首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inositol biosynthesis was studied in soluble, cell extracts of a wild-type (Ino) strain of Saccharomyces cerevisiae. Two reactions were detected: (i) conversion of D-glucose-6-phosphate to a phosphorylated form of inositol, presumably inositol-1-phosphate (IP synthethase, EC5.5.1.4), and (ii) conversion of phosphorylated inositol to inositol (IP phosphatase, EC3.1.3.25). The in vitro rate of conversion of glucose-6-phosphate to inositol was proportional to incubaion time and enzyme concentration. The pH optimum was 7.0. The synthesis of inositol required oxidized nicotinamide adenine dinucleotide (NAD) and was stimulated byNH4C1 and MgC12. NADP substituted poorly for NAD, and NADH inhibitedthe reaction. Phosphorylated inositol accumulated in the absence of MgC12, suggesting that inositol-phosphate is an intermediate in the pathway and that Mg ions stimulate the dephosphorylation of inositol-phosphate. IP synthetase was inhibited approximately 20% in the presence of inositol in the reaction mixture at concentrations exceeding 1 mM. The enzyme was repressed approximately 50-fold when inositol was present in the growth medium at concentrations exceeding 50 muM. IP synthetase reached the fully repressed level approximately 10 h after the addition of inositol to logarithmic cultures grown in the absence of inositol. The specific activity of the enzyme increased with time in logarithmically growing cultures lacking inositol andapproached the fully depressed level as the cells entered stationary phase.  相似文献   

2.
The enzyme inositol-1-phosphate synthase (I-1-P synthase), product of the INO1 locus, catalyzes the synthesis of inositol-1-phosphate from the substrate glucose-6-phosphate. The activity of this enzyme is dramatically repressed in the presence of inositol. By selecting for mutants which overproduce and excrete inositol, we have identified mutants constitutive for inositol-1-phosphate synthase as well as a mutation in phospholipid biosynthesis. Genetic analysis of the mutants indicates that at least three loci (designated OPI1, OPI2 and OPI4) direct inositol-mediated repression of I-1-P synthase. Mutants of these loci synthesize I-1-P synthase constitutively. Three loci are unlinked to each other and to INO1, the structural gene for the enzyme. A mutant of a fourth locus, OPI3, does not synthesize I-1-P synthase constitutively, despite its inositol excretion phenotype. This mutant is preliminarily identified as having a defect in phospholipid synthesis.  相似文献   

3.
Glucose-6-phosphate dehydrogenase from Streptomyces aureofaciens exhibited activity with both NAD and NADP, the maximum reaction rate being 1.6 times higher for NAD-linked activity than for the NADP-linked one. The KM values for NAD-linked activity were 2.5 mM for glucose-6-phosphate and 0.27 mM for NAD, and for NADP-linked activity 0.8 mM for glucose-6-phosphate and 0.08 mM for NADP. NAD- and NADP-linked activities were inhibited by both NADH and NADPH. (2'-phospho-)adenosinediphospho-ribose inhibited only NAD-linked activity. The inhibition was competitive with respect to NAD and noncompetitive with respect to glucose-6-phosphate.  相似文献   

4.
Summary The enzyme inositol-1-phosphate synthase is repressed at least 50-fold in wild type yeast grown in inositol-supplemented media. Mutants which synthesize this enzyme constitutively have been isolated using a selection procedure based on excretion of inositol into the growth medium by putative mutants. Biochemical analysis of one of the mutants (opi1-1) confirmed that the nature of the mutations is regulatory, and not in the structural gene for the enzyme. Immunoprecipitation of crude extracts with antibody directed against purified inositol-1-phosphate synthase showed that a protein which reacts with the antibody is present in the mutant grown under both repressing and derepressing conditions, in contrast to the wild type which synthesizes the enzyme only when derepressed. Assay of inositol-1-phosphate synthase activity in crude extracts of the mutant verified synthase activity in cells grown under both repressing and drepressing conditions. Synthase purified from this mutant was characterized with respect to molecular weight, thermolability and affinity for substrates glucose-6-phosphate and NAD. These analyses indicated that purified mutant synthase was similar to the wild type enzyme.  相似文献   

