首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The metabolism of oestradiol and 17 alpha-ethinyloestradiol to their 2-hydroxy derivatives is an important determinant in their biological effects. In this work, we have investigated which rat or human cytochrome P-450 isoenzymes are involved in catalysing these reactions. Oestradiol 2-hydroxylation was catalysed by a wide variety of rat cytochrome P-450s from gene families P450IA, P450IIB, P450IIC and P450IIIA. Interestingly, 17 alpha-ethinyloestradiol, which only differs structurally from oestradiol at a position distant from the site of oxidation, was metabolized predominantly by members of the P450IIC gene subfamily. In order to establish which enzymes are responsible for the oxidation of these substrates in man, antibodies to rat liver cytochrome P-450 isoenzymes were used to inhibit these reactions in a panel of human liver microsomal fractions. Also, possible correlations between the proteins recognized by the antibodies and the 2-hydroxylation rate were determined. These experiments provide evidence that 2-hydroxylation of 17 alpha-ethinyloestradiol in man is catalysed by cytochromes from the P450IIC, P450IIE and P450IIIA gene families. In contrast, the major proteins involved in oestradiol metabolism are from the P450IA gene family, although members of the P450IIC and P450IIE gene families may also play a role. These data demonstrate that the differences in the capacity of rat P-450s to metabolize these substrates are also present in the comparable enzymes involved in man, and that a variety of factors will determine the rate of disposition of these compounds in man.  相似文献   

2.
Cytochrome P-450-mediated redox cycling of estrogens   总被引:6,自引:0,他引:6  
The cytochrome P-450-mediated reactions of the synthetic stilbene estrogen (E)-diethylstilbestrol (DES) and of 2-hydroxyestradiol have been investigated in vitro. Depending on the cofactor used, microsomal enzymes catalyzed reductions and/or oxidations of the estrogens: Phenobarbital-induced rat liver microsomes catalyzed the oxidation of DES to 4',4"-diethylstilbestrol quinone (DES quinone) with cumene hydroperoxide as cofactor. The quinone was unstable and spontaneously rearranged to (Z,Z)-dienestrol. DES quinone was reduced to a mixture of E- and Z-isomers of DES by NADPH catalyzed by purified cytochrome P-450 reductase. After rearrangement of the quinone to (Z,Z)-dienestrol, reduction reactions did not proceed. Rat liver microsomes and NADPH catalyzed the conversion of DES to (Z,Z)-dienestrol and (Z)-DES, but DES quinone could not be detected. The reactions described provide direct evidence for microsome-mediated redox cycling of estrogens. Although DES quinone could not be detected in the incubation of DES, microsomes, and NADPH as cofactor, the intermediacy of the quinone is demonstrated by the formation of (Z,Z)-dienestrol, the marker product for oxidation. The quinone could not be detected because it was rapidly reduced to DES and its Z-isomer. Microsome-mediated redox cycling between 2-hydroxyestradiol and the corresponding quinone was also demonstrated. Using cumene hydroperoxide as cofactor, the oxidation to the quinone was favored, while with NADPH as cofactor the reduction to 2-hydroxyestradiol was preferred. It is postulated that microsome-mediated redox cycling of estrogens plays a role in hormonal carcinogenesis.  相似文献   

