsurgery. In addition, Xenopus eggs are fertilized externally, and all stages of the embryo are easily accessible, making it relatively easy to study the functions of individual gene products during organogenesis using microinjection into embryonic cells. In the present review, we provide examples of methods for in vitro organ formation that use undifferentiated Xenopus cells. We also describe the application of amphibian differentiation protocols to mammalian stem cells, so as to facilitate the development of efficient methodologies for in vitro differentiation.  相似文献   

18.
19.
Understanding the mechanisms of early embryonic patterning and the timely allocation of specific cells to embryonic regions and fates as well as their development into tissues and organs, is a fundamental problem in Developmental Biology. The classical explanation for this process had been built around the notion of positional information. Accordingly the programmed appearance of sources of Morphogens at localized positions within a field of cells directs their differentiation. Recently, the development of organs and tissues from unpatterned and initially identical stem cells (adult and embryonic) has challenged the need for positional information and even the integrity of the embryo, for pattern formation. Here we review the emerging area of organoid biology from the perspective of Developmental Biology. We argue that the events underlying the development of these systems are not purely linked to “self‐organization,” as often suggested, but rather to a process of genetically encoded self‐assembly where genetic programs encode and control the emergence of biological structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号