5.
P Str?lfors  S Alemany 《FEBS letters》1990,268(1):169-172
Inositol-phosphates, glucosamine and glucose-6-phosphate blocked the effects of insulin on target protein phosphorylation in adipocytes, but the unsubstituted or sulphated derivatives of inositol or of glucose, or N-acetyl-glucosamine were without effect. The insulin stimulated tyrosine phosphorylation of the insulin receptor was not affected. The sugar-phosphates inositol-phosphate and glucose-6-phosphate did not enter into the cells. They also blocked the insulin-like effects of a potential second messenger of insulin, a phospho-oligosaccharide (POS), which has previously been shown to mimic the effects of insulin on protein phosphorylation in intact cells.  相似文献   

6.
We have cloned, sequenced, and expressed a human cDNA encoding 1-d-myo-inositol-3-phosphate (MIP) synthase (hINO1). The encoded 62-kDa human enzyme converted d-glucose 6-phosphate to 1-d-myo-inositol 3-phosphate, the rate-limiting step for de novo inositol biosynthesis. Activity of the recombinant human MIP synthase purified from Escherichia coli was optimal at pH 8.0 at 37 degrees C and exhibited K(m) values of 0.57 mm and 8 microm for glucose 6-phosphate and NAD(+), respectively. NH(4)(+) and K(+) were better activators than other cations tested (Na(+), Li(+), Mg(2+), Mn(2+)), and Zn(2+) strongly inhibited activity. Expression of the protein in the yeast ino1Delta mutant lacking MIP synthase (ino1Delta/hINO1) complemented the inositol auxotrophy of the mutant and led to inositol excretion. MIP synthase activity and intracellular inositol were decreased about 35 and 25%, respectively, when ino1Delta/hINO1 was grown in the presence of a therapeutically relevant concentration of the anti-bipolar drug valproate (0.6 mm). However, in vitro activity of purified MIP synthase was not inhibited by valproate at this concentration, suggesting that inhibition by the drug is indirect. Because inositol metabolism may play a key role in the etiology and treatment of bipolar illness, functional conservation of the key enzyme in inositol biosynthesis underscores the power of the yeast model in studies of this disorder.  相似文献   

7.
Inositol-Requiring Mutants of SACCHAROMYCES CEREVISIAE   总被引:5,自引:5,他引:0  
Fifty-two inositol-requiring mutants of Saccharomyces cerevisiae were isolated following mutagenesis with ethyl methanesulfonate. Complementation and tetrad analysis revealed ten major complementation classes, representing ten independently segregating loci (designated ino1 through ino10) which recombined freely with their respective centromeres. Members of any given complementation class segregated as alleles of a single locus. Thirteen complementation subclasses were identified among thirty-six mutants which behaved as alleles of the ino1 locus. The complementation map for these mutants was circular.—Dramatic cell viability losses indicative of unbalanced growth were observed in liquid cultures of representative mutants under conditions of inositol starvation. Investigation of the timing, kinetics, and extent of cell death revealed that losses in cell viability in the range of 2-4 log orders could be prevented by the addition of inositol to the medium or by disruption of protein synthesis with cycloheximide. Mutants defective in nine of the ten loci identified in this study displayed these unusual characteristics. The results suggest an important physiological role for inositol that may be related to its cellular localization and function in membrane phospholipids. The possibility is discussed that inositol deficiency initiates the process of unbalanced growth leading to cell death through the loss of normal assembly, function, or integrity of biomembranes.—Part of this work has been reported in preliminary form (Culbertson and Henry 1974).  相似文献   

8.
The hepatotoxicity of orally administered secondary autoxidation products of linoleic acid was investigated, as compared with the administration of a saline solution and linoleic acid as controls. The de novo synthesis of fatty acids was strongly reduced in the secondary products group. The level of NADPH in the liver significantly decreased while that of NADH did not. The activities of glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase apparently decreased. The activities of NAD+ kinase and NAD+ synthetase decreased and that of NAD + nucleosidase increased in the secondary products group. Therefore, the depletion of NADPH can be attributed to the inhibition of two metabolic systems (an NADPH-supplemental system, and a synthetic system of NADP and NAD), and resulted in the reduction of lipogenesis in the liver.  相似文献   

