首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Met receptor tyrosine kinase mediates pleiotropic cellular responses following its activation by hepatocyte growth factor or scatter factor (HGF/SF). STAT3 was reported to be one of direct downstream molecules in HGF/SF-Met signaling. In the present study, however, we observed that Tyr705 of STAT3 was phosphorylated from 2 h or 6 h in NIH3T3 and Chang liver cells, respectively, after HGF/SF treatment. Blocking of the phosphorylation by cycloheximide or actinomycin D and the rapid STAT3 phosphorylation with the conditioned medium from HGF/SF-treated NIH3T3 cells suggested that a newly synthesized secretory protein was responsible for the delayed STAT3 phosphorylation. Among the known mediators to induce STAT3 phosphorylation, interleukin-6 (IL-6) mRNA and protein were induced by HGF/SF, and the released IL-6 was accumulated in the conditioned medium after HGF/SF treatment. Furthermore, the neutralizing IL-6 antibody abolished the STAT3 phosphorylation. Treatment with LY294002, a PI3 kinase inhibitor, but not with other signal inhibitors, resulted in the loss of delayed STAT3 phosphorylation by HGF/SF, showing the involvement of PI3 kinase pathway. Collectively, these results demonstrate that HGF/SF-Met signal cascade stimulates IL-6 production via PI3 kinase pathway, leading to STAT3 phosphorylation as a secondary effect.  相似文献   

2.
Hepatocyte growth factor/scatter factor (HGF/SF) stimulates numerous cellular activities capable of contributing to the metastatic phenotype, including growth, motility, invasiveness, and morphogenetic transformation. When inappropriately expressed in vivo, an HGF/SF transgene induces numerous hyperplastic and neoplastic lesions. NK1 and NK2 are natural splice variants of HGF/SF; all interact with a common receptor, Met. Although both agonistic and antagonistic properties have been ascribed to each isoform in vitro, NK1 retains the full spectrum of HGF/SF-like activities when expressed as a transgene in vivo. Here we report that transgenic mice broadly expressing NK2 exhibit none of the phenotypes characteristic of HGF/SF or NK1 transgenic mice. Instead, when coexpressed in NK2-HGF/SF bitransgenic mice, NK2 antagonizes the pathological consequences of HGF/SF and discourages the subcutaneous growth of transplanted Met-containing melanoma cells. Remarkably, the metastatic efficiency of these same melanoma cells is dramatically enhanced in NK2 transgenic host mice relative to wild-type recipients, rivaling levels achieved in HGF/SF and NK1 transgenic hosts. Considered in conjunction with reports that in vitro NK2 induces scatter, but not other activities, these data strongly suggest that cellular motility is a critical determinant of metastasis. Moreover, our results demonstrate how alternatively structured ligands can be exploited in vivo to functionally dissociate Met-mediated activities and their downstream pathways.  相似文献   

3.
Met signaling mutants as tools for developmental studies   总被引:4,自引:0,他引:4  
The Met receptor is widely expressed in embryonic and adult epithelial tissues; its ligand (hepatocyte growth factor/scatter factor, HGF/SF) is expressed in the mesenchymal component of various organs. The generation of hgf and met null mice has revealed an essential role for this ligand-receptor pair in the development of the placenta, liver, and limb muscles. However the early lethality of the null mutants has precluded analysis of Met function in late development. To extend the possible observation period, we generated mutant metalleles of different severity. This was done by impairing the ability of the receptor to transduce the HGF/SF signal, via mutation of consensus sequences in the multifunctional docking site present in the C-terminal tail of the receptor. Mice expressing a Met mutant still active as a kinase, but unable to recruit its effectors, died in mid-gestation with the same phenotype as the metknockout, proving the importance of phosphotyrosine-SH2 interactions in vivo. Mice expressing a Met receptor with partial loss of signaling function survived until birth and revealed novel aspects of HGF/SF-Met function during muscle development.  相似文献   

