首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 261 毫秒
1.
There is a considerable amount of conflicting evidence from several studies as to the action of applied N-methyl-D-aspartate (NMDA) on the release of glutamate and aspartate in the brain. In the present study the effect of NMDA on extracellular levels of endogenous amino acids was investigated in conscious, unrestrained rats using intracerebral microdialysis. NMDA caused dose-related increases in extracellular levels of glutamate and aspartate; threonine and glutamine were unaffected. The NMDA-evoked release of glutamate and aspartate was significantly decreased by the specific NMDA receptor antagonist 3-[(+-)-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid. In addition, increasing the perfusate concentration (and therefore the extracellular concentration) of Ca2+ significantly enhanced the NMDA-evoked release of glutamate and aspartate, whereas removal of Ca2+ and addition of a high Mg2+ concentration to the perfusate caused a significant reduction in their NMDA-evoked release. Moreover, the NMDA-evoked release of glutamate and aspartate was reduced in decorticate animals. These results demonstrate that, in the striatum in vivo, NMDA causes selective release of endogenous glutamate and aspartate from neurone terminals and that this action occurs through an NMDA receptor-mediated mechanism. The ability of NMDA receptor activation to induce release of glutamate and aspartate, perhaps by a positive feedback mechanism, may be relevant to the pathologies underlying epilepsy and ischaemic and hypoglycaemic brain damage.  相似文献   

2.
The in vivo effects of kainate (1 mM) on fluxes of 45Ca2+, and endogenous amino acids, were examined in the rat striatum using the brain microdialysis technique. Kainate evoked a rapid decrease in dialysate 45Ca2+, and an increase in the concentration of amino acids in dialysates in Ca2+-free dialysates. Taurine was elevated six- to 10-fold, glutamate two- to threefold, and aspartate 1.5- to twofold. There was also a delayed increase in phosphoethanolamine, whereas nonneuroactive amino acids were increased only slightly. The kainic acid-evoked reduction in dialysate 45Ca2+ activity was attenuated in striata lesioned previously with kainate, suggesting the involvement of intrinsic striatal neurons in this response. The increase in taurine concentration induced by kainate was slightly smaller under these conditions. Decortication did not affect the kainate-evoked alterations in either dialysate 45Ca2+ or amino acids. These data suggest that kainate does not release acidic amino acids from their transmitter pools located in corticostriatal terminals.  相似文献   

3.
Abstract: Disruption of corticostriatal glutamate input in the striatum decreased significantly extracellular striatal glutamate and dopamine levels. Local administration of 300 µ M concentration of excitatory receptor agonist kainic acid increased significantly extracellular striatal dopamine in intact freely moving rats. These findings support the hypothesis that glutamate exerts a tonic facilitatory effect on striatal dopamine release. The effect of kainic acid on extracellular striatal glutamate concentration in intact rats was a biphasic increase. The first glutamate increase can be explained by stimulation of presynaptic kainate receptors present on corticostriatal glutamatergic nerve terminals; the second increase is probably the result of a continuous interaction of the different striatal neurotransmitters after disturbance of their balance. Release of dopamine and glutamate was modulated differently in the intact striatum and in the striatum deprived of corticostriatal input. Dopamine release in the denervated striatum after kainate receptor stimulation was significantly lower than in intact striatum, confirming the so-called cooperativity between glutamate and kainic acid. Loss of presynaptic kainate receptors on the glutamatergic nerve terminals after decortication resulted in a loss of effect of kainic acid on glutamate release in denervated striatum. Aspartate showed no significant changes in this study.  相似文献   

