首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
The conformational entropy of proteins can make significant contributions to the free energy of ligand binding. NMR spin relaxation enables site-specific investigation of conformational entropy, via order parameters that parameterize local reorientational fluctuations of rank-2 tensors. Here we have probed the conformational entropy of lactose binding to the carbohydrate recognition domain of galectin-3 (Gal3), a protein that plays an important role in cell growth, cell differentiation, cell cycle regulation, and apoptosis, making it a potential target for therapeutic intervention in inflammation and cancer. We used 15N spin relaxation experiments and molecular dynamics simulations to monitor the backbone amides and secondary amines of the tryptophan and arginine side chains in the ligand-free and lactose-bound states of Gal3. Overall, we observe good agreement between the experimental and computed order parameters of the ligand-free and lactose-bound states. Thus, the 15N spin relaxation data indicate that the molecular dynamics simulations provide reliable information on the conformational entropy of the binding process. The molecular dynamics simulations reveal a correlation between the simulated order parameters and residue-specific backbone entropy, re-emphasizing that order parameters provide useful estimates of local conformational entropy. The present results show that the protein backbone exhibits an increase in conformational entropy upon binding lactose, without any accompanying structural changes.  相似文献   

2.
Isothermal titration calorimetry has been applied to characterize the thermodynamics of ligand binding to wild-type lactose permease (LacY) and a mutant (C154G) that strongly favors an inward facing conformation. The affinity of wild-type or mutant LacY for ligand and the change in free energy (DeltaG) upon binding are similar. However, with the wild type, the change in free energy upon binding is due primarily to an increase in the entropic free energy component (TDeltaS), whereas in marked contrast, an increase in enthalpy (DeltaH) is responsible for DeltaG in the mutant. Thus, wild-type LacY behaves as if there are multiple ligand-bound conformational states, whereas the mutant is severely restricted. The findings also indicate that the structure of the mutant represents a conformational intermediate in the overall transport cycle.  相似文献   

3.
A general model is presented whereby lignand-induced changes in protein dynamics could produce allosteric communication between distinct binding sites, even in the absence of a macromolecular conformational change. Theoretical analysis, based on the statistical thermodynamics of ligand binding, shows that cooperative interaction free energies amounting to several kJ · mol-1 may be generated by this means. The effect arises out of the possible changes in frequencies and amplitudes of macromolecular thermal fluctuations in response to ligand attachment, and can involve all forms of dynamic behaviour, ranging from highly correlated, low-frequency normal mode vibrations to random local anharmonic motions of individual atoms or groups. Dynamic allostery of this form is primarily an entropy effect, and we derive approximate expressions which might allow the magnitude of the interaction in real systems to be calculated directly from experimental observations such as changes in normal mode frequencies and mean-square atomic displacements. Long-range influence of kinetic processes at different sites might also be mediated by a similar mechanism. We suggest that proteins and other biological macromolecules may have evolved to take functional advantage not only of mean conformational states but also of the inevitable thermal fluctuations about the mean.  相似文献   

4.
Proteins possessing the same fold may undergo similar motions, particularly if these motions involve large conformational transitions. The increasing amounts of structural data provide a useful starting point with which to test this hypothesis. We have performed a total of 0.29 micros of molecular dynamics across a series of proteins within the same fold family (periplasmic binding proteinlike) in order to address to what extent similarity of motion exists. Analysis of the local conformational space on these timescales (10-20 ns) revealed that the behavior of the proteins could be readily distinguished between an apo-state and a ligand-bound state. Moreover, analysis of the root-mean-square fluctuations reveals that the presence of the ligand exerts a stabilizing effect on the protein, with similar motions occurring, but with reduced magnitude. Furthermore, the conformational space in the presence of the ligand appears to be dictated by sequence but not by the type of ligand present. In contrast, apo-simulations showed considerable overlap of conformational space across the fold as a result of their ability to undergo larger fluctuations. Indeed, we observed several transitions from different simulations between states corresponding to the closed-cleft and open-cleft forms of the fold, with the predominant motions being conserved across the different proteins. Thus, large-scale conformational changes do indeed appear to be conserved across this fold architecture, but smaller conformational motions appear to reflect the differences in sequence and local fold.  相似文献   

