首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Samuels L  McFarlane HE 《Protoplasma》2012,249(Z1):S19-S23
Plant cell wall secretion is the result of dynamic vesicle fusion events at the plasma membrane. The importance of the lipid bilayer environment of the plasma membrane and its interactions with the endomembrane system through vesicle traffic are well recognized. Recent advances in yeast molecular biology and biochemistry lead us to re-examine the hypothesis that non-vesicular traffic of lipids through close contact sites of the plasma membrane and endoplasmic reticulum could also be important in plant cell wall biosynthesis. Non-vesicular traffic is the extraction and transfer of individual lipid molecules from a donor bilayer to a target bilayer, usually with the assistance of lipid transfer proteins.  相似文献   

2.
Plant cell wall secretion is the result of dynamic vesicle fusion events at the plasma membrane. The importance of the lipid bilayer environment of the plasma membrane and its interactions with the endomembrane system through vesicle traffic are well recognized. Recent advances in yeast molecular biology and biochemistry lead us to re-examine the hypothesis that non-vesicular traffic of lipids through close contact sites of the plasma membrane and endoplasmic reticulum could also be important in plant cell wall biosynthesis. Non-vesicular traffic is the extraction and transfer of individual lipid molecules from a donor bilayer to a target bilayer, usually with the assistance of lipid transfer proteins.  相似文献   

3.
4.
Chloroplast membrane damage during freezing: the lipid phase   总被引:1,自引:0,他引:1  
M Jensen  U Heber  W Oettmeier 《Cryobiology》1981,18(3):322-335
In order to study the effect of freeze damage to chloroplast membranes microviscosity of spinach thylakoids was probed by stearic acid spin labels. Changes in ESR parameters have been determined either as a function of temperature or during freezing at ?15 °C as a function of time. An empirical parameter h+h0 (ratio of height of a low field line component h+ over height of the central line h0) proved to be very sensitive to minute changes in membrane structure.In cryoprotected chloroplast membranes Arrhenius plot breaks indicative of phase changes are observed at +15 and ?10 °C. Breaks in the Arrhenius plots were not observed in vesicles prepared from chloroplast lipids by sonication. Instead, a melting zone was indicated below ?30 °C.Freeze damage of thylakoids during storage at ?15 °C is reflected in an increase of h+h0 and a decrease in central line width W0. At +20 °C, differences between the ESR parameters of active as compared to freeze-damaged membranes could be detected, if the osmolarity of the suspending medium exceeded 200 mosm. The observed changes in line shapes are interpreted as an increase in mobility and/or orientation of the lipids following the swelling of thylakoids. They do not indicate a disorganization of the lipid phase. Sedimentation experiments indicated that the freeze-damaged swollen membranes still exhibited osmotic responses. It is suggested that freezing which is known to dissociate proteins from the membranes altered the charge distribution of the membranes leading first to membrane swelling and finally, by the opening of hydrophilic channels, to membrane collapse.  相似文献   

5.
Lipid droplets (LDs) are dynamic cellular organelles that control many biological processes. However, molecular components determining LD growth are poorly understood. Genetic analysis has indicated that Fsp27, an LD-associated protein, is important in controlling LD size and lipid storage in adipocytes. In this paper, we demonstrate that Fsp27 is focally enriched at the LD-LD contacting site (LDCS). Photobleaching revealed the occurrence of lipid exchange between contacted LDs in wild-type adipocytes and Fsp27-overexpressing cells but not Fsp27-deficient adipocytes. Furthermore, live-cell imaging revealed a unique Fsp27-mediated LD growth process involving a directional net lipid transfer from the smaller to larger LDs at LDCSs, which is in accordance with the biophysical analysis of the internal pressure difference between the contacting LD pair. Thus, we have uncovered a novel molecular mechanism of LD growth mediated by Fsp27.  相似文献   

6.
7.
Submitochondrial membrane fractions from yeast that are enriched in inner and outer membrane contact sites were analyzed with respect to their lipid composition. Characteristic features were the significantly reduced content of phosphatidylinositol, the decreased amount of phosphatidylcholine, and the enrichment in phosphatidylethanolamine and cardiolipin. Coisolation of phosphatidylserine synthase with the outer membrane portion and enrichment of phosphatidylserine decarboxylase in the inner membrane portion of isolated contact sites provided the basis for a metabolic assay to study phosphatidylserine transfer from the outer to the inner mitochondrial membrane via contact sites. The efficient conversion to [3H]phosphatidylethanolamine of [3H]phosphatidylserine synthesized from [3H]serine in situ supports the notion that mitochondrial membrane contact sites are zones of intramitochondrial translocation of phosphatidylserine.  相似文献   