4.
The effects of corticostriatal deafferentation (decortication) and destruction of intrinsic neurons (intrastriatal kainate injection) on the extracellular concentration, and veratrine-releasable pools, of endogenous amino acids in the rat striatum were examined using the in vivo brain dialysis technique. Intracellular amino acid content was also determined. Decortication reduced selectively intra- and extracellular levels of glutamate (Glu) and aspartate (Asp). Extracellular changes were more pronounced than those in tissue content. gamma-Aminobutyric acid (GABA), taurine (Tau), and phosphoethanolamine (PEA) levels were not affected, whereas nonneuroactive amino acids were increased at 1 week but not at 1 month post-lesion. The intracellular pool of Glu and Asp was also reduced in kainate-lesioned striata. However, extracellular levels of these compounds were not affected significantly by this treatment. The tissue content of all other amino acids was decreased, the most prominent change being in the concentration of GABA. Extracellular GABA concentration was also reduced dramatically, whereas the concentrations of noneuroactive amino acids were increased to varying degrees. These data suggest that transmitter pools of neuroactive amino acids are an important supply for their extracellular pools. Lesion-induced alterations in nonneuroactive amino acids are discussed with regard to the loss of metabolic pools, glial reactivity, and changes in blood-brain barrier transport. Veratrine induced a massive release of neuroactive amino acids such as Glu, Asp, GABA, and Tau into the extracellular fluid, and a delayed increase in PEA. Extracellular levels of neuroactive amino acids were raised slightly. Decortication reduced, selectively, the amounts of Glu and Asp released by veratrine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The aim here was to examine the possible roles of adenylyl cyclase- and protein kinase A (PKA)-dependent processes in ionotropic glutamate receptor (iGluR)-mediated neurotransmission using superfused mouse striatal slices and a non-metabolized L-glutamate analogue, D-[3H]aspartate. The direct and indirect presynaptic modulation of glutamate release and its susceptibility to changes in the intracellular levels of cyclic AMP (cAMP), Ca(2+) and calmodulin (CaM) and in protein phosphorylation was characterized by pharmacological manipulations. The agonists of iGluRs, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate, stimulated the basal release of D-[3H]aspartate, while N-methyl-D-aspartate (NMDA) was without effect. Both the AMPA- and kainate-mediated responses were accentuated by the beta-adrenoceptor agonist isoproterenol. These facilitatory effects were mimicked by the permeable cAMP analogue dibutyryl-cAMP. The beta-adrenoceptor antagonist propranolol, the adenylyl cyclase inhibitor MDL12,330A, the inhibitor of PKA and PKC, H-7, and the PKA inhibitor H-89 abolished the isoproterenol effect on the kainate-evoked release. The dibutyryl-cAMP-induced potentiation was also attenuated by H-7. Isoproterenol, propranolol and MDL12,330A failed to affect the basal release of D-[3H]aspartate, but dibutyryl-cAMP was inhibitory and MDL12,330A activatory. In Ca(2+)-free medium, the kainate-evoked release was enhanced, being further accentuated by the CaM antagonists calmidazolium and trifluoperazine, though these inhibited the basal release. The potentiating effect of calmidazolium on the kainate-stimulated release was counteracted by both MDL12,330A and H-7.We conclude that AMPA- and kainate-evoked glutamate release from striatal glutamatergic terminals is potentiated by beta-adrenergic receptor-mediated adenylyl cyclase activation and cAMP accumulation. Glutamate release is enhanced if the Ca(2+)- and CaM-dependent, kainate-evoked processes do not prevent the excessive accumulation of intracellular cAMP.  相似文献   

6.
The concentration of extracellular excitatory amino acids in the striatum of conscious, unrestrained rats was measured using intracerebral microdialysis, during chemical stimulation of the striatum in intact and hemidecorticate animals. Chemical stimulation of the striatum with tityustoxin (0.1 microM) evoked a rise in dialysate concentration of glutamate (to 383% of basal) and aspartate (to 156% of basal), accompanied by a drop in glutamine (to 55% of basal). These changes showed significant attenuation after treatment with L-proline (1 mM) or 2-chloroadenosine (15 microM). Unilateral degeneration of the corticostriate pathway, produced by frontal hemidecortication, caused a reduction in both basal and stimulated levels of glutamate in the lesioned side, whereas no effect was observed in the intact side. Similarly, basal and stimulated levels of glutamine were unchanged in the intact side, but were increased in the lesioned side. These results provide in vivo evidence for glutamate and possibly aspartate being neurotransmitters in the corticostriate pathway. In addition they lend support to previous studies in vitro, which implicated glutamine as the principal precursor for neurotransmitter glutamate.  相似文献   