4.
ABSTRACT

Aberrant activation of hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, Met, is involved in the development and progression of many human cancers. In the screening assay of extracts from the root tuber of Tetrastigma hemsleyanum Diels et Gilg, isoquercitrin inhibited HGF/SF-Met signaling as indicated by its inhibitory activity on HGF/SF-induced cell scattering. Further analysis revealed that isoquercitrin specifically inhibited HGF/SF-induced tyrosine phosphorylation of Met. We also found that isoquercitrin decreased HGF-induced migration and invasion by parental or HGF/SF-transfected bladder carcinoma cell line NBT-II cells. Furthermore, isoquercitrin inhibited HGF/SF-induced epithelial mesenchymal transition in vitro and the invasion/metastasis of HGF/SF-transfected NBT-II cells in vivo. Our data suggest the possible use of isoquercitrin in human cancers associated with dysregulated HGF/SF-Met signaling.  相似文献   

5.
HGF/SF-met signaling in the control of branching morphogenesis and invasion   总被引:22,自引:0,他引:22  
Hepatocyte growth factor/Scatter factor (HGF/SF) is a multifunctional growth factor which can induce diverse biological events. In vitro, these include scattering, invasion, proliferation and branching morphogenesis. In vivo, HGF/SF is responsible for many processes during embryonic development and a variety of activities in adults, and many of these normal activities have been implicated in its role in tumorgenesis and metastasis. The c-Met receptor tyrosine kinase is the only known receptor for HGF/SF and mediates all HGF/SF induced biological activities. Upon HGF/SF stimulation, the c-Met receptor is tyrosine-phosphorylated which is followed by the recruitment of a group of signaling molecules and/or adaptor proteins to its cytoplasmic domain and its multiple docking sites. This action leads to the activation of several different signaling cascades that form a complete network of intra and extracellular responses. Different combinations of signaling pathways and signaling molecules and/or differences in magnitude of responses contribute to these diverse series of HGF/SF-Met induced activities and most certainly are influenced by cell type as well as different cellular environments. In this review, we focus on HGF/SF-induced branching morphogenesis and invasion, and bring together recent new findings which provide insight into how HGF/SF, via c-Met induces this response.  相似文献   

6.
Hepatocyte growth factor/scatter factor (HGF/SF) is a potent mitogen, motogen, and morphogen for epithelial cells expressing its tyrosine kinase receptor, the c-met proto-oncogene product, and is required for normal development in the mouse. Inappropriate stimulation of Met signal transduction induces aberrant morphogenesis and oncogenesis in mice and has been implicated in human cancer. NK1 is a naturally occurring HGF/SF splice variant composed of only the amino terminus and first kringle domain. While the biological activities of NK1 have been controversial, in vitro data suggest that it may have therapeutic value as an HGF/SF antagonist. Here, we directly test this hypothesis in vivo by expressing mouse NK1 in transgenic mice and comparing the consequent effects with those observed for mice carrying an HGF/SF transgene. Despite robust expression, NK1 did not behave as an HGF/SF antagonist in vivo. Instead, NK1-transgenic mice displayed most of the phenotypic characteristics associated with HGF/SF-transgenic mice, including enlarged livers, ectopic skeletal-muscle formation, progressive renal disease, aberrant pigment cell localization, precocious mammary lobuloalveolar development, and the appearance of mammary, hepatocellular, and melanocytic tumors. And like HGF/SF-transgenic livers, NK1 livers had higher levels of tyrosine-phosphorylated complexes associated with Met, suggesting that the mechanistic basis for the effects of NK1 overexpression in vivo was autocrine activation of Met. We conclude that NK1 acts in vivo as a partial agonist. As such, the efficacy of NK1 as a therapeutic HGF/SF antagonist must be seriously questioned.  相似文献   