5.
Allostery is fundamentally thermodynamic in nature. Long-range communication in proteins may be mediated not only by changes in the mean conformation with enthalpic contribution but also by changes in dynamic fluctuations with entropic contribution. The important role of protein motions in mediating allosteric interactions has been established by NMR spectroscopy. By using CAP as a model system, we have shown how changes in protein structure and internal dynamics can allosterically regulate protein function and activity. The results indicate that changes in conformational entropy can give rise to binding enhancement, binding inhibition, or have no effect in the expected affinity, depending on the magnitude and sign of enthalpy–entropy compensation. Moreover, allosteric interactions can be regulated by the modulation a low-populated conformation states that serve as on-pathway intermediates for ligand binding. Taken together, the interplay between fast internal motions, which are intimately related to conformational entropy, and slow internal motions, which are related to poorly populated conformational states, can regulate protein activity in a way that cannot be predicted on the basis of the protein’s ground-state structure.  相似文献   

6.
Our understanding of what determines ligand affinity of proteins is poor, even with high-resolution structures available. Both the non-covalent ligand–protein interactions and the relative free energies of available conformations contribute to the affinity of a protein for a ligand. Distant, non-binding site residues can influence the ligand affinity by altering the free energy difference between a ligand-free and ligand-bound conformation. Our hypothesis is that when different ligands induce distinct ligand-bound conformations, it should be possible to tweak their affinities by changing the free energies of the available conformations. We tested this idea for the maltose-binding protein (MBP) from Escherichia coli. We used single-molecule Förster resonance energy transfer (smFRET) to distinguish several unique ligand-bound conformations of MBP. We engineered mutations, distant from the binding site, to affect the stabilities of different ligand-bound conformations. We show that ligand affinity can indeed be altered in a conformation-dependent manner. Our studies provide a framework for the tuning of ligand affinity, apart from modifying binding site residues.  相似文献   

7.
The thermodynamics of binding of [125I]BE 2254 to the alpha 1-adrenoceptor in guinea pig brain membranes have been investigated at four different temperatures between 0 and 37 degrees C. The affinity and binding capacity of the radioligand did not vary with temperature. Thus, the change in enthalpy upon binding was close to zero whereas the change in entropy was large and positive (delta S degrees approximately 45 cal/mol-deg). In addition, [125I]BE 2254 has been used as a reporter ligand to probe the thermodynamics of the interaction of a variety of alpha-adrenoceptor agonists and antagonists with the alpha 1-adrenoceptor. Binding of all ligands was associated with large positive changes in entropy (delta S degrees between 18 and 48 cal/mol-deg) and little, or no, change in enthalpy, a finding that provides no convincing evidence for conformational rearrangement of alpha 1-adrenoceptors upon ligand binding.  相似文献   

8.
《Biophysical journal》2020,118(10):2502-2512
Proline-rich motifs (PRMs) are widely used for mediating protein-protein interactions with weak binding affinities. Because they are intrinsically disordered when unbound, conformational entropy plays a significant role for the binding. However, residue-level differences of the entropic contribution in the binding of different ligands remain not well understood. We use all-atom molecular dynamics simulation and the maximal information spanning tree formalism to analyze conformational entropy associated with the binding of two PRMs, one from the Abl kinase and the other from the nonstructural protein 1 of the 1918 Spanish influenza A virus, to the N-terminal SH3 (nSH3) domain of the CrkII protein. Side chains of the stably folded nSH3 experience more entropy change upon ligand binding than the backbone, whereas PRMs involve comparable but heterogeneous entropy changes among the backbone and side chains. In nSH3, two conserved nonpolar residues forming contacts with the PRM experience the largest side-chain entropy loss. In contrast, the C-terminal charged residues of PRMs that form polar contacts with nSH3 experience the greatest side-chain entropy loss, although their “fuzzy” nature is attributable to the backbone that remains relatively flexible. Thus, residues that form high-occupancy contacts between nSH3 and PRM do not reciprocally contribute to entropy loss. Furthermore, certain surface residues of nSH3 distal to the interface with PRMs gain entropy, indicating a nonlocal effect of ligand binding. Comparing between the PRMs from cAbl and nonstructural protein 1, the latter involves a larger side-chain entropy loss and forms more contacts with nSH3. Consistent with experiments, this indicates stronger binding of the viral ligand at the expense of losing the flexibility of side chains, whereas the backbone experiences less entropy loss. The entropy “hotspots” as identified in this study will be important for tuning the binding affinity of various ligands to a receptor.  相似文献   

