首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A role for lipid trafficking in chloroplast biogenesis   总被引:2,自引:0,他引:2  
Chloroplasts are the defining plant organelle carrying out photosynthesis. Photosynthetic complexes are embedded into the thylakoid membrane which forms an intricate system of membrane lamellae and cisternae. The chloroplast boundary consists of two envelope membranes controlling the exchange of metabolites between the plastid and the extraplastidic compartments of the cell. The plastid internal matrix (stroma) is the primary location for fatty acid biosynthesis in plants. Fatty acids can be assembled into glycerolipids at the envelope membranes of plastids or they can be exported and assembled into lipids at the endoplasmic reticulum (ER) to provide building blocks for extraplastidic membranes. Some of these glycerolipids, assembled at the ER, return to the plastid where they are remodeled into the plastid typical glycerolipids. As a result of this cooperation of different subcellular membrane systems, a rich complement of lipid trafficking phenomena contributes to the biogenesis of chloroplasts. Considerable progress has been made in recent years towards a better mechanistic understanding of lipid transport across plastid envelopes. Lipid transporters of bacteria and plants have been discovered and their study begins to provide detailed mechanistic insights into lipid trafficking phenomena relevant to chloroplast biogenesis.  相似文献   

2.
Polar lipid trafficking is essential in eukaryotic cells as membranes of lipid assembly are often distinct from final destination membranes. A striking example is the biogenesis of the photosynthetic membranes (thylakoids) in plastids of plants. Lipid biosynthetic enzymes at the endoplasmic reticulum and the inner and outer plastid envelope membranes are involved. This compartmentalization requires extensive lipid trafficking. Mutants of Arabidopsis are available that are disrupted in the incorporation of endoplasmic reticulum-derived lipid precursors into thylakoid lipids. Two proteins affected in two of these mutants, trigalactosyldiacylglycerol 1 (TGD1) and TGD2, encode the permease and substrate binding component, respectively, of a proposed lipid translocator at the inner chloroplast envelope membrane. Here we describe a third protein of Arabidopsis, TGD3, a small ATPase proposed to be part of this translocator. As in the tgd1 and tgd2 mutants, triacylglycerols and trigalactolipids accumulate in a tgd3 mutant carrying a T-DNA insertion just 5' of the TGD3 coding region. The TGD3 protein shows basal ATPase activity and is localized inside the chloroplast beyond the inner chloroplast envelope membrane. Proteins orthologous to TGD1, -2, and -3 are predicted to be present in Gram- bacteria, and the respective genes are organized in operons suggesting a common biochemical role for the gene products. Based on the current analysis, it is hypothesized that TGD3 is the missing ATPase component of a lipid transporter involving TGD1 and TGD2 required for the biosynthesis of ER-derived thylakoid lipids in Arabidopsis.  相似文献   

3.
In most plants the assembly of the photosynthetic thylakoid membrane requires lipid precursors synthesized at the endoplasmic reticulum (ER). Thus, the transport of lipids from the ER to the chloroplast is essential for biogenesis of the thylakoids. TGD2 is one of four proteins in Arabidopsis required for lipid import into the chloroplast, and was found to bind phosphatidic acid in vitro. However, the significance of phosphatidic acid binding for the function of TGD2 in vivo and TGD2 interaction with membranes remained unclear. Developing three functional assays probing how TGD2 affects lipid bilayers in vitro, we show that it perturbs membranes to the point of fusion, causes liposome leakage and redistributes lipids in the bilayer. By identifying and characterizing five new mutant alleles, we demonstrate that these functions are impaired in specific mutants with lipid phenotypes in vivo. At the structural level, we show that TGD2 is part of a protein complex larger than 500 kDa, the formation of which is disrupted in two mutant alleles, indicative of the biological relevance of this TGD2-containing complex. Based on the data presented, we propose that TGD2, as part of a larger complex, forms a lipid transport conduit between the inner and outer chloroplast envelope membranes, with its N terminus anchored in the inner membrane and its C terminus binding phosphatidic acid in the outer membrane.  相似文献   