3.
Age-dependent expression of cytochrome P-450s in rat liver   总被引:4,自引:0,他引:4  
Age-related changes in the levels of multiple forms of cytochrome P-450 as well as in the testosterone hydroxylation activities of hepatic microsomes of male and female rats of different ages from 1 week to 104 weeks (24 months) were investigated. The total cytochrome P-450 measured photometrically did not change much with age in either male and female rats. Testosterone 2 alpha-, 2 beta-, 6 beta-, 15 alpha-, 16 beta-hydroxylation activities of male rats were much higher than those in female rats and were induced developmentally. These activities in male rats declined with aging to the very low level in female rats by 104 weeks of age. Testosterone 7 alpha-hydroxylation activity was maximum at 3 weeks of age in rats of both sexes. The levels of individual cytochrome P-450s were measured by immunoblotting. P450IA1 and IA2 (3-methylcholanthrene-inducible forms) and P450IIB1 and IIB2 (phenobarbital-inducible forms) were detected at low levels in rats of both sexes at all ages. P450IIA2, IIC11 and IVA2 were detected in male rats only and were induced developmentally. These male-specific forms disappeared in male rat liver at 104 weeks of age. P450IIC12, a typical female-specific form, was induced developmentally in female rats and was also detected in male rats at 3 and 104 weeks of age. P450IIIA2 (testosterone 6 beta-hydroxylase) was induced developmentally in male rats, but disappeared when the rats were 104 weeks of age. In female rats, P450IIIA2 was detected only at 1 and 3 weeks of age. P450IIA1, IIC6, IIE1 and IVA3 were detected in rats of both sexes at any age. P450IIC6 and IVA3 were induced developmentally and detected at a similar level in rats of both sexes. The level of P450IIA1 was maximum at 3 weeks of age in rats of both sexes. The changes in the level of P450IIE1 during aging were small compared with the changes in other cytochrome P-450s used in this study. These observations provide concrete evidence to our earlier hypothesis that each of the forms of cytochrome P-450 in male rats alter with aging in different patterns resulting in a practical feminization of over-all cytochrome P-450 composition at old age.  相似文献   

4.
Cytochrome P-450-mediated redox cycling between the synthetic estrogen diethylstilbestrol (DES) and diethylstilbestrol-4',4"-quinone (DES Q) has previously been demonstrated. Cytochrome P-450 reductase catalyzes the reduction of DES Q presumably via a semiquinone formed by one-electron reduction. A reducing action of NAD(P)H quinone reductase (EC 1.6.99.2) mediating two-electron reduction of DES Q has been investigated in the present work. Quinone reductase catalyzed the conversion in the presence of NADH or NADPH of DES Q to 53-65% Z-DES, a marker product of reduction. Dicumarol (15 microM), a known specific inhibitor of quinone reductase, inhibited this reduction almost completely. Using microsomes from Syrian hamster kidney, a target organ of estrogen-induced carcinogenesis, the reduction of DES Q was only partially inhibited by dicumarol. Apparent Km values of quinone reductase and cytochrome P-450 reductase were 17.25 and 11.9 microM, respectively. These data demonstrate that in hamster kidney, quinone reductase and cytochrome P-450 reductase compete for the reduction of DES Q. Microsomal 02-. radical generation was stimulated 10-fold over base levels by the addition of 100 microM DES Q. The formation of 02-. radicals was inhibited by addition of superoxide dismutase (0.2 mg/ml) or by 2'-AMP or NADP, known inhibitors of cytochrome P-450 reductase. In contrast, dicumarol enhanced microsome-mediated 02-. formation. It is concluded that cytochrome P-450 reductase in hamster kidney microsomes mediates one-electron reduction of estrogen quinones to free radicals (semiquinones), which may subsequently enter redox cycling with molecular oxygen to form 02-.. Moreover, quinone reductase reduces DES Q directly to E- and Z-DES, and thus may prevent the formation of toxic intermediates during redox cycling of estrogens. Measurements of quinone reductase activity in liver and kidney of hamsters treated with estrogen for various lengths of time revealed a temporary decrease in activity by 80% specifically in the kidney after 1 month of chronic treatment with estradiol. Thus, a temporary decrease in quinone reductase activity, which occurred specifically in estrogen-exposed hamster kidney, may enhance the formation of free radical intermediates generated during biotransformation of estrogens.  相似文献   

