首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Sunflower (Helianthus annuusL.) and oilseed rape (Brassica napusL.) were grown at constant temperatures of 30 ?C (warm) and13 ?C (cold). Maximal rates of photosynthesis between 5 ?C and35 ?C were at higher temperatures in sunflower than rape. Photosyntheticrate over 4 h at the growth temperature declined in warm-andcold-grown rape and cold-grown sunflower, but remained constantin warm-grown sunflower. The stimulation of photosynthesis by2.0 kPa O2 compared to 21 kPa O2 declined with decreasing temperature.At 10 ?C in warm-grown rape photosynthesis was insensitive to2.0 kPa O2. However, sensitivity to low O2 continued at 10 ?Cin warm-grown sunflower. Carbohydrates accumulated in the cold,particularly fructose, glucose and sucrose in warm-grown sunflowertransferred to 13 ?C. By monitoring changes of 14C in leaves after the assimilationof 14CO2, the rates of carbon export from leaves, pool sizesand carbon fluxes between them were estimated. The transferof warm- and cold-grown rape to 13 ?C and 30 ?C, respectively,had little effect on these parameters over 22 h. However, exportof carbon from sunflower leaves at 13 ?C was markedly less thanat 30 ?C, irrespective of the growth temperature, due to slowerexport from the transport pool. The rapid suppression of carbonexport at 13 ?C in warm-grown sunflower may be due to inhibitedtranslocation rather than reduced sink demand in the cold. It is concluded that assimilate utilisation is more depressedin the cold than is photosynthesis; this imposes a greater restrictionon biomass production in sunflower than in rape. Key words: Sunflower, rape, temperature, photosynthesis, carbon fluxes  相似文献   

2.
Sunflower plants (Helianthus annuus L.) grown at 30°C werecooled to 13°C in the light in atmospheric CO2 or low CO2,or in darkness. Photosynthetic rate at 30°C after coolingwhole plants in atmospheric CO2 for 12 h during a photoperiodwas significantly lower than at the start of the photoperiodcompared to plants cooled at low CO2, those cooled in the darkand those maintained at 30°C. Amounts of sucrose, hexosesand starch in leaves at 13°C increased throughout a 14 hphotoperiod to levels higher than in leaves at 30°C, whereamounts of sucrose and hexoses were stable or falling after4 h. Carbohydrate accumulation at 13°C during this photoperiodwas more than twice that at 30°C. After three photoperiodsand two dark periods at 13°C carbohydrate levels in leaveswere still as high as at the end of the first photoperiod, butless carbohydrate accumulated during the photoperiods than duringthe first photoperiod, and more was partitioned as starch. Amountsof soluble carbohydrate in roots were greater after 14 h at13°C than in roots of plants at 30°C. Loss of 14C fromleaves at 30°C as a proportion of 14CO2 fixed by them at30°C, decreased after exposure of plants to 13°C inthe light for 30 min prior to 14CO2feeding. Results indicatean effect of cold on the transport process that was light-dependent.It is inferred that the reduction in the proportion of 14C lostfrom leaves after 10 h cooling was due to reduced sink demand,whereas the rise in the proportion of 14C lost from leaves after24 h reflects reduced photosynthetic rate. The coincidence ofreduced photosynthetic rate with raised carbohydrate levelsin leaves maintained at 30°C throughout, whilst the restof the plant was cooled to 13°C in the light implies feedbackinhibition of photosynthesis. This may reduce the imbalancebetween source and sink in sunflower during the first days oflong-term cooling. Key words: Temperature, carbon export, carbohydrates, photosynthesis, sunflower  相似文献   