4.
To study the regulation of lipid transport from the chloroplast envelope to the thylakoid, intact chloroplasts, isolated from fully expanded or still-expanding pea (Pisum sativum) leaves, were incubated with radiolabeled lipid precursors and thylakoid membranes subsequently were isolated. Incubation with UDP[(3)H]Gal labeled monogalactosyldiacylglycerol in both envelope membranes and digalactosyldiacylglycerol in the outer chloroplast envelope. Galactolipid synthesis increased with incubation temperature. Transport to the thylakoid was slow below 12 degrees C, and exhibited a temperature dependency closely resembling that for the previously reported appearance and disappearance of vesicles in the stroma (D.J. Morré, G. Selldén, C. Sundqvist, A.S. Sandelius [1991] Plant Physiol 97: 1558-1564). In mature chloroplasts, monogalactosyldiacylglycerol transport to the thylakoid was up to three times higher than digalactosyldiacylglycerol transport, whereas the difference was markedly lower in developing chloroplasts. Incubation of chloroplasts with [(14)C]acyl-coenzyme A labeled phosphatidylcholine (PC) and free fatty acids in the inner envelope membrane and phosphatidylglycerol at the chloroplast surface. PC and phosphatidylglycerol were preferentially transported to the thylakoid. Analysis of lipid composition revealed that the thylakoid contained approximately 20% of the chloroplast PC. Our results demonstrate that lipids synthesized at the chloroplast surface as well as in the inner envelope membrane are transported to the thylakoid and that lipid sorting is involved in the process. Furthermore, the results also indicate that more than one pathway exists for galactolipid transfer from the chloroplast envelope to the thylakoid.  相似文献   

5.
In eukaryotes, enzymes of different subcellular compartments participate in the assembly of membrane lipids. As a consequence, interorganelle lipid transfer is extensive in growing cells. A prominent example is the transfer of membrane lipid precursors between the endoplasmic reticulum (ER) and the photosynthetic thylakoid membranes in plants. Mono- and digalactolipids are typical photosynthetic membrane lipids. In Arabidopsis, they are derived from one of two pathways, either synthesized de novo in the plastid, or precursors are imported from the ER, giving rise to distinct molecular species. Employing a high-throughput robotic screening procedure generating arrays of spot chromatograms, mutants of Arabidopsis were isolated, which accumulated unusual trigalactolipids. In one allelic mutant subclass, trigalactosyldiacylglycerol1, the primary defect caused a disruption in the biosynthesis of ER-derived thylakoid lipids. Secondarily, a processive galactosyltransferase was activated, leading to the accumulation of oligogalactolipids. Mutations in a permease-like protein of the outer chloroplastic envelope are responsible for the primary biochemical defect. It is proposed that this protein is part of a lipid transfer complex.  相似文献   

6.
In plants, newly synthesized fatty acids are either directly incorporated into glycerolipids in the plastid or exported and assembled into lipids at the endoplasmic reticulum (ER). ER-derived glycerolipids serve as building blocks for extraplastidic membranes. Alternatively, they can return to the plastid where their diacylglycerol backbone is incorporated into the glycerolipids of the photosynthetic membranes, the thylakoids. Thylakoid lipids are assembled at the plastid envelope membranes and are transferred to the thylakoids. Under phosphate-limited growth conditions, galactolipids are exported from the outer plastid envelope membranes to extraplastidic membranes. Proteins, such as TRIGALACTOSYLDIACYLGLYCEROL1 (TGD1) or VESICLE-INDUCING PROTEIN IN PLASTIDS1 (VIPP1), which are involved in different aspects of plastid lipid trafficking phenomena have recently been identified and mechanistic models that are based on the analysis of these components have begun to emerge.  相似文献   

7.
The elaborate compartmentalization of plant cells requires multiple mechanisms of protein targeting and trafficking. In addition to the organelles found in all eukaryotes, the plant cell contains a semi-autonomous organelle, the plastid. The plastid is not only the most active site of protein transport in the cell, but with its three membranes and three aqueous compartments, it also represents the most topologically complex organelle in the cell. The chloroplast contains both a protein import system in the envelope and multiple protein export systems in the thylakoid. Although significant advances have identified several proteinaceous components of the protein import and export apparatuses, the lipids found within plastid membranes are also emerging as important players in the targeting, insertion, and assembly of proteins in plastid membranes. The apparent affinity of chloroplast transit peptides for chloroplast lipids and the tendency for unsaturated MGDG to adopt a hexagonal II phase organization are discussed as possible mechanisms for initiating the binding and/or translocation of precursors to plastid membranes. Other important roles for lipids in plastid biogenesis are addressed, including the spontaneous insertion of proteins into the outer envelope and thylakoid, the role of cubic lipid structures in targeting and assembly of proteins to the prolamellar body, and the repair process of D1 after photoinhibition. The current progress in the identification of the genes and their associated mutations in galactolipid biosynthesis is discussed. Finally, the potential role of plastid-derived tubules in facilitating macromolecular transport between plastids and other cellular organelles is discussed.  相似文献   