5.
Effects of pyridine and pyridine-N-oxide on the monooxygenase system of rat liver microsomes have been studied. Pyridine (200 mg/kg) increased total cytochrome P-450 content and activated metabolism of some specific substrates 24 hours after injection. There was an increase in the degree of p-nitrophenol and chlorzoxazone hydroxylation due to increasing ethanol-induced cytochrome P-450IIE1 content. Pyridine was also able to induce cytochrome P-450IIB1 in rat microsomes; this reaction was accompanied by acceleration of 7-pentoxyresorufin 0-dealkylation. Cytochrome P-450IA1 appearance in liver microsomes was associated with increasing content of cytochrome P-450IA2. Dealkylation rates for specific substrates (7-ethoxyresorufin and 7-methoxyresorufin) were also increased. Similar to pyridine, pyridine-7-oxide induced cytochromes P-450IIE1, P-450IIB1/B2, and P-450IA1/A2, resulting in activation of specific substrate metabolism. Hence, pyridine and its derivative pyridine-N-oxide can be regarded as effective inducers of cytochrome P-450.  相似文献   

6.
Age-related changes in the levels of multiple forms of cytochrome P-450 as well as in the testosterone hydroxylation activities of hepatic microsomes of male and female rats of different ages from 1 week to 104 weeks (24 months) were investigated. The total cytochrome P-450 measured photometrically did not change much with age in either male and female rats. Testosterone 2α-, 2β-, 15α-, 16α-, and 16β-hydroxylation activities of male rats were much higher than those in female rats and were induced developmentally. These activities in male rats declined with aging to the very low level in female rats by 104 weeks of age. Testosterone 7α-hydroxylation activity was maximum at 3 weeks of age in rats of both sexes. The levels of individual cytochrome P-450s were measured by immunoblotting. P450IA1 and IA2 (3-methylcholanthrene-inducible forms) and P450IIB1 and IIB2 (phenobarbital-inducible form) were detected at low levels in rats of both sexes at all ages. P450IIA2, IIC11 and IVA2 were detected in male rats only and were induced developmentally. These male-specific forms disappeared in male rat liver at 104 weeks of age. P450IIC12, a typical female-specific form, was induced developmentally in female rats and was also detected in male rats at 3 and 104 weeks of age. P450IIIA2 (testosterone 6β-hydroxylase) was induced developmentally in male rats, but disappeared when the rats were 104 weeks of age. In female rats, P450IIIA2 was detected only at 1 and 3 weeks of age. P450IIA1, IIC6, IIE1 and IVA3 were detected in rats of both sexes at any age. P450IIC6 and IVA3 were induced developmentally and detected at a similar level in rats of both sexes. The level of P450IIA1 was maximum at 3 weeks of age in rats of both sexes. The changes in the level of P450IIE1 during aging were small compared with the changes in other cytochrome P-450s used in this study. These observations provide concrete evidence to our earlier hypothesis that each of the forms of cytochrome P-450 in male rats alter with aging in different patterns resulting in a practical feminization of over-all cytochrome P-450 composition at old age.  相似文献   

7.
The major polycyclic aromatic hydrocarbon-metabolizing cytochrome P450 in the mouse embryo fibroblast-derived C3H/10T1/2 CL8 cell line (P450-EF) has been partially purified from benz[a]anthracene (BA)-induced 10T1/2 cells (40 pmol P450/mg). The purification of P450-EF was carried out by sequential chromatography of solubilized microsomes over hydrophobic aminohexyl-Sepharose 4B, anion exchange DE-52 cellulose, and cation exchange carboxymethyl trisacryl columns. The final preparation (1700 pmol/mg) appeared as a single major 55-kDa band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Reconstitution of detergent-free partially purified P450-EF yielded a relatively high turnover for 7,12-dimethylbenz[a]anthracene (DMBA) metabolism (5.4 nmol/nmol/min). Polyclonal antibodies to purified P450-EF (anti-P450-EF), raised in, respectively, rabbit and chicken, detected a single 55-kDa band in 10T1/2 cell microsomes that was highly inducible by BA (approximately 20-fold) and TCDD (approximately 5-fold). Rabbit anti-P450-EF was much more effective than the corresponding chicken antibody at binding denatured P450-EF protein on Western blots. Conversely, only the chicken antibody was effective at inhibiting DMBA metabolism catalyzed by microsomal P450-EF. This antibody did not inhibit P450IA1-mediated DMBA metabolism. Rabbit anti-P450-EF recognized very weakly (less than 1% of homologous protein response) pure P450IA1, IIB1, IIC7, IIE1, and IIIA1 proteins on Western blots but exhibited substantial cross-reactivity (approximately 10%) with pure P450IIA1 and very strong cross-reactivity (approximately 75%) with a hormonally regulated rat adrenal P450. Polyclonal antibodies to several major P450 subfamilies either did not recognize P450-EF (anti-P450IA, IIB, and IIC) or recognized it very weakly (anti-P450IIA1). P450-EF is probably distantly related to the P450IIA subfamily and may belong to a new P450 subfamily.  相似文献   

