首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canonical glutathione (GSH) transferases are dimeric proteins with subunits composed of an N-terminal GSH binding region (domain 1) and a C-terminal helical region (domain 2). The stabilities of several GSH transferase dimers are dependent upon two groups of interactions between domains 1 and 2 of opposing subunits: a hydrophobic ball-and-socket motif and a buried charge cluster motif. In rGSTM1-1, these motifs involve residues F56 and R81, respectively. The structural basis for the effects of mutating F56 to different residues on dimer stability and function has been reported (Codreanu et al. (2005) Biochemistry 44, 10605-10612). Here, we show that the simultaneous disruption of both motifs in the F56S/R81A mutant causes complete dissociation of the dimer to a monomeric protein on the basis of gel filtration chromatography and multiple-angle laser light scattering. The fluorescence and far-UV CD properties of the double mutant as well as the kinetics of amide H/D exchange along the polypeptide backbone suggest that the monomer has a globular structure that is similar to a single subunit in the native protein. However, the mutant monomer has severely impaired catalytic activity, suggesting that the dimer interface is vital for efficient catalysis. Backbone amide H/D exchange kinetics in the F56S and F56S/R81A mutants indicate that a reorganization of the loop structure between helix alpha2 and strand beta3 near the active site is responsible for the decreased catalytic activity of the monomer. In addition, the junction between the alpha4 and alpha5 helices in F56S/R81R shows decreased H/D exchange, indicating another structural change that may affect catalysis. Although the native subunit interface is important for dimer stability, urea-induced unfolding of the F56S/R81A mutant suggests that the interface is not essential for the thermodynamic stability of individual subunits. The H/D exchange data reveal a possible molecular basis for the folding cooperativity observed between domains 1 and 2.  相似文献   

2.
Hornby JA  Codreanu SG  Armstrong RN  Dirr HW 《Biochemistry》2002,41(48):14238-14247
Cytosolic glutathione (GSH) transferases (GSTs) exist as stable homo- and heterodimers. Interactions at the subunit interface serve an important role in stabilizing the subunit tertiary structures of all GSH transferases. In addition, the dimer is required to maintain functional conformations at the active site on each subunit and the nonsubstrate ligand binding site at the dimer interface [Dirr, H. W. (2001) Chem.-Biol. Interact. 133, 19-23]. In this study, we report on the contribution of a specific intersubunit hydrophobic motif in rGSTM1-1 to dimer stability and protein function. The motif consists of the side chain of F56 from one subunit intercalated between helices 4 and 5 of the second subunit. Replacement of F56 with the hydrophilic side chains of serine, arginine, and glutamate results in a change in the structure of the active site, a marked diminution in catalytic efficiency, and alterations in the ability to bind nonsubstrate ligands. The mutations also affect the ability of the enzyme to bind GSH and the substrate analogue glutathione sulfonate. The functionality of rGSTM1-1 was disrupted to the greatest extent for the F56E mutant. Though mutations at this position do not alter the three-state equilibrium folding process for rGSTM1-1 (i.e., N(2) <--> 2I <--> 2U), destabilizing mutations at position 56 shift the equilibrium between the folded dimer (N(2)) and the monomeric intermediate (I) toward the latter conformational state. The transition to the unfolded state (U) is not significantly affected. The folded monomeric intermediate is also observed by electrospray ionization mass spectrometry. The amount of the intermediate is dependent on protein concentration and the residue at position 56. Mutations at position 56 have little impact on the secondary structure and stability of the monomeric folding intermediate. The dimerization process is proposed to induce a conformational change in the loop containing F56, resulting in improved stability and increased affinity between the M1 subunits.  相似文献   

3.
4.
Microsomal glutathione (GSH) transferase 1 (MGST1) is a trimeric, integral membrane protein involved in cellular response to chemical or oxidative stress. The cytosolic domain of MGST1 harbors the GSH binding site and a cysteine residue (C49) that acts as a sensor of oxidative and chemical stress. Spatially resolved changes in the kinetics of backbone amide H/D exchange reveal that the binding of a single molecule of GSH/trimer induces a cooperative conformational transition involving movements of the transmembrane helices and a reordering of the cytosolic domain. Alkylation of the stress sensor preorganizes the helices and facilitates the cooperative transition resulting in catalytic activation.  相似文献   