8.
We have used an in vitro reconstitution system, consisting of cell-free translation products and intact chloroplasts, to investigate the pathway from synthesis to assembly of two polypeptide subunits of the light-harvesting chlorophyll-protein complex. These polypeptides, designated 15 and 16, are integral components of the thylakoid membranes, but they are products of cytoplasmic protein synthesis. Double immunodiffusion experiments reveal that the two polypeptides share common antigenic determinants and therefore are structurally related. Nevertheless, they are synthesized in vitro from distinct mRNAs to yield separate precursors, p15 and p16, each of which is 4,000 to 5,000 daltons larger than its mature form. In contrast to the hydrophobic mature polypeptides, the precursors are soluble in aqueous solutions. Along with other cytoplasmically synthesized precursors, p15 and p16 are imported into purified intact chloroplasts by a post- translational mechanism. The imported precursors are processed to the mature membrane polypeptides which are recovered exclusively in the thylakoids. The newly imported polypeptides are assembled correctly in the thylakoid lipid bilayer and they bind chlorophylls. Thus, these soluble membrane polypeptide precursors must move from the cytoplasm through the two chloroplast envelope membranes, the stroma, and finally insert into the thylakoid membranes, where they assemble with chlorophyll to form the light-harvesting chlorophyll protein complex.  相似文献   

9.
In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl‐constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologues of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER‐to‐chloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant.  相似文献   

10.
In plants, neutral lipids are frequently synthesized and stored in seed tissues, where the assembly of lipid droplets (LDs) coincides with the accumulation of triacylglycerols (TAGs). In addition, photosynthetic, vegetative cells can form cytosolic LDs and much less information is known about the makeup and biogenesis of these LDs. Here we focus on Chlamydomonas reinhardtii as a reference model for LDs in a photosynthetic cell, because in this unicellular green alga LD dynamics can be readily manipulated by nitrogen availability. Nitrogen deprivation leads to cellular quiescence during which cell divisions cease and TAGs accumulate. The major lipid droplet protein (MLDP) forms a proteinaceous coat surrounding mature LDs. Reducing the amount of MLDP affects LD size and number, TAG breakdown and timely progression out of cellular quiescence following nitrogen resupply. Depending on nitrogen availability, MLDP recruits different proteins to LDs, tubulins in particular. Conversely, depolymerization of microtubules drastically alters the association of MLDP with LDs. LDs also contain select chloroplast envelope membrane proteins hinting at an origin of LDs, at least in part, from chloroplast membranes. Moreover, LD surface lipids are rich in de novo synthesized fatty acids, and are mainly composed of galactolipids which are typical components of chloroplast membranes. The composition of the LD membrane is altered in the absence of MLDP. Collectively, our results suggest a mechanism for LD formation in C. reinhardtii involving chloroplast envelope membranes by which specific proteins are recruited to LDs and a specialized polar lipid monolayer surrounding the LD is formed.  相似文献   

11.
Chloroplast envelope membranes display properties that are important in lipid synthesis, regulation of metabolites, and protein transport, as well as in signal transduction. The recent discovery showing that phosphorylation of lipids occurs in envelope membranes provides a new approach for understanding the role of chloroplast lipids in these processes. The present investigation shows that three major lipid kinase activities are at least present in envelope membranes. These activities greatly depend on external conditions, such as pH, ATP concentrations, temperature, and chloroplast ATP and wortmannin sensitivity. Two types of phosphorylated lipid couples displayed similar intrinsic responses toward these biochemical parameters, namely phosphatidic acid (PA) and its lysoderivative (LPA) and monogalactosyl-phosphate-diacylglycerol (MGpDG) and its lysoderivative (LMGpDG), but not phosphatidylinositol-monophosphate (PIP) and its lysoderivative (LPIP). Phosphorylation of phosphatidylinositol was not dependent on chloroplast ATP, but was sensitive toward wortmannin in intact chloroplasts and outer envelope membrane vesicles.  相似文献   