8.
Chloroplast membrane characteristics   总被引:5,自引:0,他引:5  
  相似文献   

9.
The supramolecular architecture of stacked thylakoid membrane regions of class II spinach chloroplasts has been investigated by means of freeze-fracture electron microscopy. Such membranes contain two basic types of intramembranous particles: laarge particles, which are found on the fracture face of the lumenal membrane leaflet (Bs face), and smaller ones which are found on the fracture face of the external leaflet (Cs face). By analyzing thylakoid membranes containing geometrical arrangements of intramembranous particles it is shown (a) that within the plane of each membrane approximately two small particles are associated with each large particle, and (b) that normal thylakoid stacking involves the connection of large particles of one membrane to small particles of the other and vice versa. If the two types of particles are related to Photosystems I and II, as suggested by circumstantial evidence, then our observations provide support for the idea that maximum Photosystem I-photosystem II interaction is obtained by intermembrane subunit interaction in grana stacks. To this end, our results suggest that stacking should enhance the quantum yield at very low light intensities.  相似文献   

10.
Communication between organelles is essential to coordinate cellular functions and the cell's response to physiological and pathological stimuli. Organellar communication occurs at membrane contact sites (MCSs), where the endoplasmic reticulum (ER) membrane is tethered to cellular organelle membranes by specific tether proteins and where lipid transfer proteins and cell signaling proteins are located. MCSs have many cellular functions and are the sites of lipid and ion transfer between organelles and generation of second messengers. This review discusses several aspects of MCSs in the context of lipid transfer, formation of lipid domains, generation of Ca2+ and cAMP second messengers, and regulation of ion transporters by lipids.  相似文献   

11.
Stefan CJ  Manford AG  Baird D  Yamada-Hanff J  Mao Y  Emr SD 《Cell》2011,144(3):389-401
Sac1 phosphoinositide (PI) phosphatases are essential regulators of PI-signaling networks. Yeast Sac1, an integral endoplasmic reticulum (ER) membrane protein, controls PI4P levels at the ER, Golgi, and plasma membrane (PM). Whether Sac1 can act in trans and turn over PI4P at the Golgi and PM from the ER remains a paradox. We find that Sac1-mediated PI4P metabolism requires the oxysterol-binding homology (Osh) proteins. The PH domain-containing family member, Osh3, localizes to PM/ER membrane contact sites dependent upon PM PI4P levels. We reconstitute Osh protein-stimulated Sac1 PI phosphatase activity in vitro. We also show that the ER membrane VAP proteins, Scs2/Scs22, control PM PI4P levels and Sac1 activity in vitro. We propose that Osh3 functions at ER/PM contact sites as both a sensor of PM PI4P and an activator of the ER Sac1 phosphatase. Our findings further suggest that the conserved Osh proteins control PI metabolism at additional membrane contact sites.  相似文献   

12.
Intracellular sites of lipid synthesis and the biogenesis of mitochondria   总被引:21,自引:0,他引:21  
Experimental data are presented on the intracellular localization in rat liver of three enzymes which are involved in the biosynthesis of phosphatidylethanolamine and diphosphatidylglycerol. These enzymes are phosphatidylserine decarboxylase, CDP-diglyceride-l-alpha-glycerophosphate phosphatidyl transferase, and phosphatidylethanolamine-l-serine phosphatidyl transferase. It was found that the first two enzymes are primarily mitochondrial while the latter enzyme is primarily microsomal. The intracellular sites for the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol are discussed, and the implications of their sites of biosynthesis on the assembly processes involved in the biogenesis of mitochondria are considered.  相似文献   

13.
Small GTP-binding proteins of the Ras superfamily play diverse roles in intracellular trafficking. In order to perform these functions, the proteins must associate with specific donor vesicles and be recycled after fusion of these vesicles with their acceptor membrane target. Recent results have identified a number of lipid modifications of these proteins, occurring at the N- or C-termini, that contribute to their membrane binding. Recycling appears, in some cases, to be mediated by soluble proteins that bind the lipid-modified tails, removing them from the membrane and allowing their reutilization via the cytosol.  相似文献   