3.
Pascopyrum smithii (C3) andBouteloua gracilis (C4) are importantforage grasses native to the Colorado shortgrass steppe. Thisstudy investigated photosynthetic responses of these grassesto long-term CO2enrichment and temperature in relation to leafnonstructural carbohydrate (TNC) and [N]. Glasshouse-grown seedlingswere transferred to growth chambers and grown for 49 d at twoCO2concentrations (380 and 750 µmol mol-1) at 20 and 35°C, and two additional temperatures (25 and 30 °C) at750 µmol mol-1CO2. Leaf CO2exchange rate (CER) was measuredat a plant's respective growth temperature and at two CO2concentrationsof approx. 380 and 700 µmol mol-1. Long-term CO2enrichmentstimulated CER in both species, although the response was greaterin the C3,P. smithii . Doubling the [CO2] from 380 to 750 µmolmol-1stimulated CER ofP. smithii slightly more in plants grownand measured at 30 °C compared to plants grown at 20, 25or 35 °C. CO2-enriched plants sometimes exhibited lowerCER when compared to ambient-grown controls measured at thesame [CO2], indicating photosynthetic acclimation to CO2growthregime. InP. smithii , such reductions in CER were associatedwith increases in TNC and specific leaf mass, reductions inleaf [N] and, in one instance, a reduction in leaf conductancecompared to controls. InB. gracilis , photosynthetic acclimationwas observed more often, but significant changes in leaf metabolitelevels from growth at different [CO2] were generally less evident.Temperatures considered optimal for growth (C3: 20 °C; C4:35 °C) sometimes led to CO2-induced accumulations of TNCin both species, with starch accumulating in the leaves of bothspecies, and fructans accumulating only inP. smithii. Photosynthesisof both species is likely to be enhanced in future CO2-enrichedand warmer environments, although responses will sometimes beattenuated by acclimation. Acclimation; blue grama (Bouteloua gracilis (H.B.K.) Lag ex Steud.); leaf nitrogen concentration; nonstructural carbohydrates; photosynthesis; western wheatgrass (Pascopyrum smithii (Rydb.) Love)  相似文献   

4.
The effect of root temperature and form of inorganic nitrogensupply on in vitro nitrate reductase activity (NRA) was studiedin oilseed rape (Brassica napus L. cv. bien venu). Plants weregrown initially in flowing nutrient solution containing 10 µMNH4NO3 and then supplied with either nitrate or ammonium for15 d at root temperatures of 3, 7, 11 or 17 °C. Shoot temperatureregime was similar for all plants; 20/15 °C, day/night.Root NRA was highest when roots were grown at 3 and 7 °C.In laminae and petioles NRA was highest when roots were 11 or17 °C. The plants supplied with ammonium had much lowerlevels of NRA in roots after 5 d than the plants supplied onlywith nitrate. NRA in the laminae of plants supplied with ammoniumwas low relative to that in plants supplied with nitrate onlywhen root temperature was 11 or 17 °C. Values of the apparent activation energy (Ea) of NR, calculatedfrom the Arrhenius equation, in laminae and petioles were differentfrom roots suggesting difference in enzyme conformation. Evidencethat the temperature at which roots were growing affected Eawas equivocal. Oilseed rape, Brassica napus L., activation energy, ammonium, Arrhenius equation, nitrate, root temperature, nitrate reductase  相似文献   

5.
The effects of growth at elevated CO2 on the response to hightemperatures in terms of carbon assimilation (net photosynthesis,stomatal conductance, amount and activity of Rubisco, and concentrationsof total soluble sugars and starch) and of photochemistry (forexample, the efficiency of excitation energy captured by openphotosystem II reaction centres) were studied in cork oak (Quercussuber L.). Plants grown in elevated CO2 (700 ppm) showed a down-regulationof photosynthesis and had lower amounts and activity of Rubiscothan plants grown at ambient CO2 (350 ppm), after 14 monthsin the greenhouse. At that time plants were subjected to a heat-shocktreatment (4 h at 45C in a chamber with 80% relative humidityand 800–1000 mol m–2 s–1 photon flux density).Growth in a CO2-enriched atmosphere seems to protect cork oakleaves from the short-term effects of high temperature. ElevatedCO2 plants had positive net carbon uptake rates during the heatshock treatment whereas plants grown at ambient CO2 showed negativerates. Moreover, recovery was faster in high CO2-grown plantswhich, after 30 min at 25C, exhibited higher net carbon uptakerates and lower decreases in photosynthetic capacity (Amax aswell as in the efficiency of excitation energy captured by openphotosystem II reaction centres (FvJFm than plants grown atambient CO2. The stomata of elevated CO2 plants were also lessresponsive when exposed to high temperature. Key words: Elevated CO2, temperature, acclimation, photosynthesis, Quercus suber L.  相似文献   