5.
Human manganese superoxide dismutase (MnSOD) is a homotetramer of 22 kDa subunits, a dimer of dimers containing dimeric and tetrameric interfaces. We have investigated conformational mobility at these interfaces by measuring amide hydrogen/deuterium (H/D) exchange kinetics and 19F NMR spectra, both being excellent methods for analyzing local environments. Human MnSOD was prepared in which all nine tyrosine residues in each subunit are replaced with 3-fluorotyrosine. The 19F NMR spectrum of this enzyme showed five sharp resonances that have been assigned by site-specific mutagenesis by replacing each 3-fluorotyrosine with phenylalanine; four 19F resonances not observed are near the paramagnetic manganese and extensively broadened. The temperature dependence of the line widths and chemical shifts of the 19F resonances were used to estimate conformational mobility. 3-Fluorotyrosine 169 at the dimeric interface showed little conformational mobility and 3-fluorotyrosine 45 at the tetrameric interface showed much greater mobility by these measures. In complementary studies, H/D exchange mass spectrometry was used to measure backbone dynamics in human MnSOD. Using this approach, amide hydrogen exchange kinetics were measured for regions comprising 78% of the MnSOD backbone. Peptides containing Tyr45 at the tetrameric interface displayed rapid exchange of hydrogen with deuterium while peptides containing Tyr169 in the dimeric interface only displayed moderate exchange. Taken together, these studies show that residues at the dimeric interface, such as Tyr169, have significantly less conformational freedom or mobility than do residues at the tetrameric interface, such as Tyr45. This is discussed in terms of the role in catalysis of residues at the dimeric interface.  相似文献   

6.
A conserved tyrosine residue in the 'astacin family' of metalloproteases is one of five ligands proposed to coordinate zinc at the active site. Site-directed mutagenesis of the conserved Tyr (Y226) of recombinant mouse meprin alpha was used to test the hypothesis that this residue is essential for zinc binding and enzymatic activity. In addition, another proposed zinc binding ligand, H167, in the conserved (HEXXH) zinc binding motif of the meprin alpha protease domain was replaced by an alanine residue. Both mutants were expressed and secreted with the same subunit mass as wild type (90 kDa). The Y226F mutant retained the capacity to oligomerize to higher covalently and noncovalently-linked oligomers as the wild type, whereas H167A was predominantly a monomer. The kcat/Km for Y226F against a fluorgenic bradykinin substrate analog was approximately 15% of the wild type, while the H167A mutant had no detectable activity. Both Y226F and H167A were more susceptible to extensive degradation by trypsin compared with the wild-type protein. The zinc content in the wild-type and Y226F mutant proteins were similar, one molecule of zinc per subunit. The results indicate that Y226 is not essential for zinc binding, but Y226 and H167 are essential for full enzymatic activity and stability of the metalloproteinase.  相似文献   

7.
Kobayashi T  Ikeguchi M  Sugai S 《Proteins》2002,49(3):297-301
At neutral pH, equine beta-lactoglobulin (ELG) is monomeric, whereas bovine beta-lactoglobulin (BLG) exists as a dimer. To understand the difference in the oligomerization properties between ELG and BLG, three mutants of ELG (LP, I, and LPI) were constructed by substituting amino acids responsible for important interactions at the dimer interface of BLG into ELG. The mutant LP has an AB loop mutation (S34A/E35Q), the mutant I has an I strand mutation (G145M/R146H/V147I/Q148R/I149L/V150S/P151F/D152N/L153P) and the mutant LPI includes both the LP and I mutations. The far- and near-UV CD spectra of the three mutants are similar to that of the wild-type ELG, indicating that the secondary and the tertiary structures of ELG are not significantly affected by the mutations. Ultracentrifuge analysis shows that all three mutants are monomeric at neutral pH, suggesting that the protein sequences in the AB loop and I strand of BLG alone cannot support dimerization of ELG. Thus, structural differences must exist between ELG and BLG that prevent the ELG mutants from forming the same interactions as BLG at the dimer interface.  相似文献   