8.
9.
Cytochrome b5-mediated redox cycling of estrogen   总被引:1,自引:0,他引:1  
Previously, we have demonstrated microsomal cytochrome P450-catalyzed redox cycling of estrogens. In this study, we investigated the role of cytochrome b5 in redox cycling in order to obtain a full understanding of enzymatic contributions to redox reactions of estrogens. Pure cytochrome P450c and hydrogen peroxide or cumene hydroperoxide oxidized diethylstilbestrol (DES) to diethylstilbestrol-4',4"-quinone (DES Q). This oxidation by H2O2 was doubled by addition of cytochrome b5 to cytochrome P450c (molar ratio of 1:4), but did not proceed with cytochrome b5 alone. The stimulation by cytochrome b5 of the cytochrome P450c-catalyzed oxidation of DES to DES Q occurred via modulation of the Vmax of cytochrome P450c rather than of the Km. DES Q was reduced to DES by purified cytochrome b5 and NADH-dependent cytochrome b5 reductase. Pretreatment of microsomes with an antibody to cytochrome b5 reductase inhibited microsomal NADH-dependent reduction of DES Q to DES by 55%. Cytochrome b5 likely participates in the oxidation of DES to DES Q by interacting with cytochrome P450c and in the reduction of DES Q to DES by interacting with cytochrome b5 reductase. Thus, the study demonstrates that cytochrome b5 plays an active role in biological oxidation and reduction reactions.  相似文献   