6.
Both fast and slow chlorophyll fluorescence kinetics were usedto assess the differential heat sensitivity of ten wheat (Triticumaestivum L.) varieties commonly grown in northern, temperateor (sub-) tropical climate zones. No consistent differencesbetween the groups were found. Studies on the role of growthtemperature in modulating the response of photosynthesis toheat stress were carried out on two of the varieties, APU (Finnish)and K65 (Indian), the former being more sensitive to heat stress.Growth and development of these varieties were similar underboth cool (13 °C day, 10 °C night) and warm (30 °Cday, 25 °C night), regimes. The cool-grown plants exhibitedhigher rates of net CO2 exchange than the warm-grown plantswhen expressed on a chlorophyll basis and, in both regimes,photosynthesis declined with age prior to reduction in chlorophyllcontent. Net CO2 exchange in leaves of K65 showed greater sensitivityto short-term heat stress than APU when plants were grown underthe cool regime. Plants grown under the warm regime exhibitedan upward shift in the optimum temperature for net CO2 exchangein both varieties, with K65 showing somewhat superior performanceat high temperature compared with APU. Stomatal aperture wasessentially unaffected by assay temperature during these measurements. Key words: CO2 exchange, growth temperature, Triticum aestivum  相似文献   

7.
Growth and dark respiration were measured in dense, miniatureswards of kikuyu grass grown at constant temperatures of 15,20, 25 and 30 °C. Total respiration over the first 12 hof darkness was very high and CO2 efflux per unit surface areavaried from 2.4 to 3.9 g CO2 m–2 h–1 at 15 and 30°C respectively. Such rates were consistent with the correspondinglyhigh net growth rates of 24 and 63 g d. wt m–2 d–1and the heavy yields of herbage. When plants were kept in thedark, CO2 efflux subsequently declined rapidly to a lower, constantrate which was taken to be the maintenance respiration rate.The half-life of the declining phase of respiration averaged10.9 and 6.0 h at 15 and 30 °C respectively, and was curvilinearlyrelated to the specific maintenance respiration rate (m). Therapid decline in respiration was consistent with the low concentrationsof total soluble carbohydrate and starch in the herbage. Valuesof m for lamina and top growth increased with temperature witha Q10 of 2.6 and 1.42 respectively, but m of stems alone wasnot affected by temperature. Using results from this study forkikuyu and from McCree (1974) for sorghum and white clover,it was noted that all three species have similar m when grownat temperatures which are near their respective optimums forgrowth. Kikuyu, Pennisetum clandestinum, growth, respiration, temperature  相似文献   

8.
Plants of six contrasting genotypes of barley were raised fromvernalized (imbibed at 1 °C for 30 d) or non-vernalizedseeds and grown in 12 different controlled environments comprisingfactorial combinations of three photoperiods (10, 13 and 16h d–1), two day temperatures (18 and 28 °C) and twonight temperatures (5 and 13 °C). Except at longer daysfor Athenais or Arabi Abiad, the 28 °C day temperature wasgenerally supra-optimal and delayed awn emergence. At lowertemperatures and in photoperiods shorter than the critical value,PC, which delay awn emergence, the time from sowing to awn emergencefor five of the genotypes conformed to the equation 1/f=a +bT{macron}+cPwhere f is the time to awn emergence (d), T{macron} is meandiurnal temperature (°C), P is photoperiod (h d–1)and a, b and c are genotype-specific constants. In Arabi Abiad,however, significant responses to temperature were not detected.The low temperature pre-treatment of the seeds reduced the subsequenttime to awn emergence in Athenais and the autumn-sown genotypesAger, Arabi Abiad and Gerbel B, especially in longer days, buteither had no effect or tended to delay awn emergence in thespring-sown types Emir and Mona. In the spring-sown types PCwas outside the range investigated (i.e. > 16 h d–1),but in Ager it was approx. 13 h d–1 and in Gerbel B justover 13 h d–1. For plants of Arabi Abiad grown from vernalizedseeds Pc was almost 15 h, but  相似文献   