8.
The monomer-dimer equilibrium for the human immunodeficiency virus type 1 (HIV-1) protease has been investigated under physiological conditions. Dimer dissociation at pH 7.0 was correlated with a loss in beta-sheet structure and a lower degree of ANS binding. An autolysis-resistant mutant, Q7K/L33I/L63I, was used to facilitate sedimentation equilibrium studies at neutral pH where the wild-type enzyme is typically unstable in the absence of bound inhibitor. The dimer dissociation constant (KD) of the triple mutant was 5.8 microM at pH 7.0 and was below the limit of measurement (approximately 100 nM) at pH 4.5. Similar studies using the catalytically inactive D25N mutant yielded a KD value of 1.0 microM at pH 7.0. These values differ significantly from a previously reported value of 23 nM obtained indirectly from inhibitor binding measurements (Darke et al., 1994). We show that the discrepancy may result from the thermodynamic linkage between the monomer-dimer and inhibitor binding equilibria. Under conditions where a significant degree of monomer is present, both substrates and competitive inhibitors will shift the equilibrium toward the dimer, resulting in apparent increases in dimer stability and decreases in ligand binding affinity. Sedimentation equilibrium studies were also carried out on several drug-resistant HIV-1 protease mutants: V82F, V82F/I84V, V82T/I84V, and L90M. All four mutants exhibited reduced dimer stability relative to the autolysis-resistant mutant at pH 7.0. Our results indicate that reductions in drug affinity may be due to the combined effects of mutations on both dimer stability and inhibitor binding.  相似文献   

9.
The anthranilate phosphoribosyltransferase from Sulfolobus solfataricus (ssAnPRT) forms a homodimer with a hydrophobic subunit interface. To elucidate the role of oligomerisation for catalytic activity and thermal stability of the enzyme, we loosened the dimer by replacing two apolar interface residues with negatively charged residues (mutations I36E and M47D). The purified double mutant I36E+M47D formed a monomer with wild-type catalytic activity but reduced thermal stability. The single mutants I36E and M47D were present in a monomer-dimer equilibrium with dissociation constants of about 1 μM and 20 μM, respectively, which were calculated from the concentration-dependence of their heat inactivation kinetics. The monomeric form of M47D, which is populated at low subunit concentrations, was as thermolabile as monomeric I36E+M47D. Likewise, the dimeric form of I36E, which was populated at high subunit concentrations, was as thermostable as dimeric wild-type ssAnPRT. These findings show that the increased stability of wild-type ssAnPRT compared to the I36E+M47D double mutant is not caused by the amino acid exchanges per se but by the higher intrinsic stability of the dimer compared to the monomer. In accordance with the negligible effect of the mutations on catalytic activity and stability, the X-ray structure of M47D contains only minor local perturbations at the dimer interface. We conclude that the monomeric double mutant resembles the individual wild-type subunits, and that ssAnPRT is a dimer for stability but not for activity reasons.  相似文献   

10.
The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.  相似文献   

11.
Sayed Y  Wallace LA  Dirr HW 《FEBS letters》2000,465(2-3):169-172
A hydrophobic lock-and-key intersubunit motif involving a phenylalanine is a major structural feature conserved at the dimer interface of classes alpha, mu and pi glutathione transferases. In order to determine the contribution of this subunit interaction towards the function and stability of human class alpha GSTA1-1, the interaction was truncated by replacing the phenylalanine 'key' Phe-51 with serine. The F51S mutant protein is dimeric with a native-like core structure indicating that Phe-51 is not essential for dimerization. The mutation impacts on catalytic and ligandin function suggesting that tertiary structural changes have occurred at/near the active and non-substrate ligand-binding sites. The active site appears to be disrupted mainly at the glutathione-binding region that is adjacent to the lock-and-key intersubunit motif. The F51S mutant displays enhanced exposure of hydrophobic surface and ligandin function. The lock-and-key motif stabilizes the quaternary structure of hGSTA1-1 at the dimer interface and the protein concentration dependence of stability indicates that the dissociation and unfolding processes of the mutant protein remain closely coupled.  相似文献   