7.
How to make tubes: signaling by the Met receptor tyrosine kinase   总被引:10,自引:0,他引:10  
Hepatocyte growth factor/scatter factor (HGF/SF), acting through the receptor tyrosine kinase Met, stimulates cells derived from a variety of different organs to form elongated hollow tubules when grown in three-dimensional gels. In vivo data also indicate a role for HGF/SF and Met in tubule formation during liver and kidney regeneration and mammary gland formation. Activation of Met results in the recruitment of a myriad of signal transducers that regulate dissociation of adherens junctions and the stimulation of cellular motility, survival, proliferation and morphogenesis during tubule formation. Among these many signal transducers, the Gab1 adaptor protein and its effector, the SHP2 tyrosine phosphatase, have been found to be crucial for tubulogenesis and for the sustained stimulation of the ERK/MAP kinase pathway. Here, we discuss the contribution of these and other signaling pathways and the role of HGF/SF and Met in the formation of epithelial cell tubules both in vitro in branching-morphogenesis assays and in vivo during organogenesis.  相似文献   

8.
Hepatocyte growth factor/scatter factor (HGF/SF) is a pluripotent growth factor that exerts mitogenic, motogenic, and morphogenic effects. To elucidate the cellular mechanisms underlying the pluripotent function of this growth factor, T47D human breast cancer cells were transfected with human hgf/sf. The hgf/sf-positive clones exhibited different levels of biologically functional HGF/SF expression and up-regulation of endogenous Met (HGF/SF receptor) expression. In addition, a constitutive phosphorylation of the receptor on tyrosine residues was detected, establishing a Met-HGF/SF autocrine loop. The autocrine activation of Met caused marked inhibition in cell growth accompanied by cell accumulation at G0/G1. These cells underwent terminal cell differentiation as determined by morphological changes, synthesis of milk proteins such as beta-casein and alpha-lactalbumin, and production of lipid vesicles. Our results demonstrate that Met-HGF/SF, an oncogenic signal transduction pathway, is capable of inducing growth arrest and differentiation in certain breast cancer cells and, thus, may have potential as therapeutic and/or prognostic tools in breast cancer treatment.  相似文献   

9.
Hepatocyte growth factor (HGF)/scatter factor (SF) is a unique growth factor, in that it binds both heparan sulphate (HS) and dermatan sulphate (DS). The sequences in HS and DS that specifically interact with and modulate HGF/SF activity have not yet been fully identified. Ascidian DS, which uniquely possesses O-sulphation at C-6 (and not C-4) of its N -acetylgalactosamine unit, was analysed for HGF/SF-binding activity in the biosensor. The kinetic analysis revealed a strong, biologically relevant interaction with an equilibrium dissociation constant ( K (d)) of approx. 1 nM. An Erk activation assay also demonstrated stimulation of the MAP kinase pathway downstream of the Met receptor following addition of both HGF/SF and ascidian DS to the glycosaminoglycan-deficient CHO-745 mutant cell line. Furthermore, the activation of Met and the MAP kinase pathway by HGF/SF and ascidian DS leads to a cellular response in the form of migration.  相似文献   

10.
The tyrosine kinase Met, the product of the c-met proto-oncogene and the receptor for hepatocyte growth factor/scatter factor (HGF/SF), mediates signals critical for cell survival and migration. The human pathogen Listeria monocytogenes exploits Met signaling for invasion of host cells via its surface protein InlB. We present the crystal structure of the complex between a large fragment of the human Met ectodomain and the Met-binding domain of InlB. The concave face of the InlB leucine-rich repeat region interacts tightly with the first immunoglobulin-like domain of the Met stalk, a domain which does not bind HGF/SF. A second contact between InlB and the Met Sema domain locks the otherwise flexible receptor in a rigid, signaling competent conformation. Full Met activation requires the additional C-terminal domains of InlB which induce heparin-mediated receptor clustering and potent signaling. Thus, although it elicits a similar cellular response, InlB is not a structural mimic of HGF/SF.  相似文献   