9.
Gas exchange and organic acid accumulation of the C3-CAM intermediateClusia minor L. were investigated in response to various day/nighttemperatures and two light regimes (low and high PAR). For bothlight levels equal day/night temperatures between 20°C and30°C caused a typical C3 gas exchange pattern with all CO2uptake occurring during daylight hours. A day/ night temperatureof 15°C caused a negative CO2 balance over a 24 h periodfor low-PAR-grown plants while high-PAR-grown plants showeda CAM gas exchange pattern with most CO2 uptake taking placeduring the dark period. However, there was always a considerablenight-time accumulation of malic acid which increased when thenight-time temperature was lowered and had its maximum (54 mmolm–2) at day/night temperature of 30/15°C. A significantamount of malic acid accumulation (23 mmol m–2) in low-PAR-grownplants was observed only at 30/15°C. Recycling of respiratoryCO2 in terms of malic acid accumulation reached between 2·0and 21·5 mmol m–2 for high-PAR-grown plants whilethere was no significant recycling for low-PAR-grown plants.Both low and high-PAR-grown plants showed considerable night-timeaccumulation of citric acid. Indeed under several temperatureregimes low-PAR-grown plants showed day/night changes in citricacid levels whereas malic acid levels remained approximatelyconstant or slightly decreased. It is hypothesized that lowand high-PAR-grown plants have different requirements for citrate.In high-PAR-grown plants, the breakdown of citrate preventsphotoinhibition by increasing internal CO2 levels, whereas inlow-PAR-grown plants the night-time accumulation of citric acidmay function as an energy and carbon saving mechanism. Key words: C. minor, C3, CAM, citric acid, light intensity  相似文献   

10.
The nature of the lack of oxygen inhibition of C3-photosynthesisat low temperature was investigated in white clover (Trifoliumrepens L.). Detached leaves were brought to steady-state photosynthesisin air (34 Pa p(CO2), 21 kPa p(O2), balance N2) at temperaturesof 20°C and 8°C, respectively. Net photosynthesis, ribulose1,5-bisphosphate (RuBP) and ATP contents, and ribulose 1,5-bisphosphatecarboxylase/oxygenase (RuBPCO) activities were followed beforeand after changing to 2·0 kPa p(O2). At 20°C, lowering p(O2) increased net photosynthesis by37%. This increase corresponded closely with the increase expectedfrom the effect on the kinetic properties of RuBPCO. Conversely,at 8°C net photosynthesis rapidly decreased following adecrease in p(O2) and then increased again reaching a steady-statelevel which was only 7% higher than at 21 kPa p(O2). The steady-staterates of RuBP and associated ATP consumption were both estimatedto have decreased. ATP and RuBP contents decreased by 18% and33% respectively, immediately after the change in p(O2) suggestingthat RuBP regeneration was reduced at low p(O2) due to reducedphotophosphorylation. Subsequently, RuBP content increased again.Steady-state RuBP content at 2·0 kPa p(O2) was 24% higherthan at 21 kPa p(O2). RuBPCO activity decreased by 22%, indicatingcontrol of steady-state RuBP consumption by RuBPCO activity. It is suggested that lack of oxygen inhibition of photosynthesisat low temperature is due to decreased photophosphorylationat low temperature and low p(O2). This may be due to assimilateaccumulation within the chloroplasts. Decreased photophosphorylationseems to decrease RuBP synthesis and RuBPCO activity, possiblydue to an acidification of the chloroplast stroma. Key words: Oxygen inhibition, photosynthesis, ribulose bisphosphate carboxylase/oxygenase  相似文献   

11.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

12.
Effects of temperature (15°, 20° and 25°C), O2 partialpressure (PO2=0, 1, 2, 4, and 6 kPa), and individual size(12–79 mm shell length; SL) on survivorship of specimensof the non-indigenous, marine, brown mussel, Perna perna, fromTexas were investigated to assess its potential distributionin North America. Its hypoxia tolerance was temperature-dependent,survivorship being significantly extended at lower temperaturesunder all tested lethal PO2. Incipient tolerated PO2 was 4 and6 kPa at 15 and 20°C, respectively, with >50% mortalityoccurring at 25°C at all tested levels of hypoxia. PO2 hadless of an effect on survival of hypoxia than temperature. At25°C, survivorship was not different over a PO2 range of0–2 kPa and increased only at 4 and 6 kPa. Survivorshipwas size-dependent. Median survival times increased with increasingSL in anoxia and PO2=1 kPa, but at 2, 4 and 6 kPa,smaller individuals survived longer than larger individuals.With tolerance levels similar to other estuarine bivalve species,P. perna should withstand hypoxia encountered in estuarine environments.Thus, its restriction to intertidal rocky shores may be dueto other parameters, particularly its relatively low temperaturetolerance. (Received 26 January 2004; accepted 31 March 2005)  相似文献   

