首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A compilation of literature data and recent experiments led to the following conclusions regarding cyclic adenosine 3':5' monophosphate (cAMP) regulation of gene expression. Several classes of cAMP-induced gene expression can be discriminated by sensitivity to stimulation kinetics. The aggregation-related genes respond only to nanomolar cAMP pulses. The prestalk-related genes respond both to nanomolar pulses and persistent micromolar stimulation. The prespore specific genes respond only to persistent micromolar stimulation. The induction of the aggregation- and prestalk-related genes by nanomolar cAMP pulses may share a common transduction pathway, which does not involve cAMP, while involvement of the inositol 1,4,5-trisphosphate (IP3)/Ca2+ pathway is unlikely. Induction of the expression of prespore and prestalk-related genes by micromolar cAMP stimuli utilizes divergent signal processing mechanisms. cAMP-induced prespore gene expression does not involve cAMP and probably also not cyclic guanosine 3'.5' monophosphate (cGMP) as intracellular intermediate. Involvement of cAMP-induced phospholipase C (PLC) activation in this pathway is suggested by the observation that IP3 and 1,2-diacylglycerol (DAG) can induce prespore gene expression, albeit in a somewhat indirect manner and by the observation that Li+ and Ca2+ antagonists inhibit prespore gene expression. Cyclic AMP induction of prestalk-related gene expression is inhibited by IP3 and DAG and promoted by Li+, and is relatively insensitive to Ca2+ antagonists, which indicates that PLC activation does not mediate prestalk-related gene expression. Neither prespore nor prestalk-related gene expression utilizes the sustained cAMP-induced pHi increase as intracellular intermediate.  相似文献   

2.
3.
Abstract. The effects of the differentiation inducing factor (DIF) on several cAMP-induced responses in Dictyostelium were investigated. It was found that DIF reduces the apparent affinity of cell-surface cAMP receptors. DIF does not affect the cAMP-induced cGMP response, but it is a potent inhibitor of the cAMP-relay response. DIF also inhibits the induction of prespore differentiation by cAMP in aggregation-competent cells. We also compared the effects of DIF on cAMP-induced responses with those of the relay inhibitor, caffeine, and the morphogen, adenosine.  相似文献   

4.
Adenosine promotes the cAMP-induced increase of mRNAs, probed with the cDNAs D11 and D14, which are preferentially expressed in prestalk cells, while it inhibits cAMP-induced prespore gene expression. Half-maximal inhibition of prespore gene expression occurs at about 300 muM, while prestalk stimulation by adenosine occurs at about 100-fold lower concentrations and requires the presence of cAMP. These results indicate that adenosine interferes with the transduction to cAMP to gene expression and suggest the involvement of two different adenosine target sites. Our data furthermore indicate that the transduction of extracellular cAMP to prespore gene or prestalk gene expression occurs via divergent pathways.  相似文献   

5.
M C Mehdy  D Ratner  R A Firtel 《Cell》1983,32(3):763-771
We have identified genes that are expressed preferentially in either prestalk or prespore cells in Dictyostelium. The prestalk mRNAs are detectable at 7.5 hr prior to the completion of cell aggregation, while the prespore mRNAs are not detectable until approximately 15 hr of development. Exogenous cAMP in the absence of sustained cell contact is sufficient to induce prestalk-specific gene expression, while multicellularity is required for the induction of prespore-specific genes. A gene expressed equally in both cell types, which has the same developmental kinetics as the prestalk genes, is induced in shaking culture in the absence of either cAMP or stable cell associations. Dissociation of aggregates results in the rapid loss of prespore- and prestalk-specific mRNAs, and these can be induced to reaccumulate with the addition of cAMP. We conclude that there are substantial differences in the timing and requirements for tissue-specific gene expression in Dictyostelium.  相似文献   