9.
Regulation of gene expression via riboswitches is a widespread mechanism in bacteria. Here, we investigate ligand binding of a member of the guanidine sensing riboswitch family, the guanidine-II riboswitch (Gd-II). It consists of two stem–loops forming a dimer upon ligand binding. Using extensive molecular dynamics simulations we have identified conformational states corresponding to ligand-bound and unbound states in a monomeric stem–loop of Gd-II and studied the selectivity of this binding. To characterize these states and ligand-dependent conformational changes we applied a combination of dimensionality reduction, clustering, and feature selection methods. In absence of a ligand, the shape of the binding pocket alternates between the conformation observed in presence of guanidinium and a collapsed conformation, which is associated with a deformation of the dimerization interface. Furthermore, the structural features responsible for the ability to discriminate against closely related analogs of guanidine are resolved. Based on these insights, we propose a mechanism that couples ligand binding to aptamer dimerization in the Gd-II system, demonstrating the value of computational methods in the field of nucleic acids research.  相似文献   

10.
Fitter J 《Biophysical journal》2003,84(6):3924-3930
Thermal unfolding of proteins at high temperatures is caused by a strong increase of the entropy change which lowers Gibbs free energy change of the unfolding transition (DeltaG(unf) = DeltaH - TDeltaS). The main contributions to entropy are the conformational entropy of the polypeptide chain itself and ordering of water molecules around hydrophobic side chains of the protein. To elucidate the role of conformational entropy upon thermal unfolding in more detail, conformational dynamics in the time regime of picoseconds was investigated with neutron spectroscopy. Confined internal structural fluctuations were analyzed for alpha-amylase in the folded and the unfolded state as a function of temperature. A strong difference in structural fluctuations between the folded and the unfolded state was observed at 30 degrees C, which increased even more with rising temperatures. A simple analytical model was used to quantify the differences of the conformational space explored by the observed protein dynamics for the folded and unfolded state. Conformational entropy changes, calculated on the basis of the applied model, show a significant increase upon heating. In contrast to indirect estimates, which proposed a temperature independent conformational entropy change, the measurements presented here, demonstrated that the conformational entropy change increases with rising temperature and therefore contributes to thermal unfolding.  相似文献   

11.
In addition to hydrogen bonds, van der Waals forces contribute to the affinity of protein-carbohydrate interactions. Nonpolar van der Waals contacts in the complexes of the L-arabinose-binding protein (ABP) with monosaccharides have been studied by means of site-directed mutagenesis, equilibrium and rapid kinetic binding techniques, and X-ray crystallography. ABP, a periplasmic transport receptor of Escherichia coli, binds L-arabinose, D-galactose, and D-fucose with preferential affinity in the order of Ara greater than Gal much greater than Fuc. Well-refined, high-resolution structures of ABP complexed with the three sugars revealed that the structural differences in the ABP-sugar complexes are localized around C5 of the sugars, where the equatorial H of Ara has been substituted for CH3 (Fuc) or CH2OH (Gal). The side chain of Met108 undergoes a sterically dictated, ligand-specific, conformational change to optimize nonpolar interactions between its methyl group and the sugar. We found that the Met108Leu ABP binds Gal tighter than wild-type ABP binds Ara and exhibits a preference for ligand in the order of Gal much greater than Fuc greater than Ara. The differences in affinity can be attributed to differences in the dissociation rates of the ABP-sugar complexes. We have refined at better than 1.7-A resolution the crystal structures of the Met108Leu ABP complexed with each of the sugars and offer a molecular explanation for the altered binding properties.  相似文献   

12.
We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics.  相似文献   

13.
The structure, ligand binding kinetics, and thermodynamics of hemoglobin have been the subject of a great deal of investigation. However, the exact pathway(s) by which cooperative energetics are communicated within the protein remain undefined. The effects of interspecies variations in quaternary and tertiary structure, oxygen affinity, cooperativity, and ligand binding kinetics upon the overall ligand binding process are, therefore, of great importance in understanding and solving these problems. The demonstrated sensitivity of resonance Raman spectroscopy to heme structure and environment make it an ideal probe of ligand binding dynamics. It is possible to examine how specific vibrational modes change with time and correlate this with solution conditions and protein structural and conformational differences. Those modes which exhibit the greatest change with ligand photolysis are also indicative of possible paths of cooperative energy dissipation within the protein. The changes which occur in the vibrational modes of the heme within 10 ns of CO photolysis have been determined for a wide variety of mammalian and reptilian hemoglobins. The modes most affected by this process are, without exception, nu(Fe-His), nu4, and the substituent bending modes, delta(cb - s) and delta(cb - c alpha - c beta). Furthermore, a direct correlation exists between the shift in porphyrin pi electron density upon CO photolysis (as indicated by the transient changes in nu 4) and the Hill coefficient of cooperativity. The implications of those results concerning ligand binding cooperativity in hemoglobins are discussed.  相似文献   