12.
Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the major lipid components of photosynthetic membranes, and hence the most abundant lipids in the biosphere. They are essential for assembly and function of the photosynthetic apparatus. In Arabidopsis, the first step of galactolipid synthesis is catalyzed by MGDG synthase 1 (MGD1), which transfers a galactosyl residue from UDP‐galactose to diacylglycerol (DAG). MGD1 is a monotopic protein that is embedded in the inner envelope membrane of chloroplasts. Once produced, MGDG is transferred to the outer envelope membrane, where DGDG synthesis occurs, and to thylakoids. Here we present two crystal structures of MGD1: one unliganded and one complexed with UDP. MGD1 has a long and flexible region (approximately 50 amino acids) that is required for DAG binding. The structures reveal critical features of the MGD1 catalytic mechanism and its membrane binding mode, tested on biomimetic Langmuir monolayers, giving insights into chloroplast membrane biogenesis. The structural plasticity of MGD1, ensuring very rapid capture and utilization of DAG, and its interaction with anionic lipids, possibly driving the construction of lipoproteic clusters, are consistent with the role of this enzyme, not only in expansion of the inner envelope membrane, but also in supplying MGDG to the outer envelope and nascent thylakoid membranes.  相似文献   

13.
Many of the thylakoid membrane proteins of plant and algal chloroplasts are synthesized in the cytosol as soluble, higher molecular weight precursors. These precursors are post-translationally imported into chloroplasts, incorporated into the thylakoids, and proteolytically processed to mature size. In the present study, the process by which precursors are incorporated into thylakoids was reconstituted in chloroplast lysates using the precursor to the light-harvesting chlorophyll a/b protein (preLHCP) as a model. PreLHCP inserted into thylakoid membranes, but not envelope membranes, if ATP was present in the reaction mixture. Correct integration into the bilayer was verified by previously documented criteria. Integration could also be reconstituted with purified thylakoid membranes if reaction mixtures were supplemented with a soluble extract of chloroplasts. Several other thylakoid precursor proteins in addition to preLHCP, but no stromal precursor proteins, were incorporated into thylakoids under the described assay conditions. These results suggest that the observed in vitro activity represents in vivo events during the biogenesis of thylakoid proteins.  相似文献   

14.
Early events in the import/assembly pathway of an integral thylakoid protein   总被引:22,自引:0,他引:22  
The light-harvesting chlorophyll a/b protein (LHCP) is nuclear-encoded and must traverse the chloroplast envelope before becoming integrally assembled into thylakoid membranes. Previous studies implicated a soluble stromal form of LHCP in the assembly pathway, but relied upon assays in which the thylakoid insertion step was intentionally impaired [Cline, K., Fulsom, D. R. and Viitanen, P. V. (1989) J. Biol. Chem. 264, 14225-14232]. Here we have developed a rapid-stopping procedure, based upon the use of HgCl2, to analyze early events of the uninhibited assembly process. With this approach, we have found that proper assembly of LHCP into thylakoids lags considerably behind trans-envelope translocation. During the first few minutes of import, two distinct populations of mature-size LHCP accumulate within the chloroplast. One is the aforementioned soluble stromal intermediate, while the other is a partially (or improperly) assembled thylakoid species. Consistent with precursor/product relationships, both species reach peak levels at a time when virtually none of the imported molecules are correctly assembled. These results confirm and extend our previous interpretation, that upon import, preLHCP is rapidly processed to its mature form, giving rise to a soluble stromal intermediate. They further suggest that the stromal intermediate initially inserts into the thylakoid bilayer in a partially assembled form, which eventually becomes properly assembled into the light-harvesting complex.  相似文献   

15.
The galactolipids monogalactosyl and digalactosyl diacylglycerol occur in all higher plants and are the predominant lipid components of chloroplast membranes. They are thought to be of major importance to chloroplast morphology and physiology, although direct experimental evidence is still lacking. The enzymes responsible for final assembly of galactolipids are associated with the envelope membranes of plastids, and their biochemical analysis has been notoriously difficult. Therefore, we have chosen a genetic approach to study the biosynthesis and function of galactolipids in higher plants. We isolated a mutant of Arabidopsis that is deficient in digalactosyl diacylglycerol by directly screening a mutagenized M2 population for individuals with altered leaf lipid composition. This mutant carries a recessive nuclear mutation at a single locus designated dgd1. Backcrossed mutants show stunted growth, pale green leaf color, reduced photosynthetic capability, and altered thylakoid membrane ultrastructure.  相似文献   