7.
The uptake and release of D-[3H]aspartate (used as a tracer for endogenous glutamate and aspartate) were studied in cultured glutamatergic neurons (cerebellar granule cells) and astrocytes at normal (5 mM) or high (55 mM) potassium and under conditions of hypoglycemia, anoxia or "ischemia" (combined hypoglycemia and anoxia). In glutamatergic neurons it was found that "ischemic" conditions led to a 2.4-fold increase in the potassium-induced release of D-[3H]aspartate as compared to normal conditions. Hypoglycemia or anoxia alone affected the release only marginally. The ischemia-induced induced increase in the evoked D-[3H]aspartate release was shown to be calcium-dependent. In astrocytes no difference was found in the potassium-induced release between the four conditions and the K+-induced release was not calcium-dependent. The uptake of D-[3H]aspartate was found to be stimulated at high potassium in both glutamatergic neurons (98%) and in astrocytes (70%). This stimulation of D-aspartate uptake, however, was significantly reduced under conditions of anoxia or "ischemia" in both cell types. In glutamatergic neurons (but not in astrocytes) hypoglycemia also decreased the potassium stimulation of D-aspartate uptake. In a previous report it was shown, using the microdialysis technique, that during transient cerebral ischemia in vivo the extracellular glutamate content in hippocampus was increased eightfold. In the present paper it is shown that essentially no increase in extracellular glutamate is seen under ischemia when the perfusion is performed using calcium-free, cobalt-containing perfusion media. The results from the in vitro and in vivo experiments indicate that the glutamate accumulated extracellularly under ischemia in vivo originates from transmitter pools in glutamatergic neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Abstract: We have used in vivo microdialysis in anaesthetised rats to investigate whether somatostatin (SRIF) can play a neuromodulatory role in the striatum. When 100 n M SRIF was retrodialysed for 15 min, it increased concentrations of dopamine (DA) by 28-fold, γ-aminobutyric acid (GABA) by eightfold, and glutamate (Glu) by sixfold as well as those of aspartate (Asp) and taurine (Tau). These effects were both calcium- and tetrodotoxin-sensitive. Lower (10 or 50 n M ) and higher (1 µ M ) SRIF concentrations were less effective. Rapid sampling showed that whereas Asp and Glu concentrations were raised for 3 min at the start of 15-min SRIF infusions, those of DA were increased for 12 min. A second 15-min application of 100 n M SRIF given 135 min after the first application failed to increase transmitter release. An NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid (200 µ M ), blocked SRIF (100 n M )-evoked Asp, Glu, Tau, and GABA release and reduced that of DA. An α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate antagonist, 6,7-dinitroquinoxaline-2,3-dione (100 µ M ), blocked SRIF-induced DA and Tau release and reduced that of Asp, Glu, and GABA. These results show that SRIF increases DA, Glu, Asp, GABA, and Tau release in the rat striatum and suggest that its actions on DA and GABA release are mainly mediated through increased excitatory amino acid release.  相似文献   