6.
A number of genes encoding developmentally regulated mRNAs in the cellular slime mold, Dictyostelium discoideum, have been described. Many of these are regulated by cAMP. Analysis of the earliest time at which elevated levels of cAMP can induce the expression of these mRNAs reveals a more complex pattern of regulation in which genes change in their ability to be induced in response to cAMP with developmental stage. A prestalk mRNA (C1/D11) previously thought not be regulated by elevated levels of cAMP is inducible by cAMP between aggregation and loose mound stage; later in development its expression becomes independent of elevated cAMP. The early prespore genes (prespore class I) also show two modes of regulation; early in development they are induced independently of continuous elevated levels of cAMP, while later in development their expression is dependent upon elevated cAMP. The period during development when the prestalk genes are cAMP inducible precedes by 2 hr the first time at which either the early prespore class I or late prespore class II mRNAs are inducible by continuous elevated levels of cAMP. Previous analysis of these mRNAs has been carried out using Dictyostelium cells grown axenically. In this report we have studied the developmental expression of these mRNAs in cells grown on bacteria. A substantial shutoff of the class I prestalk and early prespore (class I) mRNAs not seen in axenically grown cells is observed when bacterially grown cells are plated for development. Less than 10% of the maximal level of these mRNAs remains in the cells at the time of mature spore and stalk differentiation. Additionally, in the bacterially grown cells two distinct patterns of developmental regulation are observed for mRNAs which in axenically growing cells appear to be constitutively expressed throughout growth and development.  相似文献   

7.
We investigated the effect of LiCl on pattern formation and cAMP-regulated gene expression in Dictyostelium discoideum. In intact slugs, 5 mM LiCl induces an almost complete redifferentiation of prespore into prestalk cells. We found that LiCl acts by interfering with the transduction of extracellular cAMP to cell-type-specific gene expression; LiCl inhibits the induction of prespore-specific gene expression by cAMP, while it promotes the induction of prestalk-associated gene expression by cAMP. Our results indicate that two divergent pathways transduce the extracellular cAMP signal to, respectively, prestalk and prespore gene expression.  相似文献   

8.
T Jin  R D Soede  J Liu  A R Kimmel  P N Devreotes    P Schaap 《The EMBO journal》1998,17(17):5076-5084
Deletion of the single gene for the Dictyostelium G protein beta-subunit blocks development at an early stage. We have now isolated temperature-sensitive alleles of Gbeta to investigate its role in later development. We show that Gbeta is directly required for adenylyl cyclase A activation and for morphogenetic signaling during the entire developmental program. Gbeta was also essential for induction of aggregative gene expression by cAMP pulses, a process that is mediated by serpentine cAMP receptors (cARs). However, Gbeta was not required for cAR-mediated induction of prespore genes and repression of stalk genes, and neither was Gbeta needed for induction of prestalk genes by the differentiation inducing factor (DIF). cAMP induction of prespore genes and repression of stalk genes is mediated by the protein kinase GSK-3. GSK-3 also determines cell-type specification in insects and vertebrates and is regulated by the wingless/wnt morphogens that are detected by serpentine fz receptors. The G protein-dependent and -independent modes of cAR-mediated signaling reported here may also exist for the wingless/wnt signaling pathways in higher organisms.  相似文献   

9.
Cyclic AMP induces postaggregative differentiation in aggregation competent cells of Dictyostelium by interacting with cell surface cAMP receptors. We investigated the transduction pathway of this response and additional requirements for the induction of postaggregative differentiation. Optimal induction of postaggregative gene expression requires that vegetative cells are first exposed to 2-4 hr of nanomolar cAMP pulses, and subsequently for 4-6 hr to steady-state cAMP concentrations in the micromolar range. Cyclic AMP pulses, which are endogenously produced before and during aggregation, induce full responsiveness to cAMP as a morphogen. The transduction pathway from the cell surface cAMP receptor to postaggregative gene expression may involve Ca2+ ions as intracellular messengers. A cAMP-induced increase in intracellular cAMP or cGMP levels is not involved in the transduction pathway.  相似文献   

10.
The cytoplasmic pH (pHi) of populations of developing Dictyostelium discoideum cells was determined by means of two independent pH null-point methods. Both methods reveal in populations containing 75-80% prespore cells a pHi value of about 0.2 pH units higher than in populations containing 50% prespore cells. During the process of cell type regulation, decreases and increases in the percentage of prespore cells of about 15-20% are accompanied by decreases and increases in pHi of about 0.2 pH units. Abolition of these changes in pHi by means of a weak base or acid also prevents the regulation process. It is concluded that changes in pHi are involved in the prespore cell type regulation in D. discoideum.  相似文献   

11.
Dictyostelium cells exhibit four types of kinetically distinct surface cAMP binding sites, the AH, AL, BS, and BSS sites, which are down-regulated during persistent stimulation with cAMP. Although most cAMP-induced responses are subject to desensitization during constant stimulation, some responses, notably the induction of post-aggregative gene expression, require persistent cAMP stimulation. The kinetics and specificity of residual cAMP-binding activity in cells treated for 4 h with micromolar cAMP were investigated. It was found that around 4000 rapidly dissociating binding sites per cell with an affinity of about 300 nM are retained after down-regulation. The nucleotide specificity of the remaining sites was very similar, but not completely identical to the AH, AL and B sites, suggesting that these sites belong to the same class of cell surface cAMP receptors and may be utilized to mediate responses requiring continuous cAMP stimulation.  相似文献   