12.
The I domain present within the alpha2 chain of the integrin alpha(2)beta(1) (GPIa/IIa) contains the principal collagen-binding site. Based on the crystal structure of the alpha2-I domain, a hypothetical model was proposed in which collagen binds to a groove on the upper surface of the I domain (Emsley, J., King, S. L., Bergelson, J. M., and Liddington, R. C. (1997) J. Biol. Chem. 272, 28512-28517). We have introduced point mutations into 13 residues on the upper surface of the domain. Recombinant mutant proteins were assayed for binding to monoclonal antibodies 6F1 and 12F1, to collagen under static conditions, and for the ability to retain adhesive activity under flow conditions. The mutations to residues surrounding the metal ion-dependent adhesion site that caused the greatest loss of collagen binding under both static and flow conditions are N154S in the betaA-alpha1 turn, N190D in the betaB-betaC turn, D219R in the alpha3-alpha4 turn, and E256V and H258V in the betaD-alpha5 turn. Mutation in one of the residues that coordinate the metal binding, S155A, completely lost the adhesive activity under flow but bound normally under static conditions, whereas the mutation Y285F had the converse effect. We conclude that the upper surface of the domain, including the metal ion-dependent adhesion site motif, defines the collagen recognition site.  相似文献   

13.
ZntA, a bacterial zinc-transporting P-type ATPase, is homologous to two human ATPases mutated in Menkes and Wilson diseases. To explore the roles of the bacterial ATPase residues homologous to those involved in the human diseases, we have introduced several point mutations into ZntA. The mutants P401L, D628A and P634L correspond to the Wilson disease mutations P992L, D1267A and P1273L, respectively. The mutations D628A and P634L are located in the C-terminal part of the phosphorylation domain in the so-called hinge motif conserved in all P-type ATPases. P401L resides near the N-terminal portion of the phosphorylation domain whereas the mutations H475Q and P476L affect the heavy metal ATPase-specific HP motif in the nucleotide binding domain. All mutants show reduced ATPase activity corresponding 0-37% of the wild-type activity. The mutants P401L, H475Q and P476L are poorly phosphorylated by both ATP and P(i). Their dephosphorylation rates are slow. The D628A mutant is inactive and cannot be phosphorylated at all. In contrast, the mutant P634L six residues apart in the same domain shows normal phosphorylation by ATP. However, phosphorylation by P(i) is almost absent. In the absence of added ADP the P634L mutant dephosphorylates much more slowly than the wild-type, whereas in the presence of ADP the dephosphorylation rate is faster than that of the wild-type. We conclude that the mutation P634L affects the conversion between the states E1P and E2P so that the mutant favors the E1 or E1P state.  相似文献   

14.
We investigated the functional roles of putative active site residues in Escherichia coli CheA by generating nine site-directed mutants, purifying the mutant proteins, and quantifying the effects of those mutations on autokinase activity and binding affinity for ATP. We designed these mutations to alter key positions in sequence motifs conserved in the protein histidine kinase family, including the N box (H376 and N380), the G1 box (D420 and G422), the F box (F455 and F459), the G2 box (G470, G472, and G474), and the "GT block" (T499), a motif identified by comparison of CheA to members of the GHL family of ATPases. Four of the mutant CheA proteins exhibited no detectable autokinase activity (Kin(-)). Of these, three (N380D, D420N, and G422A) exhibited moderate decreases in their affinities for ATP in the presence or absence of Mg(2+). The other Kin(-) mutant (G470A/G472A/G474A) exhibited wild-type affinity for ATP in the absence of Mg(2+), but reduced affinity (relative to that of wild-type CheA) in the presence of Mg(2+). The other five mutants (Kin(+)) autophosphorylated at rates slower than that exhibited by wild-type CheA. Of these, three mutants (H376Q, D420E, and F455Y/F459Y) exhibited severely reduced k(cat) values, but preserved K(M)(ATP) and K(d)(ATP) values close to those of wild-type CheA. Two mutants (T499S and T499A) exhibited only small effects on k(cat) and K(M)(ATP). Overall, these results suggest that conserved residues in the N box, G1 box, G2 box, and F box contribute to the ATP binding site and autokinase active site in CheA, while the GT block makes little, if any, contribution. We discuss the effects of specific mutations in relation to the three-dimensional structure of CheA and to binding interactions that contribute to the stability of the complex between CheA and Mg(2+)-bound ATP in both the ground state and the transition state for the CheA autophosphorylation reaction.  相似文献   