10.
Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2   总被引:7,自引:0,他引:7  
Acetaminophen (APAP), a widely used over-the-counter analgesic, is known to cause hepatotoxicity when ingested in large quantities in both animals and man, especially when administered after chronic ethanol consumption. Hepatotoxicity stems from APAP activation by microsomal P450 monooxygenases to a reactive metabolite that binds to tissue macromolecules, thereby initiating cellular necrosis. Alcohol consumption also causes the induction of P450IIE1, a liver microsomal enzyme that in reconstitution studies has proven to be an effective catalyst of APAP oxidation. Thus, elevated microsomal P450IIE1 levels could explain not only the known increase in APAP bioactivating activity of liver microsomes after prolonged ethanol ingestion but also the enhanced susceptibility to APAP toxicity. We therefore examined the role of P450IIE1 in human liver microsomal APAP activation. Liver microsomes from seven non-alcoholic subjects were found to convert 1 mM APAP to a reactive intermediate (detected as an APAP-cysteine conjugate by high-pressure liquid chromatography) at a rate of 0.25 +/- 0.1 nmol conjugate formed/min/nmol microsomal P450 (mean +/- SD), whereas at 10 mM, this rate increased to 0.73 +/- 0.2 nmol product/min/nmol P450. In a reconstituted system, purified human liver P450IIE1 catalyzed APAP activation at rates threefold higher than those obtained with microsomes whereas two other human P450s, P450IIC8 and P450IIC9, exhibited negligible APAP-oxidizing activity. Monospecific antibodies (IgG) directed against human P450IIE1 inhibited APAP activation in each of the human samples, with anti-P450IIE1 IgG-mediated inhibition averaging 52% (range = 30-78%) of the rates determined in the presence of control IgG. The ability of anti-P450IIE1 IgG to inhibit only one-half of the total APAP activation by microsomes suggests, however, that other P450 isozymes besides P450IIE1 contribute to bioactivation of this compound in human liver. Of the other purified P450 isozymes examined, a beta-naphthoflavone (BNF)-inducible hamster liver P450 promoted APAP activation at rates even higher than those obtained with human P450IIE1. The extensive APAP-oxidizing capacity of this hamster P450, designated P450IA2 based upon its similarity to rat P450d and rabbit form 4 in terms of NH2-terminal amino acid sequence, spectral characteristics, immunochemical properties, and inducibility by BNF, agrees with previous reports concerning the APAP substrate specificity of the rat and rabbit P450IA2 proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The reaction of phenyldiazene with purified, phenobarbital-inducible rabbit cytochrome P450IIB4, mouse cytochrome P450IIB10, and dog cytochrome P450IIB11 yields complexes with absorbance maxima at 480 nm. Treatment of the cytochrome P450 complexes with K3Fe(CN)6 results in disappearance of the 480-nm absorption. Extraction of the prosthetic group from the proteins after these reactions yields the two isomers of N-phenylprotoporphyrin IX with the N-phenyl group on pyrrole rings A and D as the major products and the regioisomer with the N-phenyl on pyrrole ring C as a minor product. The A:C:D arylated pyrrole ring ratio is 3:2:3 for rabbit P450IIB4, 3:1:3 for mouse P450IIB10, and 4:1:2 for dog P450IIB11. Formation of the A and D regioisomers is consistent with the results obtained previously for rat isozymes IA1, IIB1, IIB2, and IIE1, but the rabbit, mouse, and dog P450IIB enzymes differ from the four rat enzymes in that a substantial amount of the isomer with the N-phenyl on pyrrole ring C is also formed. The results indicate that the region over pyrrole ring B is masked by protein residues in all the active sites and suggest that the region over pyrrole ring C is more hindered by protein residues in the rat than in the rabbit, mouse, or dog enzymes so far examined.  相似文献   

12.
The influence of food restriction (FR) on the drug-inducible capacity of liver microsomal cytochrome P-450s IA1, IA2 and IIB1 and IIB2 was studied in 20-month-old male Fischer-344 rats. ELISA and Western Blotting revealed that the induction of the cytochrome P-450-IA1/IA2 and P-450-IIB1/IIB2 enzymes was considerably higher in the liver microsomes of FR rats than in their ad libitum (AL) fed counterparts. In order to determine whether the higher P-450 enzyme levels in FR rats were a reflection of an increased synthesis rate or a stabilization of these enzymes, hybridization studies were performed with a cDNA probe for P-450-IIB1/IIB2. These studies show markedly higher levels of P-450-IIB1/IIB2 mRNAs in the livers of FR rats as compared to AL animals. These results suggest that it is possible to prevent the age-dependent loss of drug-induced cytochrome P-450s by 40% dietary restriction which suggest FR may improve the drug-metabolizing capacity during aging.  相似文献   