9.
The presynaptic regulation of striatal glutamate transmission was investigated using D-[3H]aspartate and mouse striatal slices. Functional changes in voltage-dependent and glutamate receptor-gated ion channels were elicited by pharmacologically modifying intracellular cyclic AMP formation via G-protein-coupled receptor stimulation. The kainate (KA)-evoked release was potentiated by the stimulatory G-protein (G(s))-coupled beta-adrenoceptor agonist isoproterenol (ISO) in a concentration-dependent manner. This effect was mimicked by the specific calmodulin (CaM) antagonists trifluoperazine and calmidazolium. Tetrodotoxin (TTX), a blocker of Na(+) channels, did not affect the basal release but inhibited to the same degree the releases evoked by kainate alone and by kainate and isoproterenol together. Vinpocetine, a blocker of voltage-dependent Na(+) channels, did not alter the basal or the evoked release. The Na(+) channel activator veratridine enhanced the basal release in a concentration-dependent manner and isoproterenol attenuated this effect. The opposite effects of isoproterenol on the kainate- and veratridine-evoked releases may reflect prevention of the cyclic AMP-protein kinase A (PKA) phosphorylation cascade in striatal glutamatergic signal transduction. In addition, the calmidazolium-induced potentiation of kainate-evoked release was thwarted by LY354740 and L-2-amino-4-phosphonobutanoate, agonists of the inhibitory G-protein (G(i))-coupled metabotropic group II and III glutamate receptors (mGluRs). Vinpocetine, which inhibits the CaM-dependent phosphodiesterase (PDE1), was likewise inhibitory. In turn, selective agonists and antagonists of the G(q)-protein-coupled group I mGluRs and (S)-3,5-dihydroxyphenylglycine (3,5-DHPG) and (RS)-1-aminoindan-1,5-dicarboxylate (AIDA), which modulate the intracellular Ca(2+) levels, did not alter the kainate-evoked release.The beta-adrenoceptor-mediated cyclic AMP accumulation seems to downregulate Na(+) channels but to enhance glutamate release by means of upregulation of kainate receptors. This regulation of presynaptic ligand- and voltage-gated ion channels is affected by the cAMP-protein kinase A-dependent phosphorylation cascade and controlled by G(i)-protein-coupled mGluRs.  相似文献   

10.
Summary We have explored the role of excitatory amino acids in the increased dopamine (DA) release that occurs in the neostriatum during stress-induced behavioral activation. Studies were performed in awake, freely moving rats, usingin vivo microdialysis. Extracellular DA was used as a measure of DA release; extracellular 3,4-dihydroxyphenylalanine (DOPA) after inhibition of DOPA decarboxylase provided a measure of apparent DA synthesis. Mild stress increased the synthesis and release of DA in striatum. DA synthesis and release also were enhanced by the intra-striatal infusion of N-methyl-D-aspartate (NMDA), an agonist at NMDA receptors, and kainic acid, an agonist at the DL-a-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA)/kainate site. Stress-induced increase in DAsynthesis was attenuated by co-infusion of 2-amino-5-phosphonovalerate (APV) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), antagonists of NMDA and AMPA/kainate receptors, respectively. In contrast, intrastriatal APV, CNQX, or kynurenic acid (a non-selective ionotropic glutamate receptor antagonist) did not block the stress-induced increase in DArelease. Stress-induced increase in DA release was, however, blocked by administration of tetrodotoxin along the nigrostriatal DA projection. It also was attenuated when APV was infused into substantia nigra. Thus, glutamate may act via ionotropic receptors within striatum to regulate DA synthesis, whereas glutamate may influence DA release via an action on receptors in substantia nigra. However, our method for monitoring DA synthesis lowers extracellular DA and this may permit the appearance of an intra-striatal glutamatergic influence by reducing a local inhibitory influence of DA. If so, under conditions of low extracellular DA glutamate may influence DA release, as well as DA synthesis, by an intrastriatal action. Such conditions might occur during prolonged severe stress and/or DA neuron degeneration. These results may have implications for the impact of glutamate antagonists on the ability of patients with Parkinson's disease to tolerate stress.  相似文献   