13.
Effect of High Temperature on Photosynthesis in Potatoes   总被引:1,自引:0,他引:1  
The effect of high temperatures on the rate of photosynthesiswas studied in several potato varieties. Temperatures of upto 38 °C did not cause a reduction in the photosynthesisof plants that had been grown at these temperatures for longperiods prior to measurement. Higher temperatures of 40–42°C, or the transfer of plants from daytime temperature regimesof 22 °C to 32 °C, caused a reduction in net photosynthesis.This reduction was found to be essentially mesophyllic in origin.High temperature was found to be associated with a decreasein stomatal resistance, an increase in transpiration, and alarger difference between air and leaf temperatures. Dark respirationrates and compensation points for CO2 concentration were alsogreater at the high temperatures. It was concluded that thepotato crop can be adopted to grow and have an adequate rateof photosynthesis even at relatively high temperatures. Source-sinkrelationships, which were modified by the later formation oftubers at higher temperatures, did not affect photosynthesisin this study. Varietal differences in resistance to heat stresswere observed, with the clone Cl-884 showing a more efficientcapacity for photosynthesis at temperatures up to 40 °Cthan many commonly grown varieties. High temperature, photosynthesis, potato, Solanum tuberosum L  相似文献   

14.
Eleven F1 hybrid genotypes of winter rape (Brassica napus ssp.oleifera) were used in a study of induction and growth of microspore-derivedembryos. Plants of each genotype were grown in controlled environmentsat either a constant 15°C or a constant 20°C, both witha 16 h photoperiod. Equal numbers of buds, approximately 2.5mm in length, containing uninucleate microspores were harvestedfrom each genotype and either pretreated (14 d at 4°C) ordissected immediately after harvest. Anthers were cultured onliquid medium based upon that of Murashige and Skoog (1962)and containing 8% sucrose, 0.5 mg dm–3 naphthylaceticacid and 0.05 mg dm–3 benzylaminopurine. Anthers fromequal samples of buds were incubated at 35°C for 0, 1, 2or 3 d before transfer to 30°C (21 d) and then 25°C.After a total of 42 d incubation, cultures were scored for thepresence of macroscopic embryos (1–2 mm in length) andfor the presence of anthers containing aborted embryoids whichhad not developed further. The results showed first that bud pretreatment completely inhibitedinduction and secondly that anthers of all genotypes had anabsolute requirement for a 35°C treatment (optimal duration2 d) in order to induce embryoid formation. In the great majorityof genotypes plants grown at 15°C provided more productiveanthers than plants grown at 20°C. However, within eachtreatment there were great differences both in the frequencyof anthers showing induced embryoids and of the final yieldof embryos. There was evidence that hybrids with a common parentresponded similarly under certain treatments. This confirmedthe importance of genotypic control for some components of embryoyield. Key words: Brassica napus, Rape, Anther culture, Pollen, Haploid  相似文献   