13.
Ingestion of broccoli or other cruciferous vegetables inhibits the induction of cancer by chemicals and modifies some cytochrome P-450 enzyme activities. The effect of dietary broccoli on the levels of P450IA and IIB mRNA and proteins in rat liver and colon has been studied. Rats were fed a ten percent broccoli diet for 7 days. The expression of the cytochrome P-450 forms was altered to a different extent in the liver and colon. The level of total P450IA mRNA in the liver was increased by the broccoli together with the P450IA1 and IA2 proteins. Colonic P450IA1 mRNA and protein were induced by the broccoli diet, whereas only P450IA2 protein and not mRNA was detectable in colon, but the protein level was unaffected by the broccoli diet. Liver P450IIB and IIE1 proteins were increased by the broccoli diet, whereas the level of P450IIB mRNAs was not affected. In contrast, the P450IIB mRNA levels were reduced but the protein levels were increased in colon and we suggest that a feedback mechanism caused the decrease of the P450IIB mRNAs levels. Because the ratio between activation and deactivation may be an important risk determinant, we conclude that the protective effect of the broccoli diet on chemically induced tumors in rodents may be caused by the broccoli-induced changes in P450IA and IIB associated enzyme activities.  相似文献   

14.
Metabolism of retinol and retinoic acid by human liver cytochrome P450IIC8   总被引:3,自引:0,他引:3  
Liver microsomes obtained from nine subjects were found to metabolize retinol to polar metabolites, including 4-hydroxyretinol. In a reconstituted monooxygenase system containing human liver P450IIC8, retinol was converted to 4-hydroxyretinol and other polar metabolites, with a Km of 0.071 mM and a Vmax of 1.73 nmol/min/nmol P450. Neither P450IIC9 nor P450IIE1, two other purified human P450s, displayed significant retinol hydroxylase activity. Immunoblots performed with a monospecific antibody directed against human P450IIC8 revealed that appreciable amounts of this enzyme were present in human liver microsomes. The same antibody significantly inhibited retinol metabolism in liver microsomes and in the system reconstituted with P450IIC8. The system reconstituted with P450IIC8 also converted retinoic acid to polar metabolites. Thus, this study shows, for the first time, metabolism of two physiologic substrates by a human liver cytochrome P450 related to a group of "constitutive" rodent P450s believed to participate in the metabolism of endogenous compounds. Through its involvement in vitamin A metabolism, P450IIC8 may participate in maintaining the balance between those vitamin A concentrations that promote cellular integrity (and oppose the development of cancer) and those concentrations that cause cellular toxicity.  相似文献   

15.
1. The cytotoxicity of N-nitrosomethylaniline (NMA) towards hepatocytes isolated from rats was prevented by acetone or ethanol (inhibitors for cytochrome P-450IIE1) but not by metyrapone or SKF525A (inhibitors for cytochrome P-450IIB1/2). Various alcohols, secondary ketones and isothiocyanates that induced cytochrome P-450IIE1 were also found to be protective. Various aromatic and chlorinated hydrocarbon solvents that are substrates or inducers of cytochrome P-450IIE1 also prevented NMA cytotoxicity. Nitrogen-containing heterocycles that induced cytochrome P-450IIE1 were less effective. Further evidence that cytochrome P-450IIE1 was responsible for the activation of NMA was the marked increase in hepatocyte susceptibility if hepatocytes from pyrazole-induced rats were used. 2. NMA was more cytotoxic to hepatocytes isolated from phenobarbital-pretreated rats than uninduced rats. However, metyrapone now prevented and SKF525A delayed the cytotoxicity whereas ethanol, acetone, allyl isocyanate, isoniazid or trichloroethylene had no effect on the susceptibility of phenobarbital-induced hepatocytes. Furthermore, microsomes isolated from phenobarbital-pretreated rats had higher NMA-N-demethylase activity which was more inhibited by metyrapone and SKF525A than that of uninduced microsomal activity. By contrast the N-demethylase activity of phenobarbital induced microsomes was more resistant to acetone, ethanol, hexanal, trichloroethylene and toluene than uninduced microsome. 3. The above results suggest that cytochrome P-450IIE1 catalyses the cytotoxic activation of NMA in normal or pyrazole-induced hepatocytes whereas cytochrome P-450IIB1/2 is responsible for cytotoxicity in phenobarbital-induced hepatocytes.  相似文献   