9.
Depletion of inositol has profound effects on cell function and has been implicated in the therapeutic effects of drugs used to treat epilepsy and bipolar disorder. We have previously shown that the anticonvulsant drug valproate (VPA) depletes inositol by inhibiting myo-inositol-3-phosphate synthase, the enzyme that catalyzes the first and rate-limiting step of inositol biosynthesis. To elucidate the cellular consequences of inositol depletion, we screened the yeast deletion collection for VPA-sensitive mutants and identified mutants in vacuolar sorting and the vacuolar ATPase (V-ATPase). Inositol depletion caused by starvation of ino1Δ cells perturbed the vacuolar structure and decreased V-ATPase activity and proton pumping in isolated vacuolar vesicles. VPA compromised the dynamics of phosphatidylinositol 3,5-bisphosphate (PI3,5P2) and greatly reduced V-ATPase proton transport in inositol-deprived wild-type cells. Osmotic stress, known to increase PI3,5P2 levels, did not restore PI3,5P2 homeostasis nor did it induce vacuolar fragmentation in VPA-treated cells, suggesting that perturbation of the V-ATPase is a consequence of altered PI3,5P2 homeostasis under inositol-limiting conditions. This study is the first to demonstrate that inositol depletion caused by starvation of an inositol synthesis mutant or by the inositol-depleting drug VPA leads to perturbation of the V-ATPase.  相似文献   

10.
1. Growth of Escherichia coli on glucosamine results in an induction of glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] and a repression of glucosamine 6-phosphate synthetase (l-glutamine-d-fructose 6-phosphate aminotransferase, EC 2.6.1.16); glucose abolishes these control effects. 2. Growth of E. coli on N-acetylglucosamine results in an induction of N-acetylglucosamine 6-phosphate deacetylase and glucosamine 6-phosphate deaminase, and in a repression of glucosamine 6-phosphate synthetase; glucose diminishes these control effects. 3. The synthesis of amino sugar kinases (EC 2.7.1.8 and 2.7.1.9) is unaffected by growth on amino sugars. 4. Glucosamine 6-phosphate synthetase is inhibited by glucosamine 6-phosphate. 5. Mutants of E. coli that are unable to grow on N-acetylglucosamine have been isolated, and lack either N-acetylglucosamine 6-phosphate deacetylase (deacetylaseless) or glucosamine 6-phosphate deaminase (deaminaseless). Deacetylaseless mutants can grow on glucosamine but deaminaseless mutants cannot. 6. After growth on glucose, deacetylaseless mutants have a repressed glucosamine 6-phosphate synthetase and a super-induced glucosamine 6-phosphate deaminase; this may be related to an intracellular accumulation of acetylamino sugar that also occurs under these conditions. In one mutant the acetylamino sugar was shown to be partly as N-acetylglucosamine 6-phosphate. Deaminaseless mutants have no abnormal control effects after growth on glucose. 7. Addition of N-acetylglucosamine or glucosamine to cultures of a deaminaseless mutant caused inhibition of growth. Addition of N-acetylglucosamine to cultures of a deacetylaseless mutant caused lysis, and secondary mutants were isolated that did not lyse; most of these secondary mutants had lost glucosamine 6-phosphate deaminase and an uptake mechanism for N-acetylglucosamine. 8. Similar amounts of (14)C were incorporated from [1-(14)C]-glucosamine by cells of mutants and wild-type growing on broth. Cells of wild-type and a deaminaseless mutant incorporated (14)C from N-acetyl[1-(14)C]glucosamine more efficiently than from N[1-(14)C]-acetylglucosamine, incorporation from the latter being further decreased by acetate; cells of a deacetylaseless mutant showed a poor incorporation of both types of labelled N-acetylglucosamine.  相似文献   