16.
Xu C  Fan J  Froehlich JE  Awai K  Benning C 《The Plant cell》2005,17(11):3094-3110
Phosphatidate (PA) is a central metabolite of lipid metabolism and a signaling molecule in many eukaryotes, including plants. Mutations in a permease-like protein, TRIGALACTOSYLDIACYLGLYCEROL1 (TGD1), in Arabidopsis thaliana caused the accumulation of triacylglycerols, oligogalactolipids, and PA. Chloroplast lipids were altered in their fatty acid composition consistent with an impairment of lipid trafficking from the endoplasmic reticulum (ER) to the chloroplast and a disruption of thylakoid lipid biosynthesis from ER-derived precursors. The process mediated by TGD1 appears to be essential as mutation of the protein caused a high incidence of embryo abortion. Isolated tgd1 mutant chloroplasts showed a decreased ability to incorporate PA into galactolipids. The TGD1 protein was localized to the inner chloroplast envelope and appears to be a component of a lipid transporter. As even partial disruption of TGD1 function has drastic consequences on central lipid metabolism, the tgd1 mutant provides a tool to explore regulatory mechanisms governing lipid homeostasis and lipid trafficking in plants.  相似文献   

17.
K Ko  A R Cashmore 《The EMBO journal》1989,8(11):3187-3194
Various chimeric precursors and deletions of the 33 kd oxygen-evolving protein (OEE1) were constructed to study the mechanism by which chloroplast proteins are imported and targeted to the thylakoid lumen. The native OEE1 precursor was imported into isolated chloroplasts, processed and localized in the thylakoid lumen. Replacement of the OEE1 transit peptide with the transit peptide of the small subunit of ribulose-1,5-bisphosphate carboxylase, a stromal protein, resulted in redirection of mature OEE1 into the stromal compartment of the chloroplast. Utilizing chimeric transit peptides and block deletions we demonstrated that the 85 residue OEE1 transit peptide contains separate signal domains for importing and targeting the thylakoid lumen. The importing domain, which mediates translocation across the two membranes of the chloroplast envelope, is present in the N-terminal 58 amino acids. The thylakoid lumen targeting domain, which mediates translocation across the thylakoid membrane, is located within the C-terminal 27 residues of the OEE1 transit peptide. Chimeric precursors were constructed and used in in vitro import experiments to demonstrate that the OEE1 transit peptide is capable of importing and targeting foreign proteins to the thylakoid lumen.  相似文献   

18.
The lipid droplet is an important organelle for hepatitis C virus production   总被引:10,自引:0,他引:10  
The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.  相似文献   

19.
The synthesis of galactoglycerolipids, which are prevalent in photosynthetic membranes, involves enzymes at the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Genetic analysis of trigalactosyldiacylglycerol (TGD) proteins in Arabidopsis has demonstrated their role in polar lipid transfer from the ER to the chloroplast. The TGD1, 2, and 3 proteins resemble components of a bacterial-type ATP-binding cassette (ABC) transporter, with TGD1 representing the permease, TGD2 the substrate binding protein, and TGD3 the ATPase. However, the function of the TGD4 protein in this process is less clear and its location in plant cells remains to be firmly determined. The predicted C-terminal β-barrel structure of TGD4 is weakly similar to proteins of the outer cell membrane of Gram-negative bacteria. Here, we show that, like TGD2, the TGD4 protein when fused to DsRED specifically binds phosphatidic acid (PtdOH). As previously shown for tgd1 mutants, tgd4 mutants have elevated PtdOH content, probably in extraplastidic membranes. Using highly purified and specific antibodies to probe different cell fractions, we demonstrated that the TGD4 protein was present in the outer envelope membrane of chloroplasts, where it appeared to be deeply buried within the membrane except for the N-terminus, which was found to be exposed to the cytosol. It is proposed that TGD4 is either directly involved in the transfer of polar lipids, possibly PtdOH, from the ER to the outer chloroplast envelope membrane or in the transfer of PtdOH through the outer envelope membrane.  相似文献   

20.
The lipid composition and level of unsaturation of fatty acids has been determined for chloroplast thylakoid membranes isolated from Pisum sativum grown under cold (4°/7°C) or warm (14°/17°C) conditions. Both the relative amounts of lipid classes and degree of saturation were not greatly changed for the two growth conditions. In cold-grown plants, there was a slightly higher linolenic and lower linoleic acid content for the glycolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol. In contrast to thylakoid membranes, a non-thylakoid leaf membrane fraction including the chloroplast envelope, had a higher overall level of fatty acid unsaturation in cold-grown plants due mainly to an increase in the linolenic acid content of MGDG, DGDG, phosphatidylglycerol, and phosphatidylcholine. The most clear cut change in the thylakoid membrane composition was the lipid to protein ratio which was higher in the cold-grown plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号