14.
K D Martin  L J Parkhurst 《Biochemistry》1990,29(24):5718-5726
The tetrameric hemoglobin from Urechis caupo is nearly ideal for studying ligation to the T-state. Our previous EXAFS study had shown that the Fe is displaced 0.35 A from the mean plane of the porphyrin in the HbCO derivative. We have carried out detailed kinetic studies of oxygen and CO ligation as a function of temperature in order to characterize both the kinetics and thermodynamics of ligation in this hemoglobin. The entropy change associated with ligation essentially corresponds to simple immobilization of the ligand and is virtually the same as that we have determined for leghemoglobin, an extreme R-state-type hemoglobin. The low ligand affinities thus derive from small enthalpies of ligation, which can be correlated with the large out of plane displacement of the Fe. Only oxygen pulse measurements revealed kinetic evidence for cooperative oxygen binding, but a direct measurement of oxygen binding gave a Hill number of 1.3. An allosteric analysis gave L = 2.6 and c = 0.048 (oxygen) and c = 0.77 (CO). The higher affinity state in this weakly cooperative hemoglobin is denoted T*, and it is for this state that thermodynamic quantities have been determined. The small differences between T and T* in CO binding were nevertheless sufficient to allow us to measure by flash photolysis the rate of the T*----T conformational change in terms of an allosteric model. The half-time for this transition was calculated to be 8-14 ms at 20 degrees C.  相似文献   

15.
Tetrameric ligand binding domains of the family of ionotropic glutamate receptors assemble as dimers-of-dimers. Crystallographic studies of several glutamate receptor subtype isolated core-dimers suggest a single stable dimeric conformation. A binding domain dimer has not been captured in other conformations without the aid of biochemical methods to disrupt a critical dimer interface. Molecular dynamics simulations and continuum electrostatics calculations reveal that the active glutamate bound form of the ligand-binding domain found in typical crystal structures is the preferred energetic state of the isolated core-dimer in the presence of agonist glutamate. A desensitized conformational state is a higher energy ligand-bound state of the core-dimer. The resting apo conformational state is comparatively the least energetically favored conformation and does not contain a single state but a set of energetically equivalent conformational core-dimer states. We hypothesize the energetic balance of an open versus closed transmembrane region must be included to characterize the absolute energetic states of the full receptor, which in the presence of the ligand is believed to be a desensitized state.  相似文献   

16.
Riboswitches are ligand-dependent RNA genetic regulators that control gene expression by altering their structures. The elucidation of riboswitch conformational changes before and after ligand recognition is crucial to understand how riboswitches can achieve high ligand binding affinity and discrimination against cellular analogs. The detailed characterization of riboswitch folding pathways suggest that they may use their intrinsic conformational dynamics to sample a large array of structures, some of which being nearly identical to ligand-bound molecules. Some of these structural conformers can be "captured" upon ligand binding, which is crucial for the outcome of gene regulation. Recent studies about the SAM-I riboswitch have revealed unexpected and previously unknown RNA folding mechanisms. For instance, the observed helical twist of the P1 stem upon ligand binding to the SAM-I aptamer adds a new element in the repertoire of RNA strategies for recognition of small metabolites. From an RNA folding perspective, these findings also strongly indicate that the SAM-I riboswitch could achieve ligand recognition by using an optimized combination of conformational capture and induced-fit approaches, a feature that may be shared by other RNA regulatory sequences.  相似文献   