12.
13.
Li+ drastically alters pattern formation in Dictyostelium by inhibiting cAMP-induced prespore-gene expression and promoting cAMP-induced prestalk-gene expression. We reported previously that Li+ inhibits inositol monophosphatases in this organism and strongly reduces basal and cAMP-stimulated inositol 1,4,5-trisphosphate levels. We show here that Li+ also reduces cAMP-induced accumulation of cAMP, but promotes cAMP-induced accumulation of cGMP. This effect is not due to inhibition of cGMP hydrolysis or inhibition of adaptation and may therefore reflect stimulation of guanylyl-cyclase activation. Li+ does not affect the binding of cAMP to surface receptors but interferes with the interaction between receptors and guanine-nucleotide-binding regulatory (G) proteins. These effects are complex; in the absence of Mg2+, Li+ increases guanosine 5'-[gamma-thio]triphosphate(GTP[S])-binding activity to similar levels as 1 mM Mg2+. However, while Mg2+ potentiates cAMP-induced stimulation of GTP[S]-binding activity, Li+ effectively inhibits stimulation. Li+ also inhibits cAMP-stimulated, but not basal high-affinity GTP-ase activity, indicating an inhibitory effect on cAMP-induced activation of G-proteins. Our data suggest that in addition to inositolphosphate metabolism, the activation of G-proteins may be a second biochemical target for Li+ effects on pattern formation and signal transduction in Dictyostelium.  相似文献   

14.
A variety of studies have shown that differentiation of Dictyostelium discoideum amoebae in the presence of cAMP is strongly influenced by extracellular pH and various other treatments thought to act by modifying intracellular pH. Thus conditions expected to lower intracellular pH markedly enhance stalk cell formation, while treatments with the opposite effect favor spores. To directly test the idea that intracellular pH is a cell-type-specific messenger in Dictyostelium, we have measured intracellular pH in cells exposed to either low extracellular pH plus weak acid or high extracellular pH plus weak base using 31P nuclear magnetic resonance (NMR). Our results show that there is no significant difference in intracellular pH (cytosolic or mitochondrial) between pH conditions which strongly promote either stalk cell or spore formation, respectively. We have also examined the effects of external pH on the expression of various cell-type-specific markers, particularly mRNAs. Some mRNAs, such as those of the prestalk II (PL1 and 2H6) and prespore II (D19, 2H3) categories, are strongly regulated by external pH in a manner consistent with their cell-type specificity during normal development. Other markers such as mRNAs D14 (prestalk I), D18 (prespore I), 10C3 (common), or the enzyme UDP-galactose polysaccharide transferase are regulated only weakly or not at all by external pH. In sum, our results show that modulation of phenotype by extracellular pH in cell monolayers incubated with cAMP does not precisely mimic the regulation of stalk and spore pathways during normal development and that this phenotypic regulation by extracellular pH does not involve changes in intracellular pH.  相似文献   

15.
We are studying cell differentiation in Dictyostelium discoideum by examining the regulation of genes that are preferentially expressed in different cell types. A system has been established in which prestalk- and prespore-cell-specific genes are expressed in single cells in response to culture conditions. We confirm our previous results showing that cyclic AMP induces prestalk genes and now show that it is also required for prespore gene induction. The expression of both classes of genes is additionally dependent on the presence of a factor(s) secreted by developing cells which we call conditioned medium factor(s). An assay for conditioned medium factor(s) shows that it is detectable within 2.5 h after the onset of development. Conditioned medium factor(s) also promotes the expression of genes induced early in development, but has no detectable effect on the expression of actin genes and a gene expressed maximally in vegetative cells. In the presence of conditioned medium factor(s), exogenous cyclic AMP at the onset of starvation fails to induce the prespore and prestalk genes. The addition of cyclic AMP between 2 and 12 h of starvation results in rapid prestalk gene expression, whereas prespore genes are induced at an invarient time (approximately 18 h after the onset of starvation). These data suggest that cyclic AMP and conditioned medium factor(s) are sufficient for prestalk gene induction, whereas an additional parameter(s) is involved in the control of prespore gene induction. In contrast to several previous studies, we show that multicellularity is not essential for the expression of either prespore or prestalk genes. These data indicate that prespore and prestalk genes have cell-type-specific as well as shared regulatory factors.  相似文献   