11.
The Met tyrosine kinase receptor is a widely expressed molecule which mediates pleiotropic cellular responses following activation by its ligand, hepatocyte growth factor/scatter factor (HGF/SF). In this communication we demonstrate that significant Met degradation is induced by HGF/SF and that this degradation can be blocked by lactacystin, an inhibitor of proteasome activity. We also show that Met is rapidly polyubiquitinated in response to ligand and that polyubiquitinated Met molecules, which are normally unstable, are stabilized by lactacystin. Both HGF/SF-induced degradation and polyubiquitination of Met were shown to be dependent on the receptor possessing intact tyrosine kinase activity. Finally, we found that a normally highly labile 55-kDa fragment of the Met receptor is stabilized by lactacystin and demonstrate that it represents a cell-associated remnant that is generated following the ligand-independent proteolytic cleavage of the Met receptor in its extracellular domain. This truncated Met molecule encompasses the kinase domain of the receptor and is itself tyrosine phosphorylated. We conclude that the ubiquitin-proteasome pathway plays a significant role in the degradation of the Met tyrosine kinase receptor as directed by ligand-dependent and -independent signals. We propose that this proteolytic pathway may be important for averting cellular transformation by desensitizing Met signaling following ligand stimulation and by eliminating potentially oncogenic fragments generated via extracellular cleavage of the Met receptor.  相似文献   

12.
Hepatocyte growth factor/scatter factor (HGF/SF) stimulates migration of various cells and has been linked via Met tyrosine kinase-signaling to transformation and the metastatic phenotype. Migration of transformed MDCK-F cells depends on activation of a charybdotoxin-sensitive, volume-activated membrane K+ current. Thus, we used patch-clamp electrophysiology and transwell migration assays to determine whether HGF/SF stimulation of MDCK II cell migration depends on the activation of membrane K+ currents. HGF/SF activated a membrane K+ current that increased over 24 hr, and which could be modulated by increasing intracellular calcium concentration, [Ca2+]i. Charybdotoxin (ChTX, 50 nM), iberiotoxin (IbTX, 100 nM), stichodactyla toxin (Stk, 100 nM) and clotrimazole (CLT, 1 mM) all inhibited this current. HGF/SF (100 scatter units/ml) significantly increased MDCK II cell migration over 8 hr compared to control cells. Addition of ChTX (50 nM), IbTX (100 nM), Stk (100 nM) or CLT (1 microM) inhibited the HGF/SF-stimulated MDCK II cell migration. We conclude that the activation of membrane Ca2+-activated K+current is necessary for HGF/SF stimulation of MDCK II cell.  相似文献   

13.
Hepatocyte growth factor/scatter factor (HGF/SF), the ligand for the receptor tyrosine kinase encoded by the c-Met proto-oncogene, is a multidomain protein structurally related to the pro-enzyme plasminogen and with major roles in development, tissue regeneration and cancer. We have expressed the N-terminal (N) domain, the four kringle domains (K1 to K4) and the serine proteinase homology domain (SP) of HGF/SF individually in yeast or mammalian cells and studied their ability to: (i) bind the Met receptor as well as heparan sulphate and dermatan sulphate co-receptors, (ii) activate Met in target cells and, (iii) map their binding sites onto the beta-propeller domain of Met. The N, K1 and SP domains bound Met directly with comparable affinities (K(d)=2.4, 3.3 and 1.4 microM). The same domains also bound heparin with decreasing affinities (N>K1>SP) but only the N domain bound dermatan sulphate. Three kringle domains (K1, K2 and K4) displayed agonistic activity on target cells. In contrast, the N and SP domains, although capable of Met binding, displayed no or little activity. Further, cross-linking experiments demonstrated that both the N domain and kringles 1-2 bind the beta-chain moiety (amino acid residues 308-514) of the Met beta-propeller. In summary, the K1, K2 and K4 domains of HGF/SF are sufficient for Met activation, whereas the N and SP domains are not, although the latter domains contribute additional binding sites necessary for receptor activation by full length HGF/SF. The results provide new insights into the structure/function of HGF/SF and a basis for engineering the N and K1 domains as receptor antagonists for cancer therapy.  相似文献   