11.
After removal of tightly bound NAD(+) by using charcoal, a preparation of d-glucose 6-phosphate-1 l-myoinositol 1-phosphate cyclase catalysed the reduction of 5-keto-d-glucitol 6-phosphate and 5-keto-d-glucose 6-phosphate by [4-(3)H]NADH to give [5-(3)H]-glucitol 6-phosphate and [5-(3)H]glucose 6-phosphate respectively. The position of the tritium atom in the latter was shown by degradation. Both enzyme-catalysed reductions were strongly inhibited by 2-deoxy-d-glucose 6-phosphate, a powerful competitive inhibitor of inositol cyclase. The charcoal-treated enzyme preparation also converted 5-keto-d-glucose 6-phosphate into [(3)H]myoinositol 1-phosphate in the presence of [4-(3)H]NADH, but less effectively. These partial reactions of inositol cyclase are interpreted as providing strong evidence for the formation of 5-keto-d-glucose 6-phosphate as an enzyme-bound intermediate in the conversion of d-glucose 6-phosphate into 1 l-myoinositol 1-phosphate. The enzyme was partially inactivated by NaBH(4) in the presence of NAD(+). Glucose 6-phosphate did not increase the inactivation, and there was no inactivation in the absence of NAD(+). There was no evidence for Schiff base formation during the cyclization. d-Glucitol 6-phosphate (l-sorbitol 1-phosphate) was a good inhibitor of the overall reaction. It did not inactivate the enzyme. The apparent molecular weight of inositol cyclase as determined by Sephadex chromatography was 2.15x10(5).  相似文献   

12.
We isolated a mutant of Saccharomyces cerevisiae defective in the formation of phosphatidylcholine via methylation of phosphatidylethanolamine. The mutant synthesized phosphatidylcholine at a reduced rate and accumulated increased amounts of methylated phospholipid intermediates. It was also found to be auxotrophic for inositol and allelic to an existing series of ino4 mutants. The ino2 and ino4 mutants, originally isolated on the basis of an inositol requirement, are unable to derepress the cytoplasmic enzyme inositol-1-phosphate synthase (myo-inositol-1-phosphate synthase; EC 5.5.1.4). The INO4 and INO2 genes were, thus, previously identified as regulatory genes whose wild-type product is required for expression of the INO1 gene product inositol-1-phosphate synthase (T. Donahue and S. Henry, J. Biol. Chem. 256:7077-7085, 1981). In addition to the identification of a new ino4-allele, further characterization of the existing series of ino4 and ino2 mutants, reported here, demonstrated that they all have a reduced capacity to convert phosphatidylethanolamine to phosphatidylcholine. The pleiotropic phenotype of the ino2 and ino4 mutants described in this paper suggests that the INO2 and INO4 loci are involved in the regulation of phospholipid methylation in the membrane as well as inositol biosynthesis in the cytoplasm.  相似文献   

13.
During the greening of etiolated rice leaves, total glutamine synthetase activity increases about twofold, and after 48 h the level of activity usually observed in green leaves is obtained. A density-labeling experiment with deuterium demonstrates that the increase in enzyme activity is due to a synthesis of the enzyme. The enhanced activity obtained upon greening is the result of two different phenomena: there is a fivefold increase of chloroplastic glutamine synthetase content accompanied by a concommitant decrease (twofold) of the cytosolic glutamine synthetase. The increase of chloroplastic glutamine synthetase (GS2) is only inhibited by cycloheximide and not by lincomycin. This result indicates a cytosolic synthesis of GS2. The synthesis of GS2 was confirmed by a quantification of the protein by an immunochemical method. It was demonstrated that GS2 protein content in green leaves is fivefold higher than in etiolated leaves.Abbreviations AbH heavy chain of antibodies - AbL light chain of antibodies - AP acid phosphatase - CH cycloheximide - G6PDH glucose-6-phosphate dehydrogenase - GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 chloroplastic glutamine synthetase - LC lincomycin - NAD-MDH NAD malate dehydrogenase - NADP-G3PDH NADP glyceraldehyde-3-phosphate dehydrogenase  相似文献   