15.
Clonal plants of white clover (Trifolium repens L ), whollydependent on N2 fixation, were grown for 6 weeks in controlledenvironments providing either (C680 regime) 23/18 °C day/nighttemperatures and a CO2, concentration of 680 µmol mol–1,or (C340 regime) 20/15 °C day/night temperatures and a CO2,concentration of 340 µmol mol–1 During the firsthalf of the experimental period the C680 plants grew fasterthan their C340 counterparts so that by week 3 they were twicethe weight this 2 1 superiority in weight persisted until theend of the experiment The faster initial growth of the C680plants was based on an approx 70 % increase in leaf numbersand an approx 30 % increase in their individual area Initially,specific leaf area (cm2 g–1 leaf) was lower in C680 thanin C340 leaves but became similar in the latter half of theexperiment Shoot organ weights, including petioles and stolons,reflected the C680 plant's better growth in terms of photosyntheticsurface Throughout, C680 plants invested less of their weightin root than C340 plants and this disparity increased with timeAcetylene reduction assays showed that nitrogenase activityper unit nodule weight was the same in both C680 and C340 plantsBoth groups of plants invested about the same fraction of totalweight in nodules Nitrogen contents of plant tissues were similarirrespective of growth regime, but C680 expanded leaves containedslightly less nitrogen and their stolons slightly more nitrogenthan their C340 counterparts However, C680 leaves containedmore non-structural carbohydrate Young, unshaded C680 leavespossessed larger palisade cells, packed more tightly withinthe leaf, than equivalent C340 leaves The reason for the C680regime's loss of superiority in relative growth rate duringthe second half of the experiment was not clear, but more accumulationof non-structural carbohydrate, constriction of root growthand increased self-shading appear to be the most likely causes Trifolium repens, white clover, elevated CO2, elevated temperature, growth, N2 fixation, leaf structure  相似文献   

16.
Lawlor, D. W., Boyle, F. A., Young, A. T., Keys, A. J. and Kendall,A. C. 1987. Nitrate nutrition and temperature effects on wheat:photosynthesis and photorespiration of leaves.—J. exp.Bot. 38: 393–408. Photosynthetic and photorespiratory carbon dioxide exchangeby the third leaf of spring wheat (Triticum aestivum cv. Kolibri),was analysed for plants grown at 13/10 °C (day/night temperature)and 23/18 °C with two rates of nitrate fertilization (abasal rate, — N, and a 4-fold larger rate, +N) and, insome experiments, with two photon fluxes. Net photosynthesiswas greatest at the time of maximum lamina expansion, and forleaves grown with additional nitrate. Maximum rate of photosynthesis,carboxylation efficiency and photochemical efficiency at maturitywere slightly decreased by nitrate deficiency but photosystemactivity was similar under all conditions. As leaves aged, photosynthesisand photochemical efficiency decreased; carboxylation efficiencydecreased more than photochemical efficiency particularly withbasal nitrate. Low oxygen increased the carboxylation and photochemicalefficiencies, and increased the maximum rate of assimilationby a constant proportion in all treatments. Photorespiration,measured by CO2 efflux to CO2-free air, by 14CO2 uptake, andfrom compensation concentration, was proportional to assimilationin all treatments. It was greater, and formed a larger proportionof net photosynthesis, when measured in warm than in cold conditionsbut was independent of growth conditions. Assimilation was relatedto RuBPc-o activity in the tissue. Relationships between photosynthesis,photorespiration and enzyme complement are discussed. Key words: Wheat, leaves, nitrate nutrition, temperature effect, photosynthesis, photorespiration  相似文献   

17.
The net assimilation rate (EA), relative growth-rate (Rw), andleaf-area ratio (FA) were measured for rape (Brassica napus),sunflower (Hetianthus annuus), and maize (Zea mays) at varioustimes of year in an arid climate, using young plants grown widelyspaced on nutrient culture. Multiple regression analysis accountedfor 90–95 per cent of the variation in EA and RW in termsof two climatic variables: mean temperature and radiation receipt. EA rose linearly with radiation in all three species; increasein EA with temperature was greatest in maize and least (notsignificant) in rape. RWrose with radiation and temperature,the latter being the more important variable especially in coolweather; a temperature optimum was shown at 24° C in rape.FA rose with increase in temperature or decrease in radiation;its variation was due to change in leaf area/leaf weight ratherthan in leaf weight/plant weight. Multiple regression analyses can lead to faulty interpretationif the independent variables are correlated (as are climaticvariables in nature), but conclusions can be checked by controlled-environmentstudies in which climatic factors are not correlated. The presentconclusions are supported by such studies. The regression equations, coupled with average weather records,indicate seasonal cycles of growth parameters. EA is maximalnear midsummer and minimal near midwinter, following the radiationcycle. Maxima and minima in RW are about a month later, becauseRW is affected by the temperature cycle and this lags behindthe radiation cycle. FA is maximal in autumn and minimal inspring. EA is highest where radiation receipts near 750 cal cm–2day–1 coincide with high temperatures. This combinationoccurs only in clear midsummer weather at low latitudes, andis maintained over long periods only in arid regions. The fact that EA rose linearly with radiation suggests thatleaf water deficits arising under high radiation had littleeffect on EA and that saturating levels of light were very high.  相似文献   