14.
The influence of outer voltage on a contact of two bilayer lipid membranes has been revealed and investigated. The effect was due to the origination of an electro-osmotic water flow in the contact region.  相似文献   

15.
RME-8 is a DnaJ-domain-containing protein that was first identified in Caenorhabditis elegans as being required for uptake of yolk proteins. RME-8 has also been identified in other species, including flies and mammals, and the phenotypes of their RME-8 mutants suggest the importance of this protein in endocytosis. In the present study, we cloned human RME-8 (hRME-8) and characterized its biochemical properties and functions in endocytic pathways. hRME-8 was found to be a peripheral protein that was tightly associated with the membrane via its N-terminal region. It partially colocalized with several early endosomal markers, but not with late endosomal markers, consistent with observations by immunoelectron microscopy. When cells were transfected with a panel of dominant-active Rab proteins, hRME-8 was confined to large vacuoles induced by expression of Rab5aQ79L, but not by Rab7Q67L. Expression of C-terminally-truncated hRME-8 mutants led to the formation of large puncta and vacuoles, and compromised endocytic pathways through early endosomes, i.e., recycling of transferrin and degradation of epidermal growth factor. Taken together, these results indicate that hRME is primarily involved in membrane trafficking through early endosomes, but not through degradative organelles, such as multivesicular bodies and late endosomes.  相似文献   

16.
17.
18.
Hectd1 mutant mouse embryos exhibit the neural tube defect exencephaly associated with abnormal cranial mesenchyme. Cellular rearrangements in cranial mesenchyme are essential during neurulation for elevation of the neural folds. Here we investigate the molecular basis of the abnormal behavior of Hectd1 mutant cranial mesenchyme. We demonstrate that Hectd1 is a functional ubiquitin ligase and that one of its substrates is Hsp90, a chaperone protein with both intra- and extracellular clients. Extracellular Hsp90 enhances migration of multiple cell types. In mutant cranial mesenchyme cells, both secretion of Hsp90 and emigration of cells from cranial mesenchyme explants were enhanced. Importantly, we show that this enhanced emigration was highly dependent on the excess Hsp90 secreted from mutant cells. Together, our data set forth a model whereby increased secretion of Hsp90 in the cranial mesenchyme of Hectd1 mutants is responsible, at least in part, for the altered organization and behavior of these cells and provides a potential molecular mechanism underlying the neural tube defect.  相似文献   

19.
The abundance of caveolae in adipocytes suggests a possible cell-specific role for these structures, and because these cells take up and release fatty acids as their quantitatively most robust activity, modulation of fatty acid movement is one such role that is supported by substantial in vitro and in vivo data. In addition, caveolae are particularly rich in cholesterol and sphingolipids, and indeed, fat cells harbor more cholesterol than any other tissue. In this article, we review the role of adipocyte caveolae with regard to these important lipid classes.  相似文献   

20.
Entry into mitosis is regulated by the Cdc2 kinase complexed to B-type cyclins. We and others recently reported that cyclin B1/Cdc2 complexes, which appear to be constitutively cytoplasmic during interphase, actually shuttle continually into and out of the nucleus, with the rate of nuclear export exceeding the import rate (). At the time of entry into mitosis, the import rate is increased, whereas the export rate is decreased, leading to rapid nuclear accumulation of Cdc2/cyclin B1. Although it has recently been reported that phosphorylation of 4 serines within cyclin B1 promotes the rapid nuclear translocation of Cdc2/cyclin B1 at G(2)/M, the role that individual phosphorylation sites play in this process has not been examined (, ). We report here that phosphorylation of a single serine residue (Ser(113) of Xenopus cyclin B1) abrogates nuclear export of cyclin B1. This serine lies directly within the cyclin B1 nuclear export sequence and, when phosphorylated, prevents binding of the nuclear export factor, CRM1. In contrast, analysis of phosphorylation site mutants suggests that coordinate phosphorylation of all 4 serines (94, 96, 101, and 113) is required for the accelerated nuclear import of cyclin B1/Cdc2 characteristic of G(2)/M. Additionally, binding of cyclin B1 to importin-beta, the factor known to be responsible for the slow interphase nuclear entry of cyclin B1, appears to be unaffected by the phosphorylation state of cyclin B. These data suggest that a distinct import factor must be recruited to enhance nuclear entry of Cdc2/cyclin B1 at the G(2)/M transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号