14.
Inositol is utilized by Mycobacterium tuberculosis in the production of its major thiol and of essential cell wall lipoglycans. We have constructed a mutant lacking the gene encoding inositol-1-phosphate synthase (ino1), which catalyses the first committed step in inositol synthesis. This mutant is only viable in the presence of extremely high levels of inositol. Mutant bacteria cultured in inositol-free medium for four weeks showed a reduction in levels of mycothiol, but phosphatidylinositol mannoside, lipomannan and lipoarabinomannan levels were not altered. The ino1 mutant was attenuated in resting macrophages and in SCID mice. We used site-directed mutagenesis to alter four putative active site residues; all four alterations resulted in a loss of activity, and we demonstrated that a D310N mutation caused loss of the active site Zn2+ ion and a conformational change in the NAD+ cofactor.  相似文献   

15.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

16.
Abstract Extracts from the obligate methylotroph Methylobacillus flagellatum KT and its temperature-sensitive (ts) glucose 6-phosphate dehydrogenase (GPD) mutants were analysed by electrophoresis, isoelectrofocusing and chromatography methods. GPD is present in two forms differing in the isoelectric point (IEP) values, but identical in other properties. Both forms are specific to NAD and NADP, have similar affinity to substrates, exhibit equal levels of inhibition by NAD(P)H and ATP and have the same dependence of activity on temperature. The synthesis of both forms is controlled by one gene. 6-phosphogluconate dehydrogenase (GND) is represented by two proteins with different IEP values. One is specific both to NAD and NADP, is stable and inhibited by NADH and NADPH to a similar extent. The second is specific to NAD only, unstable and inhibited by NADH to a greater extent than by NADPH.  相似文献   

17.
Co-immobilization methods have been developed for a bienzymatic system of luminescent Beneckea harveyi bacteria with formate dehydrogenase, glucose-6-phosphate dehydrogenase, and phosphoglucomutase. Bioluminescent assays have been devised for NADH, NAD, FMN, glucose 6-phosphate, and glucose 1-phosphate using the co-immobilized enzyme preparation. The lowest detection limits were in the picomole range with the bacterial extract and in the femtomole range with the partially purified enzymes, bacterial luciferase, and NADH:FMN oxidoreductase.  相似文献   

18.
19.
Donahue TF  Henry SA 《Genetics》1981,98(3):491-503
An extensive genetic analysis of inositol auxotrophic mutants of yeast is reported. The analysis includes newly isolated mutants, as well as those previously reported (Culbertson and Henry 1975). Approximately 70% of all inositol auxotrophs isolated are shown to be alleles of the ino1 locus, the structural gene for inositol-1-phosphate synthase, the major enzyme involved in inositol biosynthesis. Alleles of two other loci, ino2 and ino4, comprise 9% of total mutants, with the remainder representing unique loci or complementation groups. The ino1 locus was mapped by trisomic analysis with an n + 1 disomic strain constructed with complementing alleles at this locus. The ino1 locus is shown to be located between ura2 (11.1 cm) and cdc6 (21.8 cm) on chromosome X. An extended map of chromosome X of yeast is presented. Unlike most yeast loci, but similar to the his1 locus, the ino1 locus lacks allelic representatives that are suppressible by known suppressors. This finding suggests that premature termination of translation of the ino1 gene product may be incompatible with cell viability.  相似文献   

20.
A homogeneous preparation of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) with a specific activity of 3.88 U/mg protein was isolated from pea (Pisum sativum L.) leaves. The molecular mass of the G6PDH is 79 +/- 2 kD. According to SDS-PAGE, the molecular mass of the enzyme subunit is 40 +/- 3 kD. The Km values for glucose-6-phosphate and NADP are 2 and 0.5 mM, respectively. The enzyme has a pH optimum of 8.0. Mg2+, Mn2+, and Ca2+ activate the enzyme at concentrations above 1 mM. Galactose-6-phosphate and fructose-6-phosphate inhibit the G6PDH from pea leaves. Fructose-1, 6-bisphosphate and galactose-1-phosphate are enzyme activators. NADPH is a competitive inhibitor of the G6PDH with respect to glucose-6-phosphate (Ki = 0.027 mM). ATP, ADP, AMP, UTP, NAD, and NADH have no effect on the activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号