11.
Abstract: The technique of intracerebral microdialysis was used to assess the effect of stress on the extracellular concentrations of excitatory amino acids, glutamate and aspartate, in the rat medial prefrontal cortex, hippocampus, striatum, and nucleus accumbens. A 20-min restraint procedure led to an increase in extracellular glutamate in all regions tested. The increase in glutamate levels was significantly higher in the prefrontal cortex than that observed in other regions. With the exception of the striatum, extracellular levels of aspartate were increased in all regions. Furthermore, the increase in aspartate levels was significantly higher in prefrontal cortex compared to hippocampus and nucleus accumbens. Local perfusion of tetrodotoxin during the restraint procedure significantly decreased the stress-induced increase in extracellular excitatory amino acids. In order to ensure that the above results were not an artifact of restraint not associated with stress (e.g., decreased mobility), we also examined the effect of swimming stress on the extracellular levels of excitatory amino acids in selected regions, i.e., striatum and medial prefrontal cortex. Both regions displayed a significant increase in extracellular levels of aspartate and glutamate following 20 min of swimming in room temperature water. This study provides direct evidence that stress increases the neuronal release of excitatory amino acids in a regionally selective manner. The implications of the present findings for stress-induced catecholamine release and/or hippocampal degeneration are discussed.  相似文献   

12.
Tityustoxin, the active component of the venom of the Brazilian yellow scorpion Tityus serrulatus, caused specific release of the neurotransmitter amino acids glutamate, aspartate and GABA in vivo from the superfused sensori-motor cortex of conscious unanesthetised rats and in vitro from rat cortical synaptosomes. The effects on synaptosomes appear to be due to a depolarising action. Synaptosomal potassium levels were depleted by the toxin. The action was also blocked both in vivo and in vitro by tetrodotoxin and was Ca2+-dependent. The uptake of [U-14C]GABA was inhibited by tityustoxin but this action was prevented by tetrodotoxin (1 microM). Since the release of [U-14C]GABA from synaptosomes due to the tityustoxin was also prevented by tetrodotoxin under identical circumstances, it is concluded that the tityustoxin has a primary action on release of neurotransmitters rather than on uptake.  相似文献   

13.
Our previous studies have shown a local decrease in glutamate and aspartate levels during seizures, induced by picrotoxin microdialysis in the hippocampus of chronic freely moving rats. In this paper, we study the effect of continuous hippocampal microperfusion of the NMDA, AMPA and kainate glutamate receptor inhibitors 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine (MK-801); 6,7-dinitroquinoxaline-2,3-dione (DNQX), and 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466). We also examine the action of L(-)-threo-3-hydroxyaspartic acid (THA), a glutamate and aspartate reuptake blocker, on the modification of extracellular glutamate and aspartate levels induced by picrotoxin, using the microdialysis method in freely moving rats. We found that changes in extracellular hippocampal concentrations in both amino acids are prevented by NMDA, AMPA and kainate receptor inhibitors. Seizures elicited under DNQX also induce a transient increase in aspartate extracellular levels coincident with seizure time. L(-)-threo-3-hydroxyaspartic acid increased the basal extracellular concentrations of both amino acids, but did not prevent the seizure-related decrease. Our results suggest that glutamate, the major neurotransmitter at the synaptic level, may also play an important role in non-synaptic transmission during seizures.  相似文献   

14.
Del Arco A  Segovia G  Mora F 《Amino acids》2000,19(3-4):729-738
Summary. Using microdialysis, the effects of endogenous glutamate on extracellular concentrations of taurine in striatum and nucleus accumbens of the awake rat were investigated. The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was used to increase the extracellular concentration of glutamate. PDC (1, 2 and 4 mM) produced a dose-related increase of extracellular concentrations of glutamate and taurine in striatum and nucleus accumbens. Increases of extracellular taurine were significantly correlated with increases of extracellular glutamate, but not with PDC doses, which suggests that endogenous glutamate produced the observed increases of extracellular taurine in striatum and nucleus accumbens. The role of ionotropic glutamate receptors on the increases of taurine was also studied. In striatum, perfusion of the antagonists of NMDA and AMPA/kainate glutamate receptors attenuated the increases of extracellular taurine. AMPA/kainate, but not NMDA receptors, also reduced the increases of extracellular taurine in nucleus accumbens. These results suggest that glutamate-taurine interactions exist in striatum and nucleus accumbens of the awake rat. Received March 5, 1999/Accepted September 22, 1999  相似文献   