18.
Photosynthesis and dark-CO2-fixation were measured in vacuum-infiltratedleaf slices from the mesophyte Spinacia oleracea and the Mediterraneanxerophyte Arbutus unedo under hypertonic stress as a functionof light-intensity, CO2-concentration and temperature, in theabsence of stomatal control. Under hypertonic stress, photosynthesis and dark-CO2-fixationwere inhibited in leaf tissue from both plants. 50% inhibitionof photosynthesis in spinach occurred at about –3.0 MPa,and of dark-CO2-fixation at about –3.5 MPa. 50% inhibitionof photosynthesis in Arbutus unedo was reached at about –4.0MPa (sorbitol as osmoticum). In both plants, osmotic dehydration decreased the slope andthe maximum of the CO2- and light-response curves. The slopeof the CO2-response curve of dark-CO2-fixation was also decreasedunder hypertonic stress, but the inhibition of the maximal fixationrate was less obvious than for photosynthesis. Photosynthesis and dark-CO2-fixation differed significantlyin their response to high temperature: under light- and CO2-saturation,photosynthesis of spinach leaf slices had a temperature optimumat about 37 °C, and it was nearly completely inhibited at45 °C. The rate of dark-CO2-fixation, however, increasedcontinuously up to 45 °C. Osmotic dehydration increasedthe resistance of photosynthesis to high temperatures. Key words: CO2 response, Heat stress, Light response, Photosynthesis, Water stress  相似文献   

19.
The rates of photosynthetic 14CO2 fixation by Chlorella vulgarisllh, grown under high CO2, were determined between 4 to 37°Cwith air containing from 300 to 13,000 ppm 14CO2. When the CO2level was increased, both the rate of photosynthesis and theoptimum temperature for maximum photosynthesis increased. Themaximum photosynthetic rate was reached at 12°C with 300ppm l4CO2. Among the photosynthetic products fromed at 300 ppm 14CO2, glycolatedecreased greatly when the temperature was raised from 20 to30°C. At 3,000 ppm 14CO2 an insignificant amount of glycolatewas formed at all temperatures, whereas 14C-incorporation intothe insoluble fraction, sucrose, and the lipid fraction wassignificantly higher than at 300 ppm 14CO2. The 14C in sucrosewas greatly increased and the radioactivity in the insolublefraction decreased when the temperature was raised from 28 to36°C. (Received April 8, 1980; )  相似文献   

20.
The effect of heat stress on photosynthetic electron transportwas investigated in thylakoids isolated from the wheat (Triticumaestivum L.) varieties APU (Finland) and K65 (India) grown underboth cool (13 °C day, 10 °C night) and warm (30 °Cday, 25 °C night) regimes which gave rise to varietal differencesin photosynthetic temperature acclimation. The responses ofthe uncoupled activities of both whole-chain electron transportand photosystem II to heat stress were similar. Both activitiesexhibited higher rates in thylakoids isolated from warm-grownplants and were more resistant to high temperature pretreatmentthan in those isolated from cool-grown plants, but varietaldifferences were not observed. Uncoupled photosystem I activity driven by either reduced 2,6-dichlorophenol indophenol (DCPIPH2) or N,N,N',N'-tetramethyl-p-phenylenediamine (TMPDH2) showed a stimulation following high temperaturepretreatment which was more marked in thylakoids isolated fromwarm-grown plants, followed by inhibition at extreme high temperatures.This stimulation was due largely to an increase in Vmax butdid not occur when reduced diaminodurene, which is highly lipophilic,was used as the electron donor. It appears that stimulationof PS I activity may involve increased accessibility of someartificial electron donors to the native acceptor sites withinthe thylakoid membrane in a process which is influenced by growthtemperature. Key words: Photosynthetic electron transport, heat stress, Triticum aestivum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号