16.
The reactions of cytochromes P450 IA1, IIB1, IIB2, and IIE1 with phenyldiazene yield complexes with absorption maxima at either 474 or 480 nm. Anaerobic extraction of the prosthetic group from the phenyldiazene-treated proteins followed by its exposure to oxygen and strong acid produces an equal mixture of the four possible N-phenylprotoporphyrin IX regioisomers. Exposure of the anaerobically extracted heme complexes to oxygen in the absence of strong acid results in their decomposition to heme and products other than N-phenylprotoporphyrin IX. These results show that the 474/480 nm absorption maxima are due to sigma phenyl-iron complexes. Treatment of the intact hepatic cytochrome P450 complexes with K3Fe(CN)6 results in disappearance of the 474/480 nm band. Extraction of the prosthetic group then yields only the two N-phenylprotoporphyrin IX regioisomers with the N-phenyl group on pyrrole rings A and D. The same regioisomer pattern is obtained if the cytochrome P450IA1 phenyl-iron complex is simply warmed to 37 degrees C, but this thermal rearrangement occurs much less readily, if at all, with the complexes of the other isozymes. The regioisomers with the N-phenyl on pyrrole rings A and D are obtained in a 2:1 ratio with isozyme IA1, 1:1 with IIB2, 1:1.7 with IIB1, and 1:2 with IIE1. These results establish that the active sites of these cytochrome P450 isozymes have a common architecture despite their gross differences in substrate specificity. In this architecture, the region directly above pyrrole rings A and D is relatively open whereas that above pyrrole rings B and C is occluded by protein residues.  相似文献   

17.
The molecular mechanism of cytochrome P450IIE reduction by CCl4 was reexamined by measuring its enzyme activity, immunoreactive protein contents, and mRNA levels. Aniline hydroxylase and the amounts of immunoreactive P450IIE were rapidly decreased in a time-dependent manner after a single dose of CCl4. No changes were observed in the amounts of immunoreactive P450IIC and P450IA despite significant decreases decrease in their catalytic activities. However, the decreases in P450IIE enzyme activity and immunoreactive protein by CCl4 were not accompanied by a decline in its mRNA level. The data thus suggested a post-translational reduction of P450IIE by CCl4, probably due to specific destruction of the P450IIE protein by its own substrate rather than heme moiety.  相似文献   

18.
19.
Previous work suggested that the oxidation of uroporphyrinogen to uroporphyrin is catalyzed by cytochrome P450IA2. Here we determined whether purified reconstituted mouse P450IA1 and IA2 oxidize uroporphyrinogen. Cytochromes P450IA1 and IA2 were purified from hepatic microsomes from 3-methylcholanthrene (MC)-treated C57BL/6 mice, using a combination of affinity chromatography and high performance liquid chromatography. Reconstituted P450IA1 was more active than P450IA2 in catalyzing ethoxyresorufin-O-deethylase (EROD) activity, whereas P450IA2 was more active than P450IA1 in catalyzing uroporphyrinogen oxidation (UROX). Both reactions required NADPH, NADPH-cytochrome P450 reductase, and either P450IA1 or IA2. Ketoconazole competitively inhibited both EROD and UROX activities, in microsomes from MC-treated mice. Ketoconazole also inhibited UROX catalyzed by reconstituted P450IA2. In contrast, ketoconazole did not inhibit UROX catalyzed by xanthine oxidase in the presence of iron-EDTA. Superoxide dismutase, catalase, and mannitol inhibited UROX catalyzed by xanthine oxidase/iron-EDTA, but did not affect UROX catalyzed by either microsomes or reconstituted P450IA2. These results suggest that UROX catalyzed by P450IA2 in microsomes and reconstituted systems does not involve free reactive oxygen species. Two known substrates of cytochrome P450IA2, 2-amino-3,4-dimethylimidazole[4,5-f]quinoline and phenacetin, were shown to inhibit the microsomal UROX reaction, suggesting that uroporphyrinogen binds to a substrate-binding site on the cytochrome P450.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号