15.
Glutamate and aspartate are the primary neurotransmitters of projections from motor and premotor cortices to the striatum. Release of glutamate may be modulated by dopamine receptors located on corticostriatal terminals. The present study used microdialysis to investigate the dopaminergic modulation of in vivo striatal glutamate and aspartate release in the striatum of awake-behaving rats. Local perfusion with a depolarizing concentration of K+ through a dialysis probe into the rat striatum produced a significant increase in the release of glutamate, aspartate, and taurine. The D2 agonist LY171555 blocked the K(+)-induced release of glutamate and aspartate, but not taurine, in a concentration-dependent manner. The D1 agonist SKF 38393 did not alter K(+)-induced release of glutamate and taurine, but did significantly decrease aspartate release. Neither agonist had any effect on basal amino acid release. The D2 antagonist (-)-sulpiride reversed the inhibitory effects of LY 171555 on K(+)-induced glutamate release. These results provide in vivo evidence for a functional interaction between dopamine, the D2 receptor, and striatal glutamate release.  相似文献   

16.
Slices of hippocampal area CA1 were employed to test the hypothesis that the release of glutamate and aspartate is regulated by the activation of excitatory amino acid autoreceptors. In the absence of added Mg2+, N-methyl-D-aspartate (NMDA)-receptor antagonists depressed the release of glutamate, aspartate, and gamma-aminobutyrate evoked by 50 mM K+. Conversely, the agonist NMDA selectively enhanced the release of aspartate. The latter action was observed, however, only when the K+ stimulus was reduced to 30 mM. Actions of the competitive antagonists 3-[(+/- )-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid (CPP) and D-2-amino-5-phosphonovalerate (D-AP5) differed, in that the addition of either 1.2 mM Mg2+ or 0.1 microM tetrodotoxin to the superfusion medium abolished the depressant effect of CPP without diminishing the effect of D-AP5. These results suggest that the activation of NMDA receptors by endogenous glutamate and aspartate enhances the subsequent release of these amino acids. The cellular mechanism may involve Ca2+ influx through presynaptic NMDA receptor channels or liberation of a diffusible neuromodulator linked to the activation of postsynaptic NMDA receptors. (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, a selective quisqualate receptor agonist, and kainate, an agonist active at both kainate and quisqualate receptors, selectively depressed the K(+)-evoked release of aspartate. Conversely, 6-cyano-7-nitro-quinoxaline-2,3-dione, an antagonist active at both quisqualate and kainate receptors, selectively enhanced aspartate release. These results suggest that glutamate can negatively modulate the release of aspartate by activating autoreceptors of the quisqualate, and possibly also of the kainate, type. Thus, the activation of excitatory amino acid receptors has both presynaptic and postsynaptic effects.  相似文献   

17.
Abstract: The tissue content and the interstitial fluid levels of glutamate, aspartate, GABA, glutamine, glycine, and serine were studied in amygdaloid-kindled rat brain. Interstitial levels were studied in vivo before and during stage 5 full limbic seizures using microdialysis. Slices of amygdala from kindled and sham-operated animals were used to study baseline and KCl-evoked release in vitro. The contents of these amino acids were measured in slices of amygdala, hippocampus, and cerebral cortex from kindled and sham-operated animals. Kindled brains showed two- to threefold higher levels of glutamate, aspartate, and GABA and 12-fold higher levels of glutamine than sham-operated controls. Correlating with this, interstitial fluid levels of glutamate were two- to threefold higher from kindled amygdala than from control both in vivo (microdialysis) and in vitro (superfusion). GABA levels in interstitial fluid from kindled amygdala were reduced by 67% compared with control amygdala.  相似文献   