15.
In order to study the role of Phe169 in p38alpha MAP kinase structure and function, wild-type p38alpha and five p38alpha DFG motif mutants were examined in vitro for phosphorylation by MKK6, kinase activity toward ATF2 substrate, thermal stability, and X-ray crystal structure. All six p38alpha variants were efficiently phosphorylated by MKK6. However, only one activated p38alpha mutant (F169Y) possessed measurable kinase activity (1% compared to wild-type). The loss of kinase activity among the DFG mutants may result from an inability to correctly position Asp168 in the activated form of p38alpha. Two mutations significantly increased the thermal stability of p38alpha (F169A DeltaTm = 1.3 degrees C and D168G DeltaTm = 3.8 degrees C), and two mutations significantly decreased the stability of p38alpha (F169R DeltaTm = -3.2 degrees C and F169G DeltaTm = -4.7 degrees C). Interestingly, X-ray crystal structures of two thermally destabilized p38alpha-F169R and p38alpha-F169G mutants revealed a DFG-OUT conformation in the absence of an inhibitor molecule. This DFG-OUT conformation, termed alpha-DFG-OUT, is different from the ones previously identified in p38alpha crystal structures with bound inhibitors and postulated from high-temperature molecular dynamics simulations. Taken together, these results indicate that Phe169 is optimized for p38alpha functional activity and structural dynamics, rather than for structural stability. The alpha-DFG-OUT conformation observed for p38alpha-F169R and p38alpha-F169G may represent a naturally occurring intermediate state of p38alpha that provides access for binding of allosteric inhibitors. A model of the local forces driving the DFG IN-OUT transition in p38alpha is proposed.  相似文献   

16.
This investigation describes how the binding characteristics of the single-stranded DNA-binding protein encoded by gene V of bacteriophage M13, are affected by single-site amino acid substitutions. The series of mutant proteins tested includes mutations in the purported monomer-monomer interaction region as well as mutations in the DNA-binding domain at positions which are thought to be functionally involved in monomer-monomer interaction or single-stranded DNA binding. The characteristics of the binding of the mutant proteins to the homopolynucleotides poly(dA), poly(dU) and poly(dT), were studied by means of fluorescence-titration experiments. The binding stoichiometry and fluorescence quenching of the mutant proteins are equal to, or lower than, the wild-type gene V protein values. In addition, all proteins measured bind a more-or-less co-operative manner to single-stranded DNA. The binding affinities for poly(dA) decrease in the following order: Y61H greater than wild-type greater than F68L and R16H greater than Y41F and Y41H greater than F73L greater than R21C greater than Y34H greater than G18D/Y56H. Possible explanations for the observed differences are discussed. The conservation of binding affinity, also for mutations in the single-stranded DNA-binding domain, suggests that the binding to homopolynucleotides is largely non-specific.  相似文献   

17.
In this work we compare the dynamics and conformational stability of Pseudomonas mendocina lipase enzyme and its F180P/S205G mutant that shows higher activity and stability for use in washing powders. Our NMR analyses indicate virtually identical structures but reveal remarkable differences in local dynamics, with striking correspondence between experimental data (i.e., (15)N relaxation and H/D exchange rates) and data from Molecular Dynamics simulations. While overall the cores of both proteins are very rigid on the pico- to nanosecond timescale and are largely protected from H/D exchange, the two point mutations stabilize helices alpha1, alpha4, and alpha5 and locally destabilize the H-bond network of the beta-sheet (beta7-beta9). In particular, it emerges that helix alpha5, undergoing some fast destabilizing motions (on the pico- to nanosecond timescale) in wild-type lipase, is substantially rigidified by the mutation of Phe180 for a proline at its N terminus. This observation could be explained by the release of some penalizing strain, as proline does not require any "N-capping" hydrogen bond acceptor in the i+3 position. The combined experimental and simulated data thus indicate that reduced molecular flexibility of the F180P/S205G mutant lipase underlies its increased stability, and thus reveals a correlation between microscopic dynamics and macroscopic thermodynamic properties. This could contribute to the observed altered enzyme activity, as may be inferred from recent studies linking enzyme kinetics to their local molecular dynamics.  相似文献   