14.
High levels of the Met tyrosine kinase receptor expression are associated with metastatic disease. Met activation by hepatocyte growth factor (HGF) is associated with decreased E-cadherin-dependent cell-cell contacts. The molecular mechanism underlying this process remains unclear. To better understand the relationship between E-cadherin and Met, we assessed Met localization in cells which form mature E-cadherin-dependent adhesion HT-29 and cells which have lost E-cadherin expression BT-549. Met colocalized with E-cadherin at the site of cell-cell adhesion in HT-29 cells, but Met was distributed in an intracellular compartment in BT-549 cells. Forced expression of E-cadherin in BT-549 cells recruited Met to the membrane. Cross-linking studies suggested that Met and E-cadherin interact in the extracellular domain in HT-29 cells. This is the first evidence of a physical interaction between Met and E-cadherin. We suggest that this receptor/cadherin pairing may be a mechanism for cellular presentation of receptors in a manner that localizes them optimally for interaction with ligand.  相似文献   

15.
HGF/SF and its receptor (Met) are principal mediators of mesenchymal-epithelial interactions in several different systems and have recently been implicated in the control of hair follicle (HF) growth. We have studied their expression patterns during HF morphogenesis and cycling in C57BL/6 mice, whereas functional hair growth effects of HGF/SF were assessed in vivo by analysis of transgenic mice and in skin organ culture. In normal mouse skin, follicular expression of HGF/SF and Met was strikingly localized: HGF/SF was found only in the HF mesenchyme (dermal papilla fibroblasts) and Met in the neighboring hair bulb keratinocytes. Both HGF/SF and Met expression peaked during the initial phases of HF morphogenesis, the stage of active hair growth (early and mid anagen), and during the apoptosis-driven HF regression (catagen). Met+ cells in the regressing epithelial strand appeared to be protected from undergoing apoptosis. Compared to wild-type controls, transgenic mice overexpressing HGF/SF under the control of the MT-1 promoter had twice as many developing HF and displayed accelerated HF development on postnatal day 3. They also showed significant catagen retardation on P17. In organ culture and in vivo, HGF/SF i.c. resulted in a significant catagen retardation. These results demonstrate an important role of HGF/SF and Met in murine hair growth control and suggest that Met-mediated signaling might be exploited for therapeutic manipulation of human hair growth disorders.-Lindner, G., Menrad, A., Gherardi, E., Merlino, G., Welker, P., Handjiski, B., Roloff, B., Paus, R. Involvement of hepatocyte growth factor/scatter factor and Met receptor signaling in hair follicle morphogenesis and cycling.  相似文献   