17.
Kinetics of ligand binding to the type 1 Fc epsilon receptor on mast cells   总被引:2,自引:0,他引:2  
Rates of association and dissociation of several specific monovalent ligands to and from the type I Fc epsilon receptor (Fc epsilon RI) were measured on live mucosal type mast cells of the rat line RBL-2H3. The ligands employed were a monoclonal murine IgE and Fab fragments prepared from three different, Fc epsilon RI-specific monoclonal IgG class antibodies. These monoclonals (designated H10, J17, and F4) were shown previously to trigger mediator secretion by RBL-2H3 mast cells upon binding to and dimerization of the Fc epsilon RI. Analysis of the kinetics shows that the minimal mechanism to which all data can be fitted involves two consecutive steps: namely, ligand binding to a low-affinity state of the receptor, followed by a conformational transition into a second, higher affinity state h of the receptor-ligand complex. These results resolve the recently noted discrepancy between the affinity of IgE binding to the Fc epsilon RI as determined by means of binding equilibrium measurements [Ortega et al. (1988) EMBO J. 7, 4101] and the respective parameter derived from the ratio of the rate constant of rat IgE dissociation and the initial rate of rat IgE association [Wank et al. (1983) Biochemistry 22, 954]. The probability of undergoing the conformational transition differs for the four different Fc epsilon RI-ligand complexes: while binding of Fab-H10 and IgE favors the h state, binding of Fab-J17 and Fab-F4 preferentially maintains the low-affinity 1 state (at 25 degrees C). The temperature dependence of the ligand interaction kinetics with the Fc epsilon RI shows that the activation barrier for ligand association is determined by positive enthalpic and entropic contributions. The activation barrier of the 1----h transition, however, has negative enthalpic contributions counteracted by a decrease in activation entropy. The h----1 transition encounters a barrier that is predominantly entropic and similar for all ligands employed, thus suggesting that the Fc epsilon RI undergoes a similar conformational transition upon binding any of the ligands.  相似文献   

18.
The specific binding of ligands is the first step of gene expression or translation regulation by riboswitches. However, understanding the mechanism of the specific binding is still difficult because the tertiary structures of the riboswitch aptamers are available almost only for ligand-bound state at present. In this paper we hope to give some insights into this problem through the studies of the role of ligand-aptamer interaction in the structural organization of add A-riboswitch aptamer, based on the crystal structure of the ligand-bound aptamer. We use all-atom molecular dynamics to simulate the behaviors of the aptamer in ligand-bound, free and mutated states by Amber force field. The results show that the correct paring of the ligand adenine with the nucleotide U74 in the binding pocket is crucial to stabilizing the conformations of the ligand-bound aptamer, especially the helix P1 connecting the expression platform. Our results also suggest that both the nucleotide U74 and U51 may be the key sites of the ligand recognition but the former has much higher probability as the initial docking site. This is in agreement with previous experimental results.  相似文献   

19.
Antibody engineering represents a promising area in biotechnology. Recombinant antibodies can be easily manipulated generating new ligand and effector activities that can be used as prototype magic bullets. On the other hand, an extensive knowledge of recombinant antibody binding and stability features are essential for an efficient substitution. In this study, we compared the stability and protein binding properties of two recombinant antibody fragments with their parental monoclonal antibody. The recombinant fragments were a monomeric scFv and a dimeric one, harboring human IgG1 CH2-CH3 domains. We have used fluorescence titration quenching to determine the thermodynamics of the interaction between an anti-Z-DNA monoclonal antibody and its recombinant antibody fragments with Z-DNA. All the antibody fragments seemed to bind DNA similarly, in peculiar two-affinity states. Enthalpy-entropy compensation was observed for both affinity states, but a marked entropy difference was observed for the monomeric scFv antibody fragment, mainly for the high affinity binding. In addition, we compared the stability of the dimeric antibody fragment and found differences favoring the monoclonal antibody. These differences seem to derive from the heterologous expression system used.  相似文献   

20.
The conformational energy landscape of a protein determines populations of all possible conformations of the protein and also determines the kinetics of the conversion between the conformations. Interaction with ligands influences the conformational energy landscapes of proteins and shifts populations of proteins in different conformational states. To investigate the effect of ligand binding on partial unfolding of a protein, we use Escherichia coli dihydrofolate reductase (DHFR) and its functional ligand NADP+ as a model system. We previously identified a partially unfolded form of DHFR that is populated under native conditions. In this report, we determined the free energy for partial unfolding of DHFR at varying concentrations of NADP+ and found that NADP+ binds to the partially unfolded form as well as the native form. DHFR unfolds partially without releasing the ligand, though the binding affinity for NADP+ is diminished upon partial unfolding. Based on known crystallographic structures of NADP+‐bound DHFR and the model of the partially unfolded protein we previously determined, we propose that the adenosine‐binding domain of DHFR remains folded in the partially unfolded form and interacts with the adenosine moiety of NADP+. Our result demonstrates that ligand binding may affect the conformational free energy of not only native forms but also high‐energy non‐native forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号