18.
Abstract: The effects of nitric oxide (NO) and cyclic GMP on in vivo transmitter release in the rat striatum were investigated using microdialysis sampling in urethane-anaesthetised animals. The NO release-inducing substances S -nitrosoacetylpenicillamine (SNAP), S -nitrosoglutathione (SNOG), and sodium nitroprusside (SNP) increased extracellular concentrations of aspartate (Asp), glutamate (Glu), γ-aminobutyric acid (GABA), taurine (Tau), acetylcholine (ACh), and serotonin (5-HT). Dopamine (DA) concentrations were decreased by SNAP but were increased by SNOG and SNP. An NO scavenger, haemoglobin, blocked or reduced the effects of SNAP on transmitter release. However, the control carrier compounds for SNAP, SNOG, and SNP (penicillamine, glutathione, and potassium ferricyanide, respectively, which do not induce release of NO) also increased GABA, Tau, DA, and 5-HT concentrations. When NO gas was given directly by dissolving it in degassed Ringer's solution, DA concentrations decreased significantly, and those of Asp, Glu, GABA, Tau, ACh, and 5-HT increased. These effects of NO gas were all inhibited by coadministration of haemoglobin and for GABA, Tau, ACh, and DA showed some calcium dependency. The cyclic GMP agonists 8-bromo-cyclic GMP and dibutryl-cyclic GMP stimulated dose-dependent increases in Asp, Glu, GABA, Tau, ACh, DA, and 5-HT concentrations. Increased striatal transmitter release in response to NO may therefore be mediated by its stimulatory action on cyclic GMP formation. NO inhibition of DA release may be mediated indirectly through its stimulation of local cholinergic and GABAergic neurones.  相似文献   

19.
Abstract: 2-Amino-7-phosphonoheptanoic acid, an antagonist of excitation caused by dicarboxylic amino acids with a selective action on N -methyl-d-aspartate receptors, has been administered in an anticonvulsant dose (1 mmol/kg i.p.) to fed or fasted rats and mice. The drug impaired motor activity in fasted mice. Glucose and amino acids were determined in dissected regions of brain fixed by microwave irradiation. Glucose content was low in the brains of fasted rats and mice but was restored to normal (fed) concentration 45 min after the administration of 2-amino-7-phosphonoheptanoic acid in fasted mice. In fed animals, 2-amino-7-phosphonoheptanoic acid did not change brain aspartate concentration. In fasted animals, aspartate concentration was raised in most brain regions. In fasted rats and mice, 2-amino-7-phosphonoheptanoic acid significantly increased glutamine in rat cortex and mouse striatum, decreased glutamate content in rat striatum, and decreased aspartate concentration in all regions except mouse cortex and striatum. GABA levels were significantly decreased in rat striatum and hippocampus. These changes are consistent with an increased synaptic release of glutamate and aspartate following blockage of their post-synaptic action at selected sites.  相似文献   

20.
Abstract: We have studied the effect of isonicotinic acid hydrazide (INH), a convulsant agent, on the extracellular levels of amino acids in the hippocampus, and the effect of sodium valproate (VPA) administration in INH-treated rats. INH (250 mg/kg) caused a rapid and sustained decrease in basal levels of GABA, and during this period convulsions of increasing severity were observed. Basal levels of glutamine, taurine, aspartate, and glutamate were unchanged by INH. When VPA was coadministered with INH, basal GABA levels were increased and no convulsions were observed. When transmitter release was evoked using 100 m M K+, the increase in dialysate GABA observed in INH-treated animals was less than that seen in controls and convulsions increased in frequency. K+-evoked release of glutamate and aspartate tended to be higher following INH treatment, and in the case of aspartate, this increase was significant. VPA reversed the changes in evoked release of glutamate and aspartate, and release of GABA was considerably greater than that seen in control or INH-treated rats. No drug effect on evoked changes in taurine or glutamine level was seen. These are the first data to show decreased extracellular GABA in conjunction with convulsions in freely moving animals in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号