16.
Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic effector inducing invasion and metastasis of tumor cells that express the Met tyrosine kinase receptor. One of the effectors of HGF/SF is the urokinase-type plasminogen activator, a serine protease that facilitates tumor progression and metastasis by controlling the synthesis of the extracellular matrix degrading plasmin. Stimulation of NIH 3T3 cells that were stably transfected with the human Met receptor (NIH 3T3-Methum) with HGF/SF induced a trans-activation of the urokinase promoter and urokinase secretion. Induction of the urokinase promoter by HGF/SF via the Met receptor was blocked by co-expression of a dominant-negative Grb2 and Sos1 expression construct. Further, the expression of the catalytically inactive mutants of Ha-Ras, RhoA, c-Raf, and Erk2 or addition of the Mek1-specific inhibitor PD 098059 abrogated the stimulation of the urokinase promoter by HGF/SF. A sequence residing between -2109 and -1870 base pairs (bp) was critical for stimulation of the urokinase gene by HGF/SF. Mobility shift assays with oligonucleotides spanning an AP-1 site at -1880 bp or a combined PEA3/AP-1 site at -1967 bp showed binding of nuclear factors from NIH 3T3-Methum cells. Expression of an expression plasmid that inhibits DNA binding of AP-1 proteins (A-Fos) abrogated inducible and basal activation of the urokinase promoter. Nuclear extract from unstimulated NIH 3T3-Methum cells contained more JunD and showed a stronger JunD supershift with the AP-1 oligonucleotides, compared with HGF/SF-stimulated cells. Consistent with the levels of JunD expression being functionally important for basal expression of the urokinase promoter, we found that overexpression of wild type JunD inhibited the induction of the urokinase promoter by HGF/SF. These data suggest that the induction of urokinase by HGF/SF is regulated by a Grb2/Sos1/Ha-Ras/c-Raf/RhoA/Mek1/Erk2/c-++ +Jun-dependent mitogen-activated protein kinase pathway.  相似文献   

17.
Hepatocyte growth factor (HGF) is essential for embryogenesis, tissue regeneration and tumour malignancy through the activation of its receptor, c‐Met. We previously demonstrated that HGF α‐chain hairpin–loop, K1 domain and β‐chain are required for c‐Met signalling. The sequential phosphorylation of tyrosine residues, from c‐Met kinase domain to multidocking regions, is required for HGF‐signalling transduction. Herein, we provide evidence that the disconcerted activation of c‐Met tyrosine regions fails to induce biological functions. When human cells were incubated with ‘mouse HGF’, kinase domain activation (i.e. phospho‐Tyr‐1230/34/35) became evident, but the multidocking site (i.e. Tyr‐1349) was not phosphorylated, resulting in unsuccessful induction of migration and mitogenesis. The binding ability of mouse HGF α‐chain, or of β‐chain, to human c‐Met was lower than that of human HGF, as evidenced by HGF–chimera assay. Notably, only four amino acid positions in HGF α‐chain hairpin–loop and K1 domain and six positions in β‐chain differed between human HGF and mouse HGF. The human‐specific amino acids (such as Gln‐95 in hairpin–loop, Arg‐134 in K1 domain and Cys‐561 in β‐chain) may be important for accurate c‐Met assembly and signalling transduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Objectives: Aberrant Met signalling is associated with aggressive cancer cell phenotypes. γ‐tocotrienol displays potent anti‐cancer activity that is associated with suppression of HER/ErbB receptor signalling. Experiments were conducted to investigate the effects of γ‐tocotrienol treatment on HGF‐dependent +SA mammary tumour cell proliferation, upon Met activation. Materials and methods: The +SA cells were maintained in serum‐free defined media containing 10 ng/ml HGF as the mitogen. Cell viability was determined using the MTT assay, western blot analysis was used to measure protein expression, and Met expression and activation were determined using immunofluorescent staining. Results and conclusions: Treatment with γ‐tocotrienol or Met inhibitor, SU11274, significantly inhibited HGF‐dependent +SA cell replication in a dose–responsive manner. Treatment with 4 μm γ‐tocotrienol reduced both total Met levels and HGF‐induced Met autophosphorylation. In contrast, similar treatment with 5.5 μm SU11274 inhibited HGF‐induced Met autophosphorylation, but had no effect on total Met levels. Combined treatment with subeffective doses of γ‐tocotrienol (2 μm ) and SU11274 (3 μm ) resulted in significant inhibition of +SA cell expansion compared to treatment with individual agents alone. These findings show, for the first time, the inhibitory effects of γ‐tocotrienol on Met expression and activation, and strongly suggest that γ‐tocotrienol treatment may provide significant health benefits in prevention and/or treatment of breast cancer, in women with deregulated HGF/Met signalling.  相似文献   

20.
Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These studies also demonstrate a synergy between the loss of VHL function and Met signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号