16.
Abstract The novel gene dia2 (differentiation-associated gene 2) was originally isolated as a gene expressed specifically in response to initial differentiation of Dictyostelium discoideum Ax-2 cells. Using dia2AS cells in which the dia2 expression was inactivated by the antisense RNA method, DIA2 protein was found to be required for cAMP signaling during cell aggregation. During late development, the DIA2 protein changed its location from the endoplasmic reticulum (ER) to prespore-specific vacuoles (PSVs) that are specifically present in prespore cells of the slug. In differentiating prestalk cells, however, DIA2 was found to be nearly lost from the cells. Importantly, exocytosis of PSVs from prespore cells and the subsequent spore differentiation were almost completely impaired in dia2AS cells. In addition, spore induction by externally applied 8-bromo cAMP was significantly suppressed in dia2AS cells. Taken together, these results strongly suggested that DIA2 might be closely involved in cAMP signaling and spore differentiation as well as in the initiation of differentiation during Dictyostelium development.  相似文献   

17.
Elevated levels of cAMP are essential for the expression of many postaggregation prespore and prestalk mRNA species and for the suppression of some growth phase mRNAs. Here we review evidence that this regulation is mediated by cAMP interacting at the cell surface receptor. These effects of cAMP on gene expression can occur under conditions where the receptor-associated adenylate cyclase is inactivated and in concentrations that are consistent with receptor-binding. A number of differences are noted in the mechanism by which cAMP regulates prespore and prestalk genes. Finally, evidence is reviewed for the role of a Ca2+-dependent signal transduction system in coupling the expression of some of the prespore mRNAs to the cAMP receptor. This signal transduction system does not appear to be involved in the expression of the cAMP-dependent prestalk gene.  相似文献   

18.
Amoebas and other protists commonly encyst when faced with environmental stress. Although little is known of the signaling pathways that mediate encystation, the analogous process of spore formation in dictyostelid social amoebas is better understood. In Dictyostelium discoideum, secreted cyclic AMP (cAMP) mediates the aggregation of starving amoebas and induces the differentiation of prespore cells. Intracellular cAMP acting on cAMP-dependent protein kinase (PKA) triggers the maturation of spores and prevents their germination under the prevalent conditions of high osmolality in the spore head. The osmolyte-activated adenylate cyclase, ACG, produces cAMP for prespore differentiation and inhibition of spore germination. To retrace the origin of ACG function, we investigated ACG gene conservation and function in species that span the dictyostelid phylogeny. ACG genes, osmolyte-activated ACG activity, and osmoregulation of spore germination were detected in species that represent the 4 major groups of Dictyostelia. Unlike the derived species D. discoideum, many basal Dictyostelia have retained the ancestral mechanism of encystation from solitary amoebas. In these species and in solitary amoebas, encystation is independently triggered by starvation or by high osmolality. Osmolyte-induced encystation was accompanied by an increase in cAMP and prevented by inhibition of PKA, indicating that ACG and PKA activation mediate this response. We propose that high osmolality signals drought in soil amoebas and that developmental cAMP signaling in the Dictyostelia has evolved from this stress response.  相似文献   

19.
20.
A secreted counting factor (CF), regulates the size of Dictyostelium discoideum fruiting bodies in part by regulating cell-cell adhesion. Aggregation and the expression of adhesion molecules are mediated by relayed pulses of cAMP. Cells also respond to cAMP with a short cGMP pulse. We find that CF slowly down-regulates the cAMP-induced cGMP pulse by inhibiting guanylyl cyclase activity. A 1-min exposure of cells to purified CF increases the cAMP-induced cAMP pulse. CF does not affect the cAMP receptor or its interaction with its associated G proteins or the translocation of the cytosolic regulator of adenylyl cyclase to the membrane in response to cAMP. Pulsing streaming wild-type cells with a high concentration of cAMP results in the formation of small groups, whereas reducing cAMP pulse size with exogenous cAMP phosphodiesterase during stream formation causes cells to form large groups. Altering the extracellular cAMP pulse size does not phenocopy the effects of CF on the cAMP-induced cGMP pulse size or cell-cell adhesion, indicating that CF does not regulate cGMP pulses and adhesion via CF's effects on cAMP pulses. The results suggest that regulating cell-cell adhesion, the cGMP pulse size, or the cAMP pulse size can control group size and that CF regulates all three of these independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号