18.
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is used for the first time to examine the relative substrate-binding affinities of mutant forms of the Escherichia coli sugar transporter GalP in membrane preparations. The SSNMR method of (13)C cross-polarization magic-angle spinning (CP-MAS) is applied to five site-specific mutants (W56F, W239F, R316W, T336Y and W434F), which have a range of different sugar-transport activities compared to the wild-type protein. It is shown that binding of the substrate D-glucose can be detected independently of sugar transport activity using SSNMR, and that the NMR peak intensities for uniformly (13)C-labelled glucose are consistent with wild-type GalP and the mutants having different affinities for the substrate. The W239F and W434F mutants showed binding affinities similar to that of the wild-type protein, whereas the affinity of glucose-binding to the W56F mutant was reduced. The R316W mutant showed no detectable binding; this position corresponds to the second basic residue in the highly conserved (R/K)XGR(R/K) motif in the major facilitator superfamily of transport proteins and to a mutation in human GLUT1 found in individuals with GLUT1-deficiency syndrome. The T336Y mutant also showed no detectable binding; this mutation is likely to have perturbed helix structure or packing to an extent that conformational changes in the protein are hindered. The effects of the mutations on substrate-binding are discussed with reference to the putative positions of the residues in a 3D homology model of GalP based on the X-ray crystal structure of the E. coli glycerol-3-phosphate transporter GlpT.  相似文献   

19.
Site-directed mutagenesis was performed with the chromophore-bearing N-terminal domain of oat phytochrome A apoprotein (amino acid residues 1-595). Except for Trp366, which was replaced by Phe (W366F), all the residues exchanged are in close proximity to the chromophore-binding Cys321 (i.e. P318A, P318K, H319L, S320K, H322L and the double mutant L323R/Q324D). The mutants were characterized by their absorption maxima, and the kinetics of chromophore-binding and the Pr-->Pfr conversion. The strongest effect of mutation on the chromoprotein assembly, leading to an almost complete loss of the chromophore binding capability, was found for the exchanges of His322 by Leu (H322L) and Pro318 by Lys (P318K), whereas a corresponding alanine mutant (P318A) showed wild-type behavior. The second histidine (H319) is also involved in chromophore fixation, as indicated by a slower assembly rate upon mutation (H319L). For the other mutants, an assembly process very similar to that of the wild-type protein was found. The light-induced Pr-->Pfr conversion kinetics is altered in the mutations H319L and S320K and in the double mutant L323R/Q324D, all of which exhibited a significantly faster I700 decay and accelerated Pfr formation. P318 is also involved in the Pr-->Pfr conversion, the millisecond steps (formation of Pfr) being significantly slower for P318A. Lacking sufficient amounts of W366F, assembly kinetics could not be determined in this case, while the fully assembled mutant underwent the Pr-->Pfr conversion with kinetics similar to wild-type protein.  相似文献   

20.
Copper binding and X-ray aborption spectroscopy studies are reported on untagged human CCS (hCCS; CCS = copper chaperone for superoxide dismutase) isolated using an intein self-cleaving vector and on single and double Cys to Ala mutants of the hCCS MTCQSC and CSC motifs of domains 1 (D1) and 3 (D3), respectively. The results on the wild-type protein confirmed earlier findings on the CCS-MBP (maltose binding protein) constructs, namely, that Cu(I) coordinates to the CXC motif, forming a cluster at the interface of two D3 polypeptides. In contrast to the single Cys to Ser mutations of the CCS-MBP protein (Stasser, J. P., Eisses, J. F., Barry, A. N., Kaplan, J. H., and Blackburn, N. J. (2005) Biochemistry 44, 3143-3152), single Cys to Ala mutations in D3 were sufficient to eliminate cluster formation and significantly reduce CCS activity. Analysis of the intensity of the Cu-Cu cluster interaction in C244A, C246A, and C244/246A variants suggested that the nuclearity of the cluster was greater than 2 and was most consistent with a Cu4S6 adamantane-type species. The relationship among cluster formation, oligomerization, and metal loading was evaluated. The results support a model in which Cu(I) binding converts the apo dimer with a D2-D2 interface to a new dimer connected by cluster formation at two D3 CSC motifs. The predominance of dimer over tetramer in the cluster-containing species strongly suggests that the D2 dimer interface remains open and available for sequestering an SOD1 monomer. This work implicates the copper cluster in the reactive form and adds detail to the cluster nuclearity and how copper loading affects the oligomerization states and reactivity of CCS